
Data Complexity in Expressive Description Logics With
Path Expressions (Extended Abstract)
Bartosz Bednarczyk1,2

1

Computational Logic Group, Technische Universität Dresden, Germany

2

Institute of Computer Science, University of Wrocław, Poland

1. Introduction

Among the plethora of various features available in extensions of the basic DL called 𝒜ℒ𝒞, an especially
prominent one is ·reg, supported by the popular 𝒵-family of DLs [1]. Using ·reg, one can specify regular
path constraints and hence, allow the user to navigate the underlying graph data-structure. In recent
years, many extensions of 𝒜ℒ𝒞reg for ontology-engineering were proposed [2, 3, 4], and the complexity
of their reasoning problems is mostly well-understood [1, 5, 6]. Many years ago, Vardi [7] proposed the
vital notion of data complexity. When measuring the complexity of the knowledge-base (KB) satisfiability

problem (KBSat), we treat the ontology (TBox) as fixed upfront and only the user’s data (ABox) varies.
The satisfiability problem for DLs is usually NP-complete w.r.t. the data complexity, including the
two-variable counting logic [8] (encoding DLs up to 𝒜ℒ𝒞ℬℐ𝒪𝒬Self) as well as 𝒮ℛ𝒪ℐ𝒬 [9], the
logical core of OWL2. Regarding DLs with path expressions, NP-completeness of 𝒜ℒ𝒞ℐSelf

reg [10] was
established recently. This also applies to the (non)entailment of positive two-way regular path queries.

In our recent IJCAI paper [11] we study the data complexity of 𝒵ℐ𝒬, 𝒵𝒪𝒬, and 𝒵𝒪ℐ , namely the
maximal decidable fragments of 𝒵𝒪ℐ𝒬 that possess the so-called quasi-forest model property, a suitable
generalisation of the well-known forest model property for 𝒜ℒ𝒞. For the uniformity of our approach,
we actually focus on the satisfiability problem for full 𝒵𝒪ℐ𝒬 but over quasi-forests. We obtain:

Theorem 1. KBSat for 𝒵𝒪ℐ𝒬 over quasi-forests is NP-complete w.r.t. the data complexity. In particular,

knowledge-base satisfiability of 𝒵ℐ𝒬, 𝒵𝒪𝒬, and 𝒵𝒪ℐ is NP-complete w.r.t. the data complexity. ◀

This completes the data complexity landscape for decidable fragments of 𝒵𝒪ℐ𝒬 that remained open
for more than a decade, and reproves known results on the 𝒮ℛ family by Kazakov [9].

Recall that regular path queries are queries of the form ℛ(x , y) for a regular expression ℛ (with
tests). The built-in support of regular path expression in the 𝒵 family of DLs allow us then to reduce
the non-entailment problem (𝒜, 𝒯) ̸|= ℛ(x , y) to the satisfiability of (𝒜, 𝒯 ∪ {⊤ ⊑ ¬∃ℛ.⊤}). Hence:

Theorem 2. The entailment problem of regular path queries for 𝒵𝒪ℐ𝒬-KBs over quasi-forests is coNP-

complete w.r.t. the data complexity. In particular, this applies to 𝒵ℐ𝒬, 𝒵𝒪𝒬, 𝒵𝒪ℐ , and to the corre-

sponding fragments of OWL2, namely 𝒮ℛℐ𝒬, 𝒮ℛ𝒪𝒬, and 𝒮ℛ𝒪ℐ . ◀

We are currently working on lifting the results of Theorem 2 to the class of positive two-way regular
path queries. We expect to publish them as the journal version of our IJCAI paper, somewhere next year.

As a bonus result, we show how our algorithm used to establish Theorem 1 can be adapted to the entail-
ment of unions rooted (connected and containing at least one answer variable) conjunctive queries over
𝒵ℐ𝒬-KB (in terms of combined complexity). The coNExpTime upper bound for the rooted entailment
over 𝒵ℐ𝒬-KBs is supplemented with a novel matching lower bound for 𝒜ℒ𝒞 extended with Self .

Theorem 3. The query entailment problem over 𝒵ℐ𝒬-KB is coNExpTime-complete for the class of (unions

of) rooted conjunctive queries. The lower bound holds already for 𝒜ℒ𝒞Self . ◀

DL 2024: 37th International Workshop on Description Logics, June 18–21, 2024, Bergen, Norway

$ bartek@cs.uni.wroc.pl (B. Bednarczyk)
� https://bartoszjanbednarczyk.github.io/ (B. Bednarczyk)
� 0000-0002-8267-7554 (B. Bednarczyk)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:bartek@cs.uni.wroc.pl
https://bartoszjanbednarczyk.github.io/
https://orcid.org/0000-0002-8267-7554
https://creativecommons.org/licenses/by/4.0/deed.en

2. Preliminaries

We fix countably-infinite pairwise-disjoint sets NI,NC,NR of individual, concept, and role names.
We assume that the reader is familiar with the standard definitions concerning description logics
(DLs) and we do not recall them here. The set of simple roles N

sp
R is defined with the grammar

s ::= r ∈ NR | s− | s∩s | s∪s | s∖s . Simple roles are interpreted as expected by invoking the
underlying set-theoretic operations. 𝒵𝒪ℐ𝒬-KBs 𝒦 := (𝒜, 𝒯) are, as usual, composed of ABoxes 𝒜 and
TBoxes 𝒯 . We assume that 𝒜 only contains axioms ±r(a,b) and ±A(a) for non-complex concepts A.
𝒵𝒪ℐ𝒬-TBoxes are polynomial-time reducible into the following Scott’s normal form.

A ≡ B, A ≡ ¬B, A ≡ {o}, A ≡ B ⊓ B′, r = s,A ≡ ∃A.⊤, A ≡ ∃r .Self, A ≡ (≥𝑛 r).⊤

for A,B,B′ ∈ NC ∪ {⊤,⊥}, o ∈ NI, r ∈ NR, s ∈ N
sp
R, 𝑛 ∈ N, and an automaton A over the finite

alphabet composed of simple roles and tests C? for atomic concepts C. As usual, the equivalence ≡
replaces the two concept inclusions ⊑. We interpret ∃A.⊤ as the set of all elements d for which there
is a path 𝜌 starting from d that realises A (written: 𝜌 |= A), namely A accepts some word of the form
𝑤1r1 . . . 𝑤|𝜌|−1r|𝜌|−1𝑤|𝜌|, where r𝑖 ∈ N

sp
R and 𝑤𝑖 are (possibly empty) sequences of tests, satisfying

(𝜌𝑖, 𝜌𝑖+1) ∈ rℐ𝑖 and 𝜌𝑖 ∈ Cℐ for all 𝑖 ≤ |𝜌| and tests C? in 𝑤𝑖. The other DL features are defined as usual.
We define the DLs 𝒵𝒪ℐ , 𝒵ℐ𝒬, and 𝒵𝒪𝒬, respectively, by dropping (a) number restrictions, (b)
nominals, and (c) role inverses from the syntax of 𝒵𝒪ℐ𝒬.

The key ingredients of our paper are quasi-forests [1]. We introduce them under the standard
set-theoretic reconstruction of the notion of an N-forest as a prefix-closed subset of N+ without 𝜀.

Definition 1. Let N𝒜
I and N𝒯

I be finite subsets of NI, Root ∈ NC, and child , edge ∈ NR. An

interpretation ℐ is an (N𝒜
I ,N

𝒯
I)-quasi-forest if its domain Δℐ

is an N-forest,

Rootℐ = Δℐ∩N = {aℐ | a ∈ NI} = {aℐ | a ∈ (N𝒜
I ∪N𝒯

I)},
childℐ = {(d, d·𝑛) | d, d·𝑛 ∈ Δℐ , 𝑛 ∈ N},
edgeℐ =

⋃︀
r∈Nsp

R
rℐ ,

and for all roles rℐ and all pairs (d, e) ∈ rℐ at least one of the following conditions hold: (i) d and e
belong to Rootℐ , (ii) one of d or e equals oℐ for some name o ∈ N𝒯

I , (iii) d = e, (iv) (d, e) ∈ childℐ
,

or (v) (d, e) ∈ (child−)ℐ . A quasi-forest model of 𝒦 := (𝒜, 𝒯) is an (ind(𝒜), ind(𝒯))-quasi-forest

satisfying 𝒦, where ind(𝒜) and ind(𝒯) are sets of all individual names from 𝒜 and 𝒯 . ◀

The names from N𝒯
I are dubbed nominals, and are denoted with decorated letters o. We employ

the notions from graph theory such as node, root, child, parent, or descendant, defined as expected in
accordance withΔℐ , childℐ andRootℐ . For instance, d is a descendant of cwhenever (c, d) ∈ (childℐ)+.
A quasi-forest is N-bounded if all nodes have at most N children.

A slightly wider notion of quasi-forests was employed by Calvanese et al. [1, Prop. 3.3] and Ortiz [4,
L. 3.4.1, Thm. 3.4.2] to reason about the 𝒵 family. Based on their results we prove:

Lemma 1. Let 𝒦:=(𝒜, 𝒯) be a KB of 𝒵𝒪𝒬, 𝒵𝒪ℐ , or 𝒵ℐ𝒬. 𝒦 is satisfiable iff 𝒦 has a quasi-forest

model. Moreover, for all (unions of) CQs q , we have 𝒦 ̸|= q iff there exists an N-bounded quasi-forest

model of 𝒦 violating q (for some N exponential in |𝒯 |). Deciding if a 𝒵𝒪ℐ𝒬-KB has a quasi-forest model

is ExpTime-complete w.r.t. the combined complexity. ◀

3. Data Complexity: An Overview and Some Tricks

To establish NP-completeness of the satisfiability for 𝒵ℐ𝒬, 𝒵𝒪𝒬, and 𝒵𝒪ℐ in a uniform and elegant
way, we focus on the satisfiability of 𝒵𝒪ℐ𝒬 over quasi-forests. As the proof is highly technical, we
only mention a few of its important ingredients and provide a very rough sketch below.

One of the key ingredients is an exponential time algorithm for deciding if a 𝒵𝒪ℐ𝒬-KB has a
quasi-forest model [4, L. 3.4.1, Thm. 3.4.2]. While this algorithm cannot be used directly to solve the
satisfiability problem in optimal time, we stress that we can still employ it as a black-box to decide quasi-
forest satisfiability of KBs that have sizes independent from the ABox. In our approach, we intend to
construct a quasi-forest model of an input 𝒵𝒪ℐ𝒬-KB in two steps, i.e. we construct its root part (dubbed
the clearing) separately from its subtrees. Our algorithm first pre-computes (an exponential w.r.t. the
size of the TBox but of constant size if the TBox is fixed) set of quasi-forest-satisfiable 𝒵𝒪ℐ𝒬-concepts
that indicate possible subtrees that can be “plugged in” to the clearing of the intended model. Then it
guesses (in NP) the intended clearing and verifies its consistency in PTime based on the pre-computed
concepts and roles. For the feasibility of our “modular construction” a lot of bookkeeping needs to be
done. Most importantly, certain decorations are employed to “relativise” and decide the satisfaction of
automata concepts and number restrictions by elements in an incomplete, fragmented forest.
I. The first type of decorations, given an automaton A, aggregate information about existing paths
realising A and starting at one of the roots of the intended model. As a single such path may visit
several subtrees, we cut such paths into relevant pieces and summarise them by means of “shortcut”
roles and 𝒵𝒪ℐ𝒬-concepts describing paths fully contained inside a single subtree. One of the core
results is a complete characterisation of how paths in quasi-forest look like, and how they can be
decomposed into interesting pieces, axiomatisable in 𝒵𝒪ℐ𝒬. Such “basic” paths are depicted below
(the decorated o denote nominals, while the other letters denote arbitrary roots).

a b
a a a

o

a

o
o

a

o

a

ö

II. The second type of decorations “localise” counting in the presence of nominals, as the nominals may
have successors outside their own subtree and the clearing. For instance, suppose that we deal with
the number restriction (≥2 r).⊤ in an ({a,b}, {o})-quasi-forest ℐ sketched below (with r depicted as
a green arrow). For different thresholds t ∈ {=0,=1,=2, >2} we label the roots of ℐ with concepts
Clrngrt , Cldrt , and Desr ,ot , informing how many r -successor a given root has among (i) the clearing, (b)
its children, and how many (c) for each nominal o, and how many of its descendants are r -successors
of o. The decorated quasi-forest is:

a o b
Clrngr=0

Chldr=1

Desr ,o=1

Desr ,o=2

Chldr=2

Clrngr=2

Clrngr=1

Chldr=0

Desr ,o≥2+1

These two “small tricks”, obfuscated by various technical difficulties, are the core ideas behind our
quasi-forest-satisfiability algorithm. We encourage the reader to check the full paper for details.

4. Hardness of Rooted Entailment in𝒜ℒ𝒞Self: An Overview and Tricks

We reduce from the NExpTime-complete 2𝑛 × 2𝑛 torus tiling problem [12, Cor. 4.15]. For its instance
(D, c̄), we construct a rooted CQ q and an 𝒜ℒ𝒞Self-KB 𝒦 such that 𝒦 ̸|= q iff (D, c̄) has a solution.
Models of 𝒦 represent 2𝑛 × 2𝑛 tori (possibly incorrectly) labelled with tiles, while matches of q detect
violations of tilings. We represent tori by binary trees of height 2𝑛, where every leaf determines a
position (𝑥, 𝑦) in 2𝑛 × 2𝑛 and carries a selection of concepts Ad𝑏11 , . . . ,Ad𝑏𝑛𝑛 and Ad

𝑏𝑛+1

𝑛+1 , . . . ,Ad
𝑏2𝑛
2𝑛 ,

for bit-strings 𝑏1 . . . 𝑏𝑛 and 𝑏𝑛+1 . . . 𝑏2𝑛 encoding 𝑥 and 𝑦. Unusually, we equip every leaf representing
(𝑥, 𝑦) with three extra children, encoding (𝑥, 𝑦), (𝑥+1, 𝑦) and (𝑥, 𝑦+1) (counting modulo 2𝑛). This
“localises” vertical and horizontal successors of each element. Call the resulting structures treepods.

000 001 002 010 011 012 100 101 102 110 111 112

00 01 10 11

0 1

𝜀

e e

e e e e

e e e e e e e e e e e e

Lvl3

Lvl2

Lvl1

Lvl0

Ad01 Ad11

Ad01,Ad02 Ad01,Ad12 Ad11,Ad02 Ad12,Ad12

L
Ad01,Ad

0
2

L
Ad01,Ad12

L
Ad11,Ad

0
2

L
Ad11,Ad12

M
Ad11,Ad02

M
Ad11,Ad12

M
Ad01,Ad02

M
Ad01,Ad12

R
Ad01,Ad

1
2

R
Ad01,Ad

0
2

R
Ad11,Ad12

R
Ad11,Ad02

Figure 1: An example treepod for 𝑛 = 1.

The verification of tiling relations in treepods can be implemented locally in 𝒜ℒ𝒞, but only under a
naïve assumption that all the nodes representing the same position of a torus carry precisely the same
tile. Such a “tile equality test” will be implemented with the query. To make this feasible, we design an
alternative way of encoding positions and tiles in treepods by means of tentacles, namely the outgoing
paths endowed with various self-loops replacing the leaves of treepods. An example tentacle replacing
the node 100 in the above treepod is depicted on Figure 2.

100

⋆, e

⋆, e

⋆, e

⋆ ⋆ ⋆

Lvl3 Lvl4 Lvl5

ad1
1 ad0

2

r

r

r

Ad11,Ad02 Ad11,Ad02 Ad11,Ad02

0,Lvl6,Ad11,Ad02,

1,Lvl6,Ad11,Ad02,

0,Lvl6,Ad11,Ad02,

.

Figure 2: An example tentacle replacing the node 100 in the treepod from Figure 1.

By replacing each leaf of a treepod with a suitable tentacle, we obtain jellyfishes. Note that the node
100 that “stores its address” with concepts Ad11,Ad

0
2, and , has now an outgoing ad1

1ad
0
2r 1?-path.

Similarly, 012 has an outgoing ad0
1ad

0
2r 1? path. Our 𝒜ℒ𝒞Self-KB 𝒦 axiomatises jellyfishes, while

our query q compares such path-based addresses of nodes. Self-loops are crucial here as they are used
to simulate disjunction over paths.

Acknowledgements I thank my PhD supervisor Sebastian Rudolph for his constant support and
extreme patience. This work was supported by the ERC Consolidator Grant No. 771779 (DeciGUT).
The full version of this paper is available on ArXiV, accessible via: https://arxiv.org/abs/2406.07095

https://iccl.inf.tu-dresden.de/web/DeciGUT/en
https://arxiv.org/abs/2406.07095

References

[1] D. Calvanese, T. Eiter, M. Ortiz, Regular Path Queries in Expressive Description Logics with
Nominals, in: IJCAI, 2009.

[2] M. Bienvenu, D. Calvanese, M. Ortiz, M. Simkus, Nested Regular Path Queries in Description
Logics, in: KR, 2014.

[3] D. Calvanese, M. Ortiz, M. Simkus, Verification of Evolving Graph-structured Data under Expres-
sive Path Constraints, in: ICDT, 2016.

[4] M. Ortiz, Query Answering in Expressive Description Logics: Techniques and Complexity Results,
Ph.D. thesis, TU Wien, AT, 2010.

[5] B. Bednarczyk, S. Rudolph, Worst-Case Optimal Querying of Very Expressive Description Logics
with Path Expressions and Succinct Counting, in: IJCAI, 2019.

[6] B. Bednarczyk, E. Kieroński, Finite Entailment of Local Queries in the Z Family of Description
Logics, in: AAAI, 2022.

[7] M. Y. Vardi, The Complexity of Relational Query Languages (Extended Abstract), in: STOC, 1982.
[8] I. Pratt-Hartmann, Data-Complexity of the Two-Variable Fragment with Counting Quantifiers,

Information and Computation (2009).
[9] Y. Kazakov, RIQ and SROIQ are harder than SHOIQ, in: KR, 2008, pp. 274–284.

[10] J. C. Jung, C. Lutz, M. Martel, T. Schneider, Querying the Unary Negation Fragment with Regular
Path Expressions, in: ICDT, 2018.

[11] B. Bednarczyk, Data Complexity in Expressive Description Logics with Path Expressions, in:
IJCAI, 2024.

[12] C. Lutz, The Complexity of Description Logics with Concrete Domains, Ph.D. thesis, RWTH
Aachen University, Germany, 2002.

	1 Introduction
	2 Preliminaries
	3 Data Complexity: An Overview and Some Tricks
	4 Hardness of Rooted Entailment in ALCSelf: An Overview and Tricks

