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Abstract
We define the adjacent fragment 𝒜ℱ of first-order logic, obtained by restricting the sequences of variables occur-
ring as arguments in atomic formulas. The adjacent fragment generalizes (after a routine renaming) two-variable
logic as well as the fluted fragment. We show that the adjacent fragment has the finite model property, and that
its satisfiability problem is no harder than for the fluted fragment (and hence is Tower-complete). We further
show that any relaxation of the adjacency condition on the allowed order of variables in argument sequences
yields a logic whose satisfiability and finite satisfiability problems are undecidable. Finally, we study the effect
of the adjacency requirement on the well-known guarded fragment (𝒢ℱ ) of first-order logic. We show that the
satisfiability problem for the guarded adjacent fragment (𝒢𝒜) remains 2ExpTime-hard, thus strengthening the
known lower bound for 𝒢ℱ .
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The quest to find fragments of first-order logic for which satisfiability is algorithmically decidable
has been a central undertaking of mathematical logic since the appearance of Hilbert and Ackermann’s
Grundzüge der theoretischen Logik [1, 2] almost a century ago. The great majority of such fragments so
far discovered, however, belong to just three families: (i) quantifier prefix fragments [3], where we are
restricted to prenex formulas with a specified quantifier sequence; (ii) two-variable logics [4], where the
only logical variables occurring as arguments of predicates are 𝑥1 and 𝑥2; and (iii) guarded logics [5],
where quantifiers are relativized by atomic formulas featuring all the free variables in their scope.

There is, however, a fourth family of decidable logics, originating in the work of
W.V.O. Quine [6], and based on restricting the allowed sequences of variables occurring as arguments
in atomic formulas. This family of logics, which includes the fluted fragment, the ordered fragment and
the forward fragment, has languished in relative obscurity. In our paper, we investigate the potential
for obtaining decidable fragments in this way, identifying a new fragment, which we call the adjacent

fragment. This fragment not only includes the fluted, ordered and forward fragments, but also subsumes,
in a sense we make precise, the two-variable fragment. We show that the satisfiability problem for the
adjacent fragment is decidable, and determine bounds on its complexity.

To explain how restrictions on argument orderings work, we consider presentations of first-order logic
without equality over purely relational signatures, employing individual variables from the alphabet
{𝑥1, 𝑥2, 𝑥3, . . .}. Any atomic formula in this logic has the form 𝑝(�̄�), where 𝑝 is a predicate of arity
𝑚 ≥ 0 and �̄� is a word over the alphabet of variables of length 𝑚. Call a first-order formula 𝜙 index-

normal if, for any quantified sub-formula 𝑄𝑥𝑘 𝜓 of 𝜙, 𝜓 is a Boolean combination of formulas that
are either atomic with free variables among 𝑥1, . . . , 𝑥𝑘, or have as their major connective a quantifier
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binding 𝑥𝑘+1. By re-indexing variables, any first-order formula can easily be written as a logically
equivalent index-normal formula. In the fluted fragment, denoted ℱℒ, as defined by W. Purdy [7],
we confine attention to index-normal formulas, but additionally insist that any atom occurring in a
context in which 𝑥𝑘 is quantified have the form 𝑝(𝑥𝑘−𝑚+1 · · ·𝑥𝑘), i.e. 𝑝(�̄�) with �̄� a suffix of 𝑥1 · · ·𝑥𝑘.
In the ordered fragment, due to A. Herzig [8], by contrast, we insist that �̄� be a prefix of 𝑥1 · · ·𝑥𝑘 . In the
forward fragment [9], we insist only that �̄� be an infix of 𝑥1 · · ·𝑥𝑘.

All these logics have the finite model property, and hence are decidable for satisfiability. Denoting by
ℱℒ𝑘 the sub-fragment of ℱℒ involving at most 𝑘 variables (free or bound), the satisfiability problem for
ℱℒ𝑘 is known to be in (𝑘−2)-NExpTime for all 𝑘 ≥ 3, and ⌊𝑘/2⌋-NExpTime-hard for all 𝑘 ≥ 2 [10].
Thus, satisfiability for the whole fluted fragment is Tower-complete, in the system of trans-elementary
complexity classes due to [11]. By contrast, the satisfiability problem for ordered fragment is known
to be PSpace-complete [8, 12]. On the other hand, the apparent liberalization afforded by the forward
fragment yields no difference in expressive power [13].

Say that a word �̄� over the alphabet {𝑥1, . . . , 𝑥𝑘} (𝑘 ≥ 0) is adjacent if the indices of neighbouring
letters differ by at most 1. For example, 𝑥3𝑥2𝑥1𝑥2𝑥2𝑥2𝑥3𝑥4𝑥3 is adjacent, but 𝑥1𝑥3𝑥2 is not. The
adjacent fragment, denoted 𝒜ℱ , is analogous to the fluted, ordered and forward fragments, but we
allow any atom 𝑝(�̄�) to occur in a context where 𝑥𝑘 is available for quantification as long as �̄� is an
adjacent word over {𝑥1, . . . , 𝑥𝑘}. As a simple example, the formula

∀𝑥1∀𝑥2∀𝑥3∃𝑥4∀𝑥5
(︀
𝑝(𝑥1𝑥2𝑥3𝑥2𝑥3𝑥4𝑥5) → 𝑝(𝑥1𝑥2𝑥3𝑥4𝑥3𝑥4𝑥5)

)︀
is a validity of 𝒜ℱ , as can be seen by assigning 𝑥4 the same value as 𝑥2. Evidently, 𝒜ℱ includes the
fluted, ordered and forward fragments; the inclusion is strict, since the formulas

∀𝑥1 𝑟(𝑥1𝑥1),

∀𝑥1𝑥2
(︀
𝑟(𝑥1𝑥2) → 𝑟(𝑥2𝑥1)

)︀
,

stating that 𝑟 is reflexive and symmetric, respectively, are in 𝒜ℱ . It is worth noting that the formula
expressing transitivity; i.e.

∀𝑥1𝑥2𝑥3
(︁(︀
𝑟(𝑥1𝑥2) ∧ 𝑟(𝑥2𝑥3)

)︀
→ 𝑟(𝑥1𝑥3)

)︁
,

is not in 𝒜ℱ as the variable 𝑥2 is skipped in the atom 𝑟(𝑥1𝑥3).
To further aid intuition, we provide the following (possible) translations of english sentences into

𝒜ℱ . “Every student taking a programming course also takes some maths course” can be written as:

∀𝑥1𝑥2
(︁

Prog(𝑥1) ∧ Stud(𝑥2) ∧ Takes(𝑥2, 𝑥1) → ∃𝑥3
(︀
Math(𝑥3) ∧ Takes(𝑥2, 𝑥3)

)︀)︁
“Every languages student either recommends Norwegian to their peers or is recommended Norwegian

by someone” may be written as:

∀𝑥1𝑥2
(︁

Stud(𝑥1) ∧ Nor(𝑥2) →
(︀
∀𝑥3 Rec(𝑥1, 𝑥2, 𝑥3)

)︀
∨
(︀
∃𝑥3 Rec(𝑥3, 𝑥2, 𝑥1)

)︀)︁
.

In the sequel we will define the fragment formally.
Let 𝑚 and 𝑘 be non-negative integers. For any integers 𝑖 and 𝑗, we write [𝑖, 𝑗] to denote the set of

integers ℎ such that 𝑖 ≤ ℎ ≤ 𝑗. A function 𝑓 : [1,𝑚] → [1, 𝑘] is adjacent if |𝑓(𝑖+ 1)−𝑓(𝑖)| ≤ 1 for all
𝑖 (1 ≤ 𝑖 < 𝑚). We write A𝑚

𝑘 to denote the set of adjacent functions 𝑓 : [1,𝑚] → [1, 𝑘]. Since [1, 0] = ∅,
we have A0

𝑘 = {∅}, and A𝑚
0 = ∅ if 𝑚 > 0. Let 𝐴 be a non-empty set. A word �̄� over the alphabet 𝐴

is simply a tuple of elements from 𝐴. Accordingly, 𝐴𝑘 denotes the set of words over 𝐴 having length
exactly 𝑘, and 𝐴* is the set of all finite words over 𝐴. Any function 𝑓 : [1,𝑚] → [1, 𝑘] (adjacent or
not) induces a natural map from 𝐴𝑘 to 𝐴𝑚 defined by �̄�𝑓 = 𝑎𝑓(1) · · · 𝑎𝑓(𝑚), where �̄� = 𝑎1 · · · 𝑎𝑘. If
𝑓 ∈ A𝑚

𝑘 (i.e. if 𝑓 is adjacent), we may think of �̄�𝑓 as the result of a ‘walk’ on the tuple �̄�, starting at
the element 𝑎𝑓(1), and moving left, right, or remaining stationary according to the sequence of values
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Figure 1: Generation of abcbaaadefedadefbabf from cbadefba.

𝑓(𝑖+ 1)−𝑓(𝑖) (1 ≤ 𝑖 < 𝑚). We may picture a walk as a piecewise linear function, with the generated

word superimposed on the abscissa and the generating word on the ordinate, c.f. Figure 1.
For any 𝑘 ≥ 0, denote by x𝑘 the fixed word 𝑥1 · · ·𝑥𝑘 (if 𝑘 = 0, this is the empty word). A 𝑘-atom is

an expression 𝑝(x𝑓
𝑘), where 𝑝 is a predicate of some arity 𝑚 ≥ 0, and 𝑓 : [1,𝑚] → [1, 𝑘]. Thus, in a

𝑘-atom, each argument is a variable chosen from x𝑘. If 𝑓 is adjacent, we speak of an adjacent 𝑘-atom.
Thus, in an adjacent 𝑘-atom, the indices of neighbouring arguments differ by at most one. When 𝑘 ≤ 2,
the adjacency requirement is vacuous, and in this case we prefer to speak simply of 𝑘-atoms. Proposition
letters (predicates of arity 𝑚 = 0) count as (adjacent) 𝑘-atoms for all 𝑘 ≥ 0, taking 𝑓 to be the empty
function. When 𝑘 = 0, we perforce have 𝑚 = 0, since otherwise, there are no functions from [1,𝑚]
to [1, 𝑘]; thus the 0-atoms are precisely the proposition letters.

We define the sets of first-order formulas 𝒜ℱ [𝑘] by simultaneous structural induction:

1. every adjacent 𝑘-atom is in 𝒜ℱ [𝑘];
2. 𝒜ℱ [𝑘] is closed under Boolean combinations;
3. if 𝜙 is in 𝒜ℱ [𝑘+1], ∃𝑥𝑘+1 𝜙 and ∀𝑥𝑘+1 𝜙 are in 𝒜ℱ [𝑘].

Formally, we call 𝒜ℱ =
⋃︀

𝑘≥0𝒜ℱ [𝑘] the adjacent fragment. Note that formulas of 𝒜ℱ contain no
individual constants, function symbols or equality.

As every word over {𝑥1, 𝑥2} is adjacent, we may transform any formula of the two-variable fragment
without equality, FO2, in polynomial time, to a logically equivalent formula of 𝒜ℱ . The converse is true
over signatures with predicates of arity at most two. Since the system of basic multimodal propositional
logic is, under the standard translation to first-order logic, included within FO2, this logic is similarly
subsumed by 𝒜ℱ , as indeed is its notational variant, the description logic 𝒜ℒ𝒞 (see, e.g. [14]).

We show that the satisfiability problem for the restriction of the adjacent fragment to formulas
involving at most 𝑘 variables (free or bound) is in (𝑘−2)-NExpTime for all 𝑘 ≥ 3—and hence no more
difficult than the 𝑘-variable fluted fragment, which it properly contains. The critical step in our analysis
is [15, Theorem 3.1]–a theorem on the combinatorics of strings, which may be of independent interest.
We also consider minimal relaxations of adjacency involving the fragment with just three variables,
and show that, in all cases of interest, the satisfiability and finite satisfiability problems for the resulting
logics are undecidable. Thus, adjacency is as far as we can go in seeking decidable fragments based on
straightforward argument ordering restrictions of the type envisaged by Quine.

The adjacent fragment is incomparable in expressive power to the guarded fragment. Moreover, the
satisfiability problem for the union of 𝒢ℱ and 𝒜ℱ is undecidable, as one can use adjacent formulas to
introduce any 𝑘-ary universal relations, which makes 𝒢ℱ as expressive as first-order logic. Therefore,
we study the effect of the adjacency restriction on 𝒢ℱ . We investigate the complexity of satisfiability for



the guarded adjacent fragment 𝒢𝒜, showing that the problem is 2ExpTime-complete, thus sharpening
the existing 2ExpTime-hardness proof for 𝒢ℱ [16].

Denoting 𝒜ℱ ℓ for the ℓ-variable adjacent fragment we establish the following results using a variable
reduction technique similar to that as for the fluted fragment.

Theorem 1. The (finite) satisfiability problem for 𝒜ℱ ℓ
is in (ℓ−2)−NExpTime and ⌊ℓ/2⌋−NExpTime-

hard.

This allows us to conclude the following about the whole fragment.

Theorem 2. The (finite) satisfiability problem for 𝒜ℱ is Tower-complete.

We also sharpen existing lower bounds for the (finite) satisfiability of the guarded fragment by encod-
ing an alternating turing machine running in exponential space in an adjacent way thus establishing
the following.

Theorem 3. The (finite) satisfiability problem for 𝒢𝒜 is 2ExpTime-complete.

The full paper is published in the proceedings of the 50th International Colloquium on Automata,
Languages, and Programming (ICALP 2023) [15]. The accompanying technical report with detailed
proofs is available on arxiv [17].
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