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Abstract
Labeled examples (i.e., positive and negative examples) are an attractive medium for communicating complex
concepts. They are useful for deriving concept expressions (such as in concept learning, interactive concept
specification, and concept refinement) as well as for illustrating concept expressions to a user or domain expert. We
investigate the power of labeled examples for describing description logic concepts. Specifically, we systematically
study the existence and efficient computability of finite characterizations, i.e., finite sets of labeled examples that
uniquely characterize a single concept, for a wide variety of description logics between ℰℒ and 𝒜ℒ𝒞𝒬ℐ , both
without an ontology and in the presence of a DL-Lite ontology. Finite characterizations are relevant for debugging
purposes, and their existence is a necessary condition for exact learnability with membership queries.
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1. Introduction

Labeled examples (i.e., positive and negative examples) are an attractive medium for communicating
complex concepts. They are useful as data for deriving concept expressions (such as in concept learning,
interactive concept specification, and example-driven concept refinement) as well as for illustrating
concept expressions to a user or domain expert [1, 2, 3, 4, 5, 6, 7]. In this extended abstract we report on
a recent study [8] into the utility of labeled examples for describing description logic concepts.

Example 1. In the description logic ℰℒ, we may define the concept of an e-bike by means of the concept
expression 𝐶 := Bicycle ⊓ ∃Contains.Battery. Suppose we wish to illustrate 𝐶 by a collection of positive
and negative examples. What would be a good choice of examples? Take the interpretation ℐ consisting of
the following facts. �

�

�




Bicycle
�
 �	soltera2 Contains−−−−→

�
 �	li360Wh Battery

Bicycle
�
 �	px10 Contains−−−−→

�
 �	b12 Basket

Car
�
 �	teslaY Contains−−−−→

�
 �	li81kWh Battery

In the context of this interpretation ℐ , it is clear that soltera2 is a positive example for 𝐶 , and px10 and
teslaY are negative examples for 𝐶 . In fact, as it turns out, 𝐶 is the only ℰℒ-concept (up to equivalence)
that is consistent with, or ‘fits’ these three labeled examples. In other words, these three labeled examples
“uniquely characterize” 𝐶 within the class of all ℰℒ-concepts. This shows that the above three labeled
examples are a good choice of examples. Further examples would be redundant. Note, however, that this
depends on the choice of the description logic. For instance, the richer concept language 𝒜ℒ𝒞 allows for
concept expressions such as Bicycle ⊓ ¬∃Contains.Basket that also fit.
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Example 2. This example involves 𝒜ℒ𝒞-concepts over a signature (Σ𝐶 ,Σ𝑅) consisting of the concept
names Σ𝑅 = {Animal,Cat,Dog, Red} and no role names, i.e., Σ𝑅 = ∅. Let 𝒪 furthermore be the DL-
Lite ontology {Cat ⊑ Animal,Dog ⊑ Animal,Cat ⊑ ¬Dog} expressing that Cat and Dog are disjoint
subconcepts of Animal. Consider the concept 𝐶 := Cat ⊓ Red. If we wish to illustrate 𝐶 by a collection
of positive and negative examples, what would be a good choice of examples? Take the interpretation ℐ
consisting of the following facts:�

�

�




Animal, Red
�� ⊵�𝑎

�
 �	𝑎′ Animal

Red
�� ⊵�𝑏 �
�	𝑏′

Cat, Animal , Red
�� ⊵�𝑐 �
�	𝑐′ Cat, Animal

Dog, Animal, Red
�
�	𝑑

�
 �	𝑑′ Dog, Animal

Note that ℐ satisfies the ontology 𝒪. In the context of this interpretation, it is clear that

• 𝑐 is a positive example for 𝐶 .
• All the other elements (that is, 𝑎, 𝑎′, 𝑏, 𝑏′, 𝑐′, 𝑑, and 𝑑′) are negative examples for 𝐶 .

As it turns out, every𝒜ℒ𝒞-concept (over the specified signature) that fits these labeled examples is equivalent
to 𝐶 under the ontology 𝒪. In other words, the above labeled examples uniquely characterize 𝐶 relative to
𝒪 and the signature (Σ𝐶 ,Σ𝑅). On the other hand, these labeled examples do not uniquely characterize 𝐶
in the absence of an ontology, because, for instance, Cat⊓ Red⊓¬Dog and Cat⊓ Red⊓Animal also fit but
are not equivalent to 𝐶 in the absence of the ontology.

An ontology can help reduce the number of examples needed to uniquely characterize 𝐶 . Moreover, it
can help avoid unnatural examples. For instance, without an ontology, a unique characterization for 𝐶
would need to include negative examples satisfying Cat ⊓ Red ⊓ Dog and Cat ⊓ Red ⊓ ¬Animal.
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Figure 1: Summary of Thm. 1 and 2.

Motivated by the above examples, we investigate the
existence and efficient computability of finite characteri-
zations, i.e., finite sets of labeled examples that uniquely
characterize a single concept. Finite characterizations are
relevant not only for illustrating a complex concept to a
user (e.g., to verify the correctness of a concept expres-
sion obtained using machine learning techniques). Their
existence is a necessary condition for exact learnability
with membership queries [9]. Furthermore, from a more
fundamental point of view, by studying the existence of
finite characterizations, we gain insight into the power and
limitations of labeled examples as a medium for describing
concepts.

Finite characterisations were first studied in the com-
putational learning theory literature under the name of
teaching sets, with a corresponding notion of teaching di-
mension, measuring the maximal size of minimal teaching
sets of some class of concepts [10]. Several recent works
study finite characterisations for description logic concepts ([11, 12] for ℰℒℐ ; [13] for temporal instance
queries); a systematic study of finite characterizations for syntactic fragments of modal logic was carried
out in [14].

In this prior literature, two types of examples have been considered, namely open-world examples (cf.
[12, 15]) and closed-world examples (e.g. [13, 16]). An open-world example is a pair (𝒜, 𝑎), where 𝒜 is an
ABox and 𝑎 is an individual name. Such a pair is a positive example for a concept expression 𝐶 relative
to an ontology 𝒪 if 𝑎 belongs to the certain answers of 𝐶 w.r.t. 𝒜 and it is a negative example otherwise.



In contrast, a closed-world example is a pair (ℐ, 𝑑) where ℐ is a finite interpretation satisfying the
ontology 𝒪, and 𝑑 is an element in the domain of ℐ . Such a pair is a positive example for a concept
expression 𝐶 if 𝑑 ∈ 𝐶ℐ , and it is a negative example otherwise.

2. Contributions

First contribution: We study the difference in descriptive power between closed-world examples
and open-world examples for description logic concepts. It was shown in [12] that ℰℒℐ admits finite
characterizations with open-world examples under DL-Lite ontologies. We show that the same does not
hold with closed-world examples. On the other hand, for non-monotone concept languages, e.g. with
∀ or ¬, it is necessary to work with closed-world rather than open-world examples. For instance,
the concepts ∀𝑅.𝐴 and ∀𝑅.𝐵 do not have any positive open-world examples (relative to an empty
ontology), and hence neither can be uniquely characterized by open-world examples.

Second contribution: We systematically study the existence of, and the complexity of computing,
finite characterisations for concept expressions in a wide range of description logics, using closed-world
examples. Specifically, we look at concept languages ℒ(O) generated by a set of connectives O, where
{∃,⊓} ⊆ O ⊆ {∀,∃,≥,−,⊓,⊔,⊤,⊥,¬}. In other words, we look at fragments of the description logic
𝒜ℒ𝒞𝒬ℐ that contain at least the ∃ and ⊓ constructors from ℰℒ. Within this framework, we obtain an
almost complete classification of the concept languages that admit finite characterizations.

Theorem 1. Let {∃,⊓} ⊆ O ⊆ {∀, ∃,≥,−,⊓,⊔,⊤,⊥,¬}.

1. If O is a subset of {∃,−,⊓,⊔,⊤,⊥}, {∀,∃,⊔,⊓} or {∀,∃,≥,⊓,⊤} then ℒ(O) admits finite
characterizations with closed-world examples.

2. Otherwise ℒ(O) does not admit finite characterizations with closed-world examples, except possibly
if {≥,−,⊓} ⊆ O ⊆ {∃,≥,−,⊓,⊤}.

The above theorem identifies three maximal fragments of 𝒜ℒ𝒞𝒬ℐ that admit finite characterisations.
It leaves open the status of essentially only two concept languages, namely ℒ(∃,≥,−,⊓) and ℒ(∃,≥
,−,⊓,⊤) (note that ∃ is definable in terms of ≥). The proof builds on prior results from [11] and [14].
Our main novel technical contributions are a construction of finite characterisations for ℒ(∀,∃,≥,⊓,⊤)
and complementary negative results for ℒ(≥,⊥),ℒ(≥,⊔) and ℒ(∀,∃,−,⊓). The construction of finite
characterisations for ℒ(∀, ∃,≥,⊓,⊤) is non-elementary. We give an elementary (doubly exponential)
construction for ℒ(∃,≥,⊓,⊤), via a novel polynomial-time algorithm for constructing frontiers (i.e.,
complete sets of minimal weakenings) of ℒ(∃,≥,⊓,⊤)-concepts. It also follows that subsumptions
between such concepts can be checked in polynomial time.

Next, we study which concept languages ℒ(O) admit polynomial-time computable characterisations,
i.e., have a polynomial-time algorithm to compute finite characterisations.

Theorem 2. Let {∃,⊓} ⊆ O ⊆ {∀, ∃,≥,−,⊓,⊔,⊤,⊥,¬}.

1. If O is a subset of {∃,−,⊓,⊤,⊥}, then ℒ(O) admits polynomial-time computable characterizations
with closed-world examples.

2. Otherwise, ℒ(O) does not admit polynomial-time computable characterizations with closed-world
examples, assuming P̸=NP.

The first item follows from known results [11]; we prove the second by establishing an exponential
lower bound on characterisations for ℒ(∃,≥,⊓) and NP-hardness of computing characterisations for
ℒ(∀, ∃,⊓). Theorems 1 and 2 are summarized in Figure 1. Theorems 1 and 2 still holds true when
‘admits finite (polynomial) time computable characterisations’ is replaced with ‘is exact learnable
from membership queries in finite (polynomial) time’. On the one hand, existence finite (polynomial)
characterisations is a necessary condition for (polynomial) membership query learnability, so the
negative results transfer immediately. On the other hand, finite characterisations always enable a brute



force membership query algorithm, and [11] shows that ℒ(∃,−,⊓,⊤) is polynomial-time learnable
from membership queries.

Finally, we investigate finite characterizations relative to an ontology 𝒪, where we require all the
(positive and negative) examples to be interpretations satisfying the ontology 𝒪, and require that every
fitting concept is equivalent to the input concept 𝐶 relative to 𝒪 (cf. Example 2).

Theorem 3. Let {∃,⊓} ⊆ O ⊆ {∀, ∃,≥,−,⊓,⊔,⊤,⊥,¬}.

1. If O is a subset of {∃,⊓,⊤,⊥}, then ℒ(O) admits finite characterizations with closed-world
examples w.r.t. all DL-Lite ontologies.

2. Otherwise, ℒ(O) does not admit finite characterizations with closed-world examples w.r.t. all DL-Lite
ontologies, except possibly if {∃,⊓,⊔} ⊆ O ⊆ {∃,⊓,⊔,⊤,⊥}.

In fact, for ℒ(∃,⊓,⊤,⊥)-concepts 𝐶 and DL-Lite ontologies 𝒪 such that 𝐶 is satisfiable w.r.t. 𝒪, a finite
characterisation can be computed in polynomial time.
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