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Abstract
First-order model counting (FOMC) asks to count models of a first-order logic sentence over a given
set of domain elements. Its weighted variant, WFOMC, generalizes FOMC by assigning weights to the
models and has applications among others in statistical relational learning. Several non-trivial classes
of WFOMC problems that can be solved in time polynomial in the number of domain elements were
identified in the literature over the past decade, since the two seminal paper by Van den Broeck (2011)
and Van den Broeck, Meert and Darwiche (2014) established tractability of FO2 for WFOMC. This talk is
about recent developments on WFOMC and the related problem of weighted first-order model sampling
(WFOMS). We also discuss applications of WFOMC and WFOMS, such as automated solving of problems
from enumerative combinatorics and elementary probability theory.
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1. Weighted First-Order Model Counting

Weighted first-order model counting (WFOMC) is the task of computing the weighted sum of
models of a given first-order logic sentence [1]. It has applications in statistical relational
learning [2] and it is also relevant for probability theory and combinatorics [3, 4]. Formally,
given a set of domain elements ∆ and two functions 𝑤(𝑃 ) and 𝑤(𝑃 ) mapping predicate symbols
to real numbers, we define WFOMC as

WFOMC(Ψ,∆, 𝑤, 𝑤) =
∑︁

𝜔:𝜔|=Ψ

𝑊 (𝜔,𝑤,𝑤),

where 𝑊 (𝜔), i.e. the weight of 𝜔, is computed as

𝑊 (𝜔,𝑤,𝑤) =
∏︁
𝜔|=𝑙

𝑤(pred(𝑙))
∏︁
𝜔|=¬𝑙

𝑤(pred(𝑙)).

Example 1 (Illustrating the notion of WFOMC). Let us have a domain ∆ = {𝐴,𝐵}, and
suppose that we only have two predicates heads and tails, with weights given as 𝑤(heads) = 2,
𝑤(tails) = 𝑤(heads) = 𝑤(tails) = 1. We will want to compute the WFOMC of the sentence
Γ = ∀𝑥 : (heads(𝑥)∨tails(𝑥))∧(¬heads(𝑥)∨¬tails(𝑥)). There are four models ofΓ on the domain
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∆: 𝜔1 = {heads(𝐴), heads(𝐵)}, 𝜔2 = {heads(𝐴), tails(𝐵)}, 𝜔3 = {tails(𝐴), heads(𝐴)} and
𝜔4 = {tails(𝐴), tails(𝐵)}. The resulting first-order model count is FOMC(Γ,∆) = 4 and the
weighted model count is WFOMC(Γ, 𝑤, 𝑤,∆) = 4 + 2 + 2 + 1 = 9.

Example 2. Consider the following variant of the Secret Santa game. There are 𝑛 people attending
the Christmas party. Each person is supposed to give presents to 𝑘 other people and receive 𝑘
presents.1 The organizer decides to let everyone draw names from 𝑘 hats each of which contains
everyone’s name once. The participants then come and each of them draws one name at random
from each hat. We ask what is the probability that no one, at the same time, (i) draws their own
name and (ii) draws the same name more than once. When 𝑘 = 1, the solution is known since the
18th century and it is the ratio of the number of derangements (i.e., permutations without fixed
points) and the number of permutations on 𝑛 elements. For 𝑘 > 1 the problem could still be solved
by hand, but with non-trivial effort and with good knowledge of combinatorics. The same problem
could, however, also be solved automatically using WFOMC in polynomial time because it can be
encoded in the two-variable fragment of first-order logic with counting quantifiers C2 [5], which is
known to be tractable [6] (what we mean by “tractable” is explained in Section 3). The C2 sentence
with which we can achieve it is:

Ψ =

𝑘⋀︁
𝑖=1

(︀
∀𝑥∃=1𝑦 Draw𝑖(𝑥, 𝑦) ∧ ∀𝑦∃=1𝑥 Draw𝑖(𝑥, 𝑦) ∧ ∀𝑥 ¬Draw𝑖(𝑥, 𝑥)

)︀
∧

𝑘⋀︁
𝑖=1

⋀︁
𝑗<𝑖

(∀𝑥∀𝑦 ¬Draw𝑖(𝑥, 𝑦) ∨ ¬Draw𝑗(𝑥, 𝑦)) .

Here, Draw𝑖(𝑥, 𝑦) represents that 𝑥 drew the name 𝑦 from the hat 𝑖. To compute the desired
probability, we just need to divide the WFOMC of the sentence Ψ on a domain of size 𝑛 by (𝑛!)𝑘

which is the total number of all possible draws (obviously, if we did not know factorials, we could
compute this number by WFOMC as well).

2. Weighted First-Order Model Sampling

Another useful task one might need to solve is, given a first-order logic sentence, a domain
and weighting functions, to sample a model of the sentence with probability proportional to
its weight. This problem is known as weighted first-order model sampling (WFOMS) [7]. It has
again applications in statistical relational learning, as it allows sampling from Markov logic
networks [8, 9, 10], but its potential applications are much broader—it generally provides a
principled approach for efficient sampling of combinatorial structures.

Example 3. Suppose that after computing the probability of a successful draw in the Secret Santa
game from Example 2 (a successful draw is one in which no one got their own name and no one got
name of anyone else more than once), we conclude that the probability is too low for this procedure
to be practical. Then we might want to sample an assignment of who should give presents to whom
automatically. To achieve that we can sample models of the C2 sentence from Example 2 using
WFOMS. It turns out that sampling is also tractable for sentences from the C2 fragment [10].
1In the normal variant of the Secret Santa game, 𝑘 = 1.



3. Tractability

An important question about WFOMC and WFOMS is: How hard are they? First, it is not
difficult to observe that there is no hope for a WFOMC algorithm that would scale polynomially
with the size of the first-order logic sentence even if the sentence was guaranteed to have just
one logical variable (unless P = #P). Therefore focus has been on identifying fragments of
first-order logic sentences for which WFOMC can be computed in time polynomial in the size
of the domain. The term coined for this type of tractability by Van den Broeck [2011] is domain
liftability. In general, WFOMC and WFOMS are intractable even in this sense already for some
sentences from FO3 [12, 9], however, there are non-trivial fragments of first-order logic which
have been identified as tractable for WFOMC [13, 11, 14, 15, 16, 6, 17, 18, 19] and for WFOMS
[7, 9], including the fragment C2 [6, 10].

4. Some Applications

Here we briefly mention several applications that go beyond the standard machine learning
uses of WFOMC and WFOMS.

Combinatorics. WFOMC is well-suited for solving problems from enumerative combina-
torics.2 The various tractable fragments of WFOMC can be used to count many other non-trivial
structures as well, e.g., 𝑘-regular graphs, trees with 𝑘 leaves etc. [3, 17]. The close connection
between WFOMC and enumerative combinatorics was used for developing a method capable of
generating a database of integer sequences with combinatorial interpretation [4] that we hope
could complement the well known OEIS database [21].

Samplers. Standard programming language libraries usually have some support for sampling.
For instance, NumPy provides functionality for sampling simple structures such as permutations
and combinations. However, when we need to sample a more complex structure, we typically
need to develop a sampler from scratch. Having a declarative framework based on WFOMS
would be a useful tool for programmers making their work easier. The main reason why
there is not such a framework based on the current WFOMS algorithms [9, 10] yet is their
practical performance, which is the focus of ongoing works. However, it is worth mentioning
that, unsurprisingly, these algorithms already outperform state-of-the-art propositional model
samplers on first-order sampling problems, as shown experimentally in [9].
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