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Abstract
The FunDL family of description logics replace roles with partial functions (features) and have a concept constructor

called a path functional dependency (PFD) that can be used to capture a variety of equality-generating dependencies

commonly part of conceptual designs as well as schemata of object-relational data sources. Recent work has

considered replacing the PFD concept constructor with a more general path description dependency (PDD) in

which inverse features are now allowed in characterizing feature path reachability in interpretations. This leads

to a circumstance in which the value of a feature path for a given entity might be set-valued. This work has

focused on cases in which feature path agreement is based exclusively on either a set intersection semantics or a

non-empty set equality semantics. In this paper, we consider a mixed mode case for PDDs in which individual

component feature paths can be assigned either of these options. Our main results are that this flexibility makes

logical consequence undecidable in general, but that restricting an arbitrary mixed-mode for PDDs to conform to

a mode-typing assignment on features re-obtains EXPTIME completeness for logical consequence.

1. Introduction

Given a query over a conceptual ontological design for some domain, there are many circumstances

in which reasoning about equality generating dependencies is essential in finding an efficient plan

over available backend structured data sources such as relational databases, e.g., in resolving identity

issues for entities in an underlying domain [1, 2], or in determining when explicit duplicate elimination

in query plans is not required [3]. The FunDL family of description logics [4] has been developed

largely for this purpose and therefore replace roles with partial functions (features) to better align with

the ubiquitous notion of an attribute or column value and have a concept constructor called a path
functional dependency (PFD) that can be used to capture a variety of equality-generating dependencies

needed to resolve identity issues or are commonly part of schemata for structured data sources such as

keys and (relational) functional dependencies.

Recent work [5] has introduced a new dialect for FunDL called set-𝒟ℒℱ𝒟ℐ that replaces the PFD

concept constructor with a more general path description dependency (PDD) in which inverse features

are now allowed in characterizing feature path reachability in interpretations, leading to a circumstance

in which the value of a feature path for a given entity might be set-valued. This work has explored

alternative semantics for PDDs, with a focus on cases in which feature path agreement is based

exclusively on either a set intersection semantics or a non-empty set equality semantics, showing in both

cases that allowing more general PDDs in place of PFDs does not change the complexity of logical

consequence in any of the Boolean complete FunDL dialects, which remain EXPTIME complete in the

worst case.

The primary incentive for set-𝒟ℒℱ𝒟ℐ stems from an outline of future work in [6] which recognized

the need for plural entities in formally capturing JSON arrays, in particular, for the more general

expressiveness of PDDs to capture how such array entities can be identified.

The following inclusion dependencies are derived from a running example in [5] and illustrate this
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(where also CLIENT-FRIEND ⊑ CLIENT is assumed):

CLIENT-FRIEND ⊑ CLIENT : firstname∩, (phone-dom−.phone-ran.dialnum)∩ → id∩

CLIENT-FRIEND ⊑ CLIENT : (phone-dom−.phone-ran.dialnum)≈ → id≈

Feature path reachability in the dependencies corresponds to four path descriptions (PDs): “firstname”,

“phone-dom−.phone-ran.dialnum” and “id”. The first and last are PDs that also qualify as path functions
(PFs) since their interpretations will be partial functions. The first dependency employs a PDD on its

right-hand-side with set intersection semantics (indicated by the “∩” superscript on PDs) to express a

key or uniqueness condition for any client that is also a friend: among all clients, they will have a unique
combination of a first name and the dial number of any of their phones. The second employs a PDD on its

right-hand-side with non-empty set equality semantics (indicated by the “≈” superscript on PDs) to

also express a key or uniqueness condition: among all clients with at least one phone, they have a unique
set of dial numbers.

Including both dependencies in a TBox has so far not been possible since this requires two distinct

modes for the PD “phone-dom−.phone-ran.dialnum” in a PDD that appeal to both set intersection and

non-empty set equality semantics for PD agreement, a circumstance now enabled by introducing

annotated PDs in which a superscript arbitrates between a choice of semantics. Indeed, our primary

concern in this paper is to study logical consequence for a new member of the FunDL family called

set-𝒟ℒℱ𝒟ℐ in which PDDs now allow annotated PDs as components. Our main results are that, unlike

earlier work, this flexibility makes logical consequence undecidable in general, but that restricting

an arbitrary mixed-mode for PDDs to conform to a mode-typing assignment on features re-obtains

EXPTIME completeness for logical consequence for all members of the FunDL family.

The remainder of the paper proceeds as follows. Section 2 introduces the relevant definitions, previous

results and open questions regarding set-𝒟ℒℱ𝒟ℐ that have motivated this paper. Section 3 shows

the undecidability of entailment in set-𝒟ℒℱ𝒟ℐ when a mixed semantics for path agreements is used.

Section 3.1 shows how decidability can be regained by imposing a mild typing discipline on path

agreements. Section 4 concludes the paper and outlines directions for further investigation.

2. Background and Definitions

In this section we define the description logic set-𝒟ℒℱ𝒟ℐ . We start with defining primitive features
and concepts, and how they are interpreted:

Definition 1 (Vocabulary of set-𝒟ℒℱ𝒟ℐ). Let F and PC be sets of feature names and primitive concept
names, respectively. Semantics is defined with respect to a structure ℐ = (△ℐ , ·ℐ), where △ℐ is a domain
of objects or entities and ·ℐ an interpretation function that fixes the interpretations of primitive concept
names 𝐴 ∈ PC to be subsets of △ℐ and feature names 𝑓 ∈ F to be partial functions 𝑓ℐ : △ℐ → △ℐ .

The primitive syntax and semantics is now extended to Path Descriptions and (eventually) to Concept
Descriptions:

Definition 2 (Path Descriptions in set-𝒟ℒℱ𝒟ℐ). A path description is defined by the grammar

Pd ::= id | 𝑓.Pd | 𝑓−.Pd,

for 𝑓 ∈ F, where 𝑓− is called the inverse of 𝑓 , with the stipulation that substrings of the form 𝑓.𝑓− and
𝑓−.𝑓 do not appear in any path description Pd. Let ℐ be an interpretation. Then the interpretations of
path descriptions Pd are functions Pdℐ : 2△

ℐ → 2△
ℐ

over the powerset of △ℐ defined as follows, where
𝑆 ⊆ △ℐ :

Pdℐ(𝑆) =

⎧⎪⎨⎪⎩
𝑆 if Pd = “ id”,
Pdℐ1 ({𝑓ℐ(𝑥) | 𝑥 ∈ 𝑆}) if Pd = “𝑓.Pd1”,
Pdℐ1 ({𝑥 | 𝑓ℐ(𝑥) ∈ 𝑆}) if Pd = “𝑓−.Pd1”.



Syntax Semantics: Defn of (·)ℐ

𝐶 ::= A Aℐ ⊆ △ℐ (primitive concept; A ∈ PC)

| ¬𝐶 △ℐ ∖ 𝐶ℐ (negation)

| 𝐶1 ⊓ 𝐶2 𝐶ℐ
1 ∩ 𝐶ℐ

2 (conjunction)

| 𝐶1 ⊔ 𝐶2 𝐶ℐ
1 ∪ 𝐶ℐ

2 (disjunction)

| ∀𝑓.𝐶 {𝑥 | 𝑓ℐ(𝑥) ∈ 𝐶ℐ} (value restriction)

| ∃𝑓 {𝑥 | ∃𝑦 ∈ △ℐ .𝑦 = 𝑓ℐ(𝑥)} (existential restriction)

| ∃𝑓− {𝑥 | ∃𝑦 ∈ △ℐ .𝑥 = 𝑓ℐ(𝑦)} (existential restriction)

| 𝐶 : Pd∼1
1 , ...,Pd∼𝑘

𝑘 → Pd∼ {𝑥 | ∀ 𝑦 ∈ 𝐶ℐ : (GD(Pd(𝑥)) ∧ GD(Pd(𝑦)) ∧ (PDD)⋀︀𝑘
𝑖=1 Pd𝑖(𝑥) ∼𝑖 Pd𝑖(𝑦)) → Pd(𝑥) ∼ Pd(𝑦)}

Figure 1: Syntax and semantics of concept descriptions.

Path Descriptions that do not contain inverse features are called path functions. Before we define

concept descriptions of set-𝒟ℒℱ𝒟ℐ , we need the notion of path description agreement; this agreement

is parameterized by how the results of applying a path description on a pair of objects are compared.

We define and explore three possibilities here, the set equality, the non-empty set equality, and the set
intersection based agreements. Formally:

Definition 3 (Path Description Agreement). Let ℐ be an interpretation and 𝑜1 and 𝑜2 be two △ℐ elements.
We say that 𝑜1 and 𝑜2 ∼-agree on Pd, written Pd(𝑜1) ∼ Pd(𝑜2), if

• Pdℐ({𝑜1}) = Pdℐ({𝑜2}) (set equality), when ∼ is “=”,

• Pdℐ({𝑜1}) = Pdℐ({𝑜2}) ̸= ∅ (non-empty set equality), when ∼ is “≈”, and

• Pdℐ({𝑜1}) ∩ Pdℐ({𝑜2}) ̸= ∅ (set intersection), when ∼ is “∩”.

We use the Path Description Agreements (defined above) to define the logic set-𝒟ℒℱ𝒟ℐ as follows:

Definition 4 (Concept Descriptions, Subsumptions, and TBoxes in set-𝒟ℒℱ𝒟ℐ). A concept description

𝐶 is constructed from primitive concepts using Boolean concept constructors ⊓,⊔, and ¬, value restrictions
on features ∀𝑓.𝐶 , unqualified existential restrictions on features and inverse features ∃𝑓 and ∃𝑓−, and the
path description dependency (PDD) of the form

𝐶 : Pd∼1
1 , ...,Pd∼𝑘

𝑘 → Pd∼ .

The semantics of all the derived concept descriptions 𝐶 is defined in Figure 1 where GD(Pd(𝑧)) is

• true (unconstrained), when ∼ is “=”, and

• Pdℐ(𝑧) ̸= ∅ (non-empty), when ∼ is “≈” or “∩”.

A subsumption is an expression of the form 𝐶1 ⊑ 𝐶2, where the 𝐶𝑖 are concepts, and where PDDs occur only
in 𝐶2 but not within the scope of negation.1 A terminology (TBox) 𝒯 consists of a finite set of subsumptions,
and a posed question 𝒬 is a single subsumption. An interpretation ℐ satisfies a subsumption 𝐶1 ⊑ 𝐶2 if
𝐶ℐ
1 ⊆ 𝐶ℐ

2 and is a model of 𝒯 , written ℐ |= 𝒯 , if it satisfies all subsumptions in 𝒯 . Given a terminology
𝒯 and posed question 𝒬, the logical consequence problem asks if 𝒬 is satisfied in all models of 𝒯 , written
𝒯 |= 𝒬. □

Observe that the proposed logic lacks qualified existential restrictions. Indeed, entailment for

partial-𝒟ℒℱ𝒟ℐ with qualified existential restrictions over inverse features was shown in [9] to be

1

Violating this latter condition leads immediately to undecidability [7, 8].



undecidable, which will therefore also be the case with set-𝒟ℒℱ𝒟ℐ . However, for a feature 𝑓 , one

can substitute the subsumption 𝐴 ⊑ ∃𝑓.𝐵 with two subsumptions 𝐴 ⊑ ∃𝑓 and ∀𝑓.𝐵 ⊑ 𝐴, which

completely characterizes the behaviour of the qualified existential restriction. Note that an analogous

substitution for 𝐴 ⊑ ∃𝑓−.𝐵, namely 𝐴 ⊑ ∃𝑓−
and ∀𝑓.𝐴 ⊑ 𝐵, will only partially capture the behaviour

of an existential restriction for inverse features, a limitation needed to regain decidability of entailment.

In the remainder of the paper, we allow using ∃Pd.𝐶 to serve as a shorthand for applying the above

substitutions systematically on Pd by splitting the Pd to individual features and introducing auxiliary

primitive concepts.

On Guards in PDDs

One may wonder if the additional guards GD(Pd(𝑥)) and GD(Pd(𝑦)) imposed on the consequent

path descriptions in a PDD are needed with the {∩,≈} adornments. Consider the following pair of

subsumptions, for each 0 < 𝑖 ≤ 𝑘, 𝑘 ≥ 2:

𝐴 ⊑ 𝐴 : (𝑖𝑑)∩ → (𝑓−.𝑔𝑖)
∩

and ∀𝑔𝑖.⊤ ⊑ 𝐵𝑖.

It is easy to see that these pairs of subsumptions entail 𝐴 ⊑ ∃𝑓−.𝐵𝑖. In the absence of the guards in the

PDD semantics one can add subsumptions 𝐵𝑖 ⊓𝐵𝑗 ⊑ ⊥ for 𝑖 ̸= 𝑗 that will force every 𝐴 individual

to have a distinct 𝑓 predecessor for each 𝐵𝑖. This leads immediately to undecidability without guards

since it allows one to simulate qualified existential restrictions over inverse features [9]. Note that

including the guards with a PDD ensures that a right-hand-side will not “force” path existence.

Past Work

The above definition of PDDs can be specialized in several ways, some of which have been considered

in the past.

1. In [5] we have considered the set intersection semantics for set-𝒟ℒℱ𝒟ℐ , a semantics in which the

∼ agreements in all PDDs were defined as “∩” (non-empty set intersection). However, we have

required that all the path descriptions involved in any PDD must exist before the PDD applies,

i.e., the semantics was defined as

(𝐶 : Pd1, ...,Pd𝑘 → Pd)ℐ = {𝑥 | ∀ 𝑦 ∈ 𝐶ℐ : Pdℐ({𝑥}) ̸= ∅ ∧ Pdℐ({𝑦}) ̸= ∅ ∧
(
⋀︀𝑘

𝑖=1 Pd
ℐ
𝑖 ({𝑥}) ∩ Pdℐ𝑖 ({𝑦}) ̸= ∅) → Pdℐ({𝑥}) ∩ Pdℐ({𝑦}) ̸= ∅}.

Under the set intersection semantics, the logical consequence problem for partial-𝒟ℒℱ𝒟ℐ , and

consequently its derivative set-𝒟ℒℱ𝒟ℐ , is EXPTIME-complete. We have shown that the problem

is in EXPTIME by constructing a two-tree model and then reducing to the satisfiability of an

Ackermann formula encoding the logical consequence problem. Completeness then follows from

EXPTIME-hardness of the implication problem for the {D1⊓D2,∀𝑓.D1} and {⊤,⊤ : Pf1,Pf2 →
Pf} fragments of FunDL [10].

2. Also in [5], we have considered the set equality semantics for set-𝒟ℒℱ𝒟ℐ , a semantics in which

the ∼ agreements in all PDDs were defined as “=”,

(𝐶 : Pd1, ...,Pd𝑘 → Pd)ℐ = {𝑥 | ∀ 𝑦 ∈ 𝐶ℐ : (
⋀︀𝑘

𝑖=1 Pd
ℐ
𝑖 ({𝑥}) = Pdℐ𝑖 ({𝑦}))

→ Pdℐ({𝑥}) = Pdℐ({𝑦})}.

We have shown that under the set equality semantics, the ability to assert equality of non-existent

paths in a PDD’s precondition allows us to create nominal-like concepts which leads immediately

to undecidability.



Set-Intersection vs. Set-Equality Empty Set Type Complexity
Set-Intersection No (by definition) – EXPTIME-complete [5]

Set-Equality Yes – Undecidable [5]
Set-Equality No – EXPTIME-complete (new)

Both No for Set-Equality Mixed Undecidable (new)
Both No for Set-Equality Typed EXPTIME-complete (new)

Figure 2: Complexity of set-𝒟ℒℱ𝒟ℐ Based on Various Semantics

3. To regain decidability under the set equality semantics, we preclude the equality of empty sets by

a non-empty set equality semantics defined as follows,

(𝐶 : Pd1, ...,Pd𝑘 → Pd)ℐ = {𝑥 | ∀ 𝑦 ∈ 𝐶ℐ : Pdℐ({𝑥}) ̸= ∅ ∧ Pdℐ({𝑦}) ̸= ∅ ∧
(
⋀︀𝑘

𝑖=1 Pd
ℐ
𝑖 ({𝑥}) = Pdℐ𝑖 ({𝑦}) ̸= ∅) → Pdℐ({𝑥}) = Pdℐ({𝑦})}.

which brings the complexity back to EXPTIME-complete. The proof for non-empty set equality
semantics is essentially the same as the one for set intersection semantics [5].

In this paper we consider the remaining possibilities (some of which were posed as open problems).

4. We have conjectured that mixing the set intersection and non-empty set equality semantics,

both of which are decidable, could lead to undecidability. In this paper, we show that allowing

combinations of the EXPTIME-complete semantics in the PDs leads to undecidability by reduction

of the unconstrained tiling problem. Note that for path functions there is no difference between

the set intersection agreements and non-empty set agreements; hence we omit the type of the

agreement in the remaining constructions for path functions.

5. Curiously, we can restrict arbitrary mixed semantics by virtue of fixing the type of semantics for

each feature 𝑓 and inverse feature 𝑓−
, which generalizes to PDs. In Section 3.1, we show that

adopting such typed mixed semantics allows us to regain EXPTIME-completeness.

We summarize the complexity results for set-𝒟ℒℱ𝒟ℐ based on various combinations of set intersection

and set equality-based semantics in Figure 2.

3. Undecidability of Mixed PDDs

In this section, we show that allowing both non-empty set equality and set intersection semantics

simultaneously in the PDDs leads to undecidability by reduction of a tiling problem that allows one to

simulate runs of a Turing Machine on an empty input tape, a problem that is known to be undecidable

[11]. An instance 𝑈 of the tiling problem is a triple (𝑇,𝐻, 𝑉 ), consisting of a set 𝑇 of tile types and

𝐻,𝑉 ⊆ 𝑇 × 𝑇 two binary relations. A solution to 𝑈 is a function 𝑡 : N× N → 𝑇 such that, for 𝑖 < 𝑗,

we have (𝑡(𝑖, 𝑗), 𝑡(𝑖+ 1, 𝑗)) ∈ 𝐻 and (𝑡(𝑖, 𝑗), 𝑡(𝑖, 𝑗 + 1)) ∈ 𝑉 . This tiling solution covers an infinite

triangle of successive longer and longer tapes (instantaneous descriptions) and this way simulates a

run of a given Turing Machine
2
. We construct a terminology along with a posed question, denoted

𝒯 (𝑇,𝐻, 𝑉 ), for a given tiling problem 𝑈 , in the following steps.

Theorem 5. An instance (𝑇,𝐻, 𝑉 ) of the unconstrained tiling problem admits a solution if and only if
𝒯 (𝑇,𝐻, 𝑉 ) ̸|= A ⊑ 𝐷 : 𝑓 → id for a 𝒯 (𝑇,𝐻, 𝑉 ) TBox corresponding to the instance (𝑇,𝐻, 𝑉 ).

Proof (sketch): Given a tiling problem (𝑇,𝐻, 𝑉 ) we construct a TBox 𝒯 (𝑇,𝐻, 𝑉 ) that utilizes pairwise

disjoint primitive concepts A, B, and C to serve as grid points and an auxiliary diagonal primitive

concept D. We assume that the features 𝑓 , 𝑔, ℎ, and 𝑘 are total, and the inverse 𝑓−
is total on A, B, C,

and D. These are captured by 𝒯 (𝑇,𝐻, 𝑉 ) subsumptions

2

The reduction is essentially the same as for the classical tiling of a full quadrant, but starts with an empty tape.
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Figure 3: Construction of a Grid for Tiling.

⊤ ⊑ ∃𝑓 ⊓ ∃𝑔 ⊓ ∃ℎ ⊓ ∃𝑘
A ⊔ B ⊔ C ⊔D ⊑ ∃𝑓−; and

A ⊓ B ⊑ ⊥,A ⊓ C ⊑ ⊥,A ⊓D ⊑ ⊥,B ⊓ C ⊑ ⊥,B ⊓D ⊑ ⊥,C ⊓D ⊑ ⊥.

(1)

To show the non-entailment we need to construct a counterexample to the posed question, A ⊑ 𝐷 :
𝑓 → id that satisfies all subsumptions in 𝒯 (𝑇,𝐻, 𝑉 ). We construct the TBox 𝒯 (𝑇,𝐻, 𝑉 ) for an

instance of a tiling problem (𝑇,𝐻, 𝑉 ) in such a way that the counterexample will correspond to a

solution to this tiling problem. In what follows we list all the subsumptions needed in 𝒯 (𝑇,𝐻, 𝑉 ) to

achieve this goal. The subsumption

A ⊑ D : 𝑓 → (𝑓−.𝑔)∩ (and B ⊑ D : 𝑓 → (𝑓−.ℎ)∩,C ⊑ D : 𝑓 → (𝑓−.𝑘)∩), (2)

stating that A and D that agree on 𝑓 must ∩-agree on 𝑓−.𝑔 (and that B and D that agree on 𝑓 must

∩-agree on 𝑓−.ℎ and C and D that agree on 𝑓 must ∩-agree on 𝑓−.𝑘, respectively), the subsumption

A ⊑ D : (𝑓−.𝑔)≈ → id (and B ⊑ D : (𝑓−.ℎ)≈ → id ,C ⊑ D : (𝑓−.𝑘)≈ → id), (3)

stating that A and D above must ≈-disagree on those paths, in order not to equate an A object with an

D object (and similarly for B and D, and C and D, respectively), together with subsumption extending

the A (and similarly B and C, respectively) class memberships along 𝑓 predecessors

∀𝑓.A ⊑ A (and ∀𝑓.B ⊑ B, ∀𝑓.C ⊑ C) (4)



and subsumptions ensuring those predecessors–with respect to a particular class membership–are

unique,

D ⊑ D : 𝑓 → id ,
A ⊑ A : 𝑓 → id , (and B ⊑ B : 𝑓 → id ,C ⊑ C : 𝑓 → id),

(5)

force this counterexample to look like the first three top rows in Figure 3 (with the exception of class

membership of the final two objects in the third row). Note that the A object’s 𝑓 predecessors are also

A objects due to (4). Moreover the A predecessors are unique due to (5). Hence the D object at the end

of row 2 must have at least two incoming 𝑓 features to satisfy (2) and (3) simultaneously while not

violating the disjointness of A and D in (1). The same holds for the right-most B and C objects used in

the construction of the subsequent rows.

The now existing horizontal right neighbours of the object A in the 3rd row are assigned concept

membership using the following subsumptions:

A ⊑ ¬B : 𝑔 → 𝑖𝑑 (and B ⊑ ¬C : ℎ → 𝑖𝑑,C ⊑ ¬A : 𝑘 → 𝑖𝑑);
B ⊑ ¬D : 𝑓 → 𝑖𝑑 (and C ⊑ ¬D : 𝑓 → 𝑖𝑑,A ⊑ ¬D : 𝑓 → 𝑖𝑑),

(6)

i.e., the right (𝑔.𝑔−) neighbour of A must be B, etc. In particular, the object D at the end of row 2 must

have exactly two incoming 𝑓 features, one from an B and second from a D objects. This completes the

construction of the top three rows in Figure 3. To replicate this process for row 4 in Figure 3 we use the

second subsumptions in (2), (3), (4), (5), (6), and (7).

To complete the left part(s) of the grid–the squares below A, B, and C objects we use the following

subsumptions:

A ⊑ B : 𝑓.𝑔 → 𝑔 (and B ⊑ C : 𝑓.ℎ → ℎ,C ⊑ A : 𝑓.𝑘 → 𝑘); (7)

Analogously, the 3rd subsumptions in (2), (3), (4), (5), (6), and (7) will construct row 5. The end of row 5

presents a situation that is a copy of the pattern in row 2 and the hence the construction starts repeating

itself indefinitely and extends to an infinite triangle by simply repeating the above steps.

To finish the construction we need to assign tiles to all grid points,

A ⊔ B ⊔ C ⊑ ⊔𝑡𝑖∈𝑇T𝑖, (8)

and enforce the horizontal,

T𝑖 ⊓A ⊑ (T𝑗 ⊓ B) : 𝑔 → id ,
T𝑖 ⊓ B ⊑ (T𝑗 ⊓ C) : ℎ → id ,
T𝑖 ⊓ C ⊑ (T𝑗 ⊓A) : 𝑘 → id , ∀(𝑡𝑖, 𝑡𝑗) /∈ 𝐻,

(9)

and vertical tiling rules,

∀𝑓.(T𝑖 ⊓A) ⊓ T𝑗 ⊑ ⊥,
∀𝑓.(T𝑖 ⊓ B) ⊓ T𝑗 ⊑ ⊥,
∀𝑓.(T𝑖 ⊓ C) ⊓ T𝑗 ⊑ ⊥, ∀(𝑡𝑖, 𝑡𝑗) /∈ 𝑉.

(10)

In summary, a TBox 𝒯 (𝑇,𝐻, 𝑉 ) containing all the subsumptions (1), (2), (3), (4), (5), (6), (7), (8), (9), and

(10) does not entail the posed question if and only if a tiling exists.

The existence of a non-terminating computation of a given Turing machine starting with an empty

tape can now be witnessed by the existence of a tiling using the standard encoding of instantaneous

descriptions of the TM’s computations as rows in the tiling overlayed over Figure 3; the computation

steps then correspond to the consecutive rows of tiles. Note that tiling of the infinite triangle is sufficient

as the TM’s head can move at most one cell to the right for every step of the computation. □



Alternatively, to tile a full quadrant, we can use the vertical 𝑓 -antichains as columns (as above) and

diagonals starting from the left-most A-labelled column as rows. This needs a slight adjustment to the

horizontal tiling subsumptions (9) as follows:

∀𝑓.(T𝑖 ⊓A) ⊑ (T𝑗 ⊓ B) : 𝑔 → id ,
∀𝑓.(T𝑖 ⊓ B) ⊑ (T𝑗 ⊓ C) : ℎ → id ,
∀𝑓.(T𝑖 ⊓ C) ⊑ (T𝑗 ⊓A) : 𝑘 → id , ∀(𝑡𝑖, 𝑡𝑗) /∈ 𝐻,

(9’)

However, now the standard tiling argument applies and also yields undecidability.

3.1. Typed Mixed Case

We observe from the previous section that inconsistent semantics for two instances of the same PD

leads to undecidability. In this section, we show that under a restricted form of the mixed semantics,

called the typed mixed semantics, set-𝒟ℒℱ𝒟ℐ regains EXPTIME-completeness. The idea of enforcing a

type restriction is to make the semantics of path agreements consistent among PDs ending with the

same (inverse) feature. This type restrictions preserves the two-tree property of set-𝒟ℒℱ𝒟ℐ under the

set intersection and non-empty set equality semantics.

Definition 6 (Type Restriction). Let 𝒯 be a set-𝒟ℒℱ𝒟ℐ TBox and 𝒬 a posed question. Let end(Pd)
denote the last (inverse) feature of Pd. We say that 𝒯 and 𝒬 are type restricted if for any pair of PDs Pd∼1

1

and Pd∼2
2 in 𝒯 ∪ 𝒬, we have ∼1,∼2 ∈ {≈,∩} and

end(Pd∼1
1 ) = end(Pd∼2

2 ) implies ∼1=∼2 .

The typed mixed semantics immediately follow from the syntactic type restriction on all PDs in the

TBox and posed question.

Theorem 7. Let 𝒯 be a set-𝒟ℒℱ𝒟ℐ TBox and 𝒬 a posed question, where 𝒯 ∪𝒬 are type restricted. Then
the logical consequence problem 𝒯 |= 𝒬 is complete for EXPTIME.

Proof (sketch): To establish the EXPTIME bound, we reduce the logical consequence problem to

checking the unsatisfiability of an Ackermann formula [12] in a similar fashion as in [5]. First, we show

that if there exists a counterexample ℐ for 𝒯 |= 𝒬, then we can construct a two-tree counterexample

by unravelling ℐ . Note that under the imposed type discipline, there is only one form of path agreement
applicable to any symmetric pair of individuals in the two-tree unravelling of ℐ and therefore there is

no longer any need feature agreements that go beyond the symmetric agreements generated by PDDs.

Since we can check the (un)satisfiability of the constructed Ackermann formula in EXPTIME [13], the

same bound applies to the logical consequence problem for set-𝒟ℒℱ𝒟ℐ . □

4. Summary

The paper explores the computational complexity of logical consequence for a new member of the FunDL

family of descriptions logics called set-𝒟ℒℱ𝒟ℐ . This new dialect introduces a PDD concept constructor

for capturing a richer variety of equality generating dependencies under arbitrary combinations of

set intersection semantics and non-empty set equality semantics for path agreements in component

path descriptions. In particular, the paper shows that an unconstrained option for choosing either

semantics makes logical consequence undecidable. This is in contrast to the two cases where one or

the other semantics is chosen exclusively for a given TBox which has been shown decidable in earlier

work. The paper then proposes a typing discipline on path agreements to regain decidability, thereby

accommodating some form of mixed-mode semantics for PDDs occurring in a given TBox.



Future Work

There are four main directions for further inquiry:

1. Adding arbitrary PDL-style test concepts [14] in path descriptions. In the case of PDDs this means

adding concepts of the form (𝐶1, 𝐶2)?, stating that for a path agreement to hold, the paths from

the two objects, 𝑥 and 𝑦, in the PDD constructor must simultaneously pass through an individual

that belongs to 𝐶1 and 𝐶2, respectively. We conjecture that adding such test concepts to path

descriptions in set-𝒟ℒℱ𝒟ℐ will not change the computational properties of the logic.

2. Studying additional or alternative notions of path agreement in set-𝒟ℒℱ𝒟ℐ . For example, the

set intersection semantics of path agreements can be generalized by requiring the intersection to

be of a certain cardinality (e.g., at least two or a majority of paths agree). We conjecture that such

extensions will again lead to undecidability of entailment.

3. Studying set-𝒟ℒℱ𝒟ℐ fragments with preferable computational properties, such as various Horn

fragments. This direction suggests the use of (perhaps limited) PDDs in FunDL-Lite logics [4].

4. Using PDD constructs in plural entity identification. While our introductory example has already

sketched such a use case, the full consequences of using path descriptions in place of path functions
are yet to be explored.
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