
Modal Separability of Fixpoint Formulae
Jean Christoph Jung1, Jędrzej Kołodziejski1

1TU Dortmund University, Germany

Abstract
We study modal separability for fixpoint formulae: given two mutually exclusive fixpoint formulae 𝜙,𝜙′, decide
whether there is a modal formula 𝜓 that separates them, that is, that satisfies 𝜙 |= 𝜓 |= ¬𝜙′. This problem
has applications for finding simple reasons for inconsistency. Our main contributions are tight complexity
bounds for deciding modal separability and optimal ways to compute a separator if it exists. More precisely,
it is ExpTime-complete in general and PSpace-complete over words. Separators can be computed in doubly
exponential time in general and in exponential time over words, and this is optimal as well. The results for
general structures transfer to arbitrary, finitely branching, and finite trees. The word case results hold for finite,
infinite, and arbitrary words.
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1. Introduction

For given logics ℒ,ℒ+, the ℒ-separability problem for ℒ+ is to decide given two ℒ+-formulae 𝜙,𝜙′

whether there is an ℒ-formula 𝜓 that separates 𝜙 and 𝜙′ in the sense that 𝜙 |= 𝜓 and 𝜓 |= ¬𝜙′.
Obviously, a separator can only exist when 𝜙 and 𝜙′ are mutually exclusive, and the problem is only
meaningful when ℒ is less expressive than ℒ+. Intuitively, a separator formulated in a “simpler” logic
ℒ explains a given inconsistency in a “complicated” logic ℒ+. Note that, for logics ℒ+ closed under
negation, ℒ-separability generalizes the ℒ-definability problem for ℒ+: decide whether a given ℒ+-
formula is equivalent to an ℒ-formula. Indeed, 𝜙 ∈ ℒ+ is equivalent to an ℒ-formula iff 𝜙 and ¬𝜙
are ℒ-separable. Since separability is more general than definability, solving it requires an even better
understanding of the expressive power of the logics under consideration.

Example 1. Consider ℒ being the modal logic ML, also known under the name 𝒜ℒ𝒞 in the context of
description logics. Expressions of the logic (called formulae in ML terminology and concepts in description
logic parlance) describe properties of colored, directed graphs with a distinguished point called the root. As
the more expressive ℒ+ take PDL: the extension of ML with regular modalities (in DL terms: the extension
𝒜ℒ𝒞reg of 𝒜ℒ𝒞 with regular role expressions). Assume the graphs under consideration have edges labelled
with colors 𝐴, 𝐵 and 𝐶 and consider properties:

𝑃 : “There is a path from the root whose labeling belongs to 𝐴+𝐵.”

𝑃 ′: “The labeling of every (finite) path from the root belongs to 𝐶*.”

These (contradictory) properties are expressed by PDL-formulae 𝜙 and 𝜙′ and it is easy to see that none of
them can be expressed in the weaker ML. Nonetheless, 𝜙 and 𝜙′ are separated by a simple ML-formula
𝜓 that says: “there is an 𝐴-labelled edge from the root”. Thus, 𝜓 serves as an easy explanation of the
inconsistency of 𝜙 and 𝜙′.

Generalizing the example, in this paper we investigate ML-separability of formulae in the modal
𝜇-calculus 𝜇ML [1, 2], which extends PDL [3]. 𝜇ML is a general framework capturing logics supporting
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fixpoints that is relevant both for knowledge representation and reasoning and for verification. It
describes all bisimulation-invariant properties definable in MSO [4, Theorem 11] and thus encompasses
virtually all specification languages such as LTL and CTL [5].

Our results generalize the ML-definability problem for 𝜇ML which was shown decidable by Otto [6,
Main Theorem]. The adaptation of the argument to the more general separability is relatively easy.
However, Otto’s paper is focussed on deciding the existence of modal definitions. The problem of
computing a definition when it exists is not discussed, and it seems that the formula which can be read
off from the proof is at least tower-exponential big. This issue was addressed in [7]. Unfortunately, the
approach in [7], although constructive, does not easily generalize from definability to separability. We
fill the gap by providing a procedure which is both fully constructive and works for the more general
separation case. Both the constructed formulae and the running time are optimal, as illustrated by
suitable examples and reductions.

We consider both general models and “word models” which are Kripke structures in which each
point has at most one successor. The latter are relevant from a verification perspective and for temporal
reasoning. In order to obtain our results we first prove model-theoretic characterizations in terms of
bisimulations. We then exploit the close connection of 𝜇ML to nondeterministic parity tree automata
to give (1) optimal procedures for the separability problem and (2) upper bounds on the modal depth
of a separator, if it exists. In (1) we show ExpTime-completeness of modal separability in general and
PSpace-completeness over words. The lower bounds are essentially inherited from satisfiability. The
upper bounds derived in (2) are then used together with the automata to compute so-called 𝑛-uniform
consequences, that is, modal formulae that have exactly the same modal consequences as a given 𝜇ML-
formula, up to modal depth 𝑛. These 𝑛-uniform consequences are then used as separators. Also here,
our procedures are optimal: they compute separators of at most double exponential size, and we show
that there are 𝜇ML-formulae that are expressible in ML but any equivalent ML-formulae must have
doubly exponential size. This means that there is a double exponential succinctness gap between 𝜇ML
and ML. In the word case, our procedures compute exponentially sized separators and there is only an
exponential succinctness gap. All lower bounds (both computational and succinctness) already hold for
PDL (𝒜ℒ𝒞reg) in place of 𝜇ML, and for definability in place of separability.

It is interesting to note that our results hold over classes of models definable by 𝜇ML-formulae. This
observation allows us to cover the more general notion of separation in presence of an ontology (i.e. a
background theory imposing some conditions on models). As long as the ontology is expressible in
𝜇ML, separability and computation of separators reduce to the ontology-free setting. Without much
effort the same observation lets us transfer our results to finite words, infinite words, and finite trees.

All the missing proofs and constructions can be found in the full version [8].

Related Work. Separability has been intensively studied in formal language theory. A seminal
result in this area is that separability of regular word languages by a first-order language is decidable
in ExpTime [9]. Since 𝜇ML over words defines precisely the regular languages and first-order logic
captures ML, this is particularly related to our results over words.

In logic, a recent work investigates the complexity of separating between formulae supporting count-
ing quantifiers by formulae that do not support them [10]. The used techniques exploit compactness,
which makes them inapplicable to our case and inherently non-constructive.

Another related problem is the question of interpolant existence. An interpolant of two ℒ-formulae
𝜙 and 𝜙′ is an ℒ-formula 𝜓 with 𝜙 |= 𝜓 |= 𝜙′ and such that the signature of 𝜓 is contained in the
signatures of both 𝜙 and 𝜙′. Thus, the problem resembles separability but the restriction on 𝜓 is in
terms of the signature instead of in terms of the logic. Sometimes this question reduces to entailment, as
many logics enjoy the Craig interpolation property: an interpolant of 𝜙 and 𝜙′ exists whenever 𝜙 |= 𝜙′.
Interpolant existence for logics that lack Craig interpolation has recently been studied in [11, 12].
The used tools, however, are similar in nature to the ones from [10] and therefore inapplicable to our
problem.

Finally, a related problem is separability of data examples. There, the task is to separate sets of pointed



structures instead of formulae (see [13, 14] and the references therein). Separability of data examples
can be cast as an instance of (our logical notion of) separability if ℒ+ is expressive enough to describe
the data examples. Conversely, ℒ-separability of formulae 𝜙 and 𝜙′ is the same as data separability of
the (possibly infinite) sets of their models by an ℒ-formula.

2. Preliminaries

Assuming familiarity of the reader with modal logic and the modal 𝜇-calculus, we recall here only
the main notions and refer to [15] for more details.

Syntax. We consider modal logic ML and its fixpoint extension 𝜇ML over a modal signature consisting
of two finite sets: actions Act and propositions Prop. The syntax of ML is given as:

𝜙 ::= ⊤ | ⊥ | 𝜏 | ¬𝜏 | 𝜙 ∨ 𝜙 | 𝜙 ∧ 𝜙 | ⟨a⟩𝜙 | [a]𝜙

with 𝜏 ∈ Prop and a ∈ Act. If Act = {a} is a singleton, we use ◇𝜙 and 2𝜙 in place of ⟨a⟩𝜙 and [a]𝜙.
The syntax of 𝜇ML is obtained by extending the above with additional clauses:

𝜙 ::= 𝑥 | 𝜇𝑥.𝜙 | 𝜈𝑥.𝜙

where 𝑥 belongs to a fixed set Var of variables. The restriction to a fixed finite signature is only for the
sake of readability. All results in the paper remain true with arbitrary signature.

Semantics. The models we consider are pointed Kripke structures. That is, a modelℳ consists
of a set 𝑀 (called its universe) with a distinguished point 𝑣𝐼 ∈ 𝑀 called the root, an interpretation
a→ ⊆𝑀 ×𝑀 for every a ∈ Act and a valuation val : 𝑀 → 𝒫(Prop). We call the set 𝒫(Prop) colors

and denote it by Σ. Both ML and 𝜇ML are interpreted in points of models in a standard way. Since
models are by definition pointed we writeℳ |= 𝜙 meaning that the root ofℳ satisfies 𝜙. The same
symbol denotes entailment: 𝜙 |= 𝜓 means that every model of 𝜙 is a model of 𝜓. In the case only
models from some fixed class 𝒞 are considered we talk about satisfiability and entailment over 𝒞 and in
the latter case write 𝜙 |=𝒞 𝜓.

A particularly relevant class of models are trees. A modelℳ is a tree if the underlying directed
graph (𝑀,

⋃︀
{ a→ | a ∈ Act}) is a tree with 𝑣𝐼 as its root. The branching or outdegree of a point is the

number of its children in this underlying graph. The class of all trees is denoted by Trees. We identify
words (both finite and infinite) over alphabet Σ with trees over a single action of outdegree at most
one. Points of such models are interpreted as positions in the word, the unique accessibility relation
represents the successor relation, and the valuation determines the letter at each position. A prefix of a
tree is a subset of its universe closed under taking ancestors. When no confusion arises we identify a
prefix 𝑁 ⊆𝑀 with the induced subtree 𝒩 ofℳ that has 𝑁 as its universe. The depth of a point is the
distance from the root. The prefix of depth 𝑛 (or just 𝑛-prefix) is the set of all points at depth at most 𝑛
and is denoted by 𝑀|𝑛 (and the corresponding subtree byℳ|𝑛 ).

We define bisimulations and bisimilarity in a standard way except that in the case of trees for
convenience we assume that bisimulations only link points at the same depth. An 𝑛-step bisimulation
(or just 𝑛-bisimulation) between treesℳ and 𝒩 is a bisimulation between their 𝑛-prefixes. We denote
𝑛-bisimilarity by -𝑛.

Size of formulae. The size of a formula 𝜙, denoted |𝜙|, is the number of nodes in its syntax tree.
Similarly, its depth is the maximal length of paths in the syntax tree. The depth of a formula should
not be confused with its modal depth which is the maximal nesting of modal operators; all formulae of
modal depth at most 𝑛 are denoted ML𝑛.

When we specify formulae in the paper, we use syntactic sugar
⋁︀
Φ,

⋀︀
Φ, and nabla ∇Φ, for finite

sets of formulae Φ. The first two are self-explanatory and allow for higher branching in the syntax



tree. The last one, ∇Φ, intuitively means that “every formula in Φ is true in some child and every child
satisfies some formula from Φ” and is an abbreviation for

∇Φ =
⋀︀

𝜙∈Φ◇𝜙 ∧2
⋁︀

𝜙∈Φ 𝜙. (1)

It is well-known that
⋁︀
Φ and

⋀︀
Φ can be rewritten into basic syntax under polynomial cost. We also

include the colorsΣ directly in the syntax: 𝑐 ∈ Σ is a shorthand for the formula
⋀︀
{𝜏,¬𝜏 ′ | 𝜏 ∈ 𝑐, 𝜏 ′ /∈ 𝑐}.

Rewriting colors increases the size only by a factor linear in |Prop|.

Automata. Throughout the paper we use automata over tree models of both bounded and arbitrary
outdegree. A nondeterministic parity tree automaton (NPTA) is a tuple 𝒜 = (𝑄,Σ, 𝑞𝐼 , 𝛿, rank) where 𝑄
is a finite set of states, 𝑞𝐼 ∈ 𝑄 is the initial state, Σ is the alphabet fixed above, and rank assigns each
state a priority. The transition function 𝛿 is of type:

𝛿 : 𝑄× Σ→ 𝒫(𝒫(𝑄)).

Intuitively, 𝛿(𝑞, 𝑐) = {𝑆1, ..., 𝑆𝑙} means that in the state 𝑞 upon reading color 𝑐 the automaton (i)
chooses a transition 𝑆𝑖 and (ii) labels all the children of the current point with states from 𝑆𝑖 so that
every 𝑝 ∈ 𝑆𝑖 is assigned to some child. A run of𝒜 on a treeℳ is an assignment 𝜌 :𝑀 → 𝑄 consistent
with 𝛿 in such sense and sending the root of the tree to 𝑞𝐼 . The run is accepting if for every infinite
path 𝑣0, 𝑣1 . . . inℳ the sequence rank(𝜌(𝑣0)), rank(𝜌(𝑣1)), . . . satisfies the parity condition. We write
ℳ |= 𝒜 in case 𝒜 has an accepting run onℳ. An automaton that is identical to 𝒜 except that the
original initial state is replaced with 𝑞 is denoted𝒜[𝑞𝐼 ←[ 𝑞]. We refer with NPWA to an NPTA working
over words.

In NPTAs over trees of bounded outdegree 𝑘 it might be more common to use a transition function
of type 𝛿 : 𝑄× Σ→ 𝒫(𝑄𝑘), but the difference is not essential: our NPTAs can be represented in this
way and conversely, all relevant constructions for such NPTAs can be adapted to our setting. Most
importantly, we rely on the following classical result (see for example the discussion in [16] and the
well-presented Dealternation Theorem 5.7 in [17]):

Theorem 1. For every 𝜇ML-formula 𝜙, we can construct an equivalent NPTA 𝒜, that is,ℳ |= 𝜙 iff
ℳ |= 𝒜, for every treeℳ, with number of states at most exponential in |𝜙|. If we consider models of
bounded outdegree 𝑘 then 𝒜 is computed in exponential time, otherwise in doubly exponential time.

3. Foundations of Separability

We start with recalling the notion of separability and discuss some of its basic properties.

Definition 1. Given 𝜙,𝜙′ ∈ 𝜇ML, a modal separator of 𝜙,𝜙′ is 𝜓 ∈ ML with 𝜙 |= 𝜓 and 𝜓 |= ¬𝜙′. It
is a modal separator over a class 𝒞 if 𝜙 |=𝒞 𝜓 and 𝜓 |=𝒞 ¬𝜙′.

The notion induces the problem of modal separability: given two 𝜇ML-formulae 𝜙,𝜙′, decide whether
a modal separator exists. Clearly, ML-definability of 𝜙 or 𝜙′ is a sufficient condition for the existence of
a modal separator between 𝜙,𝜙′. However, Example 1 shows that it is not a necessary one: neither 𝜙
nor 𝜙′ are ML-definable, yet a separator exists. We make some foundational observations.

Inspired by the notion of Craig interpolation, one could also consider the notion of a Craig modal
separator, which is a modal separator 𝜓 of 𝜙,𝜙′ which only uses symbols occurring in both 𝜙 and 𝜙′.
However, based on the fact that ML enjoys Craig interpolation, we show in Theorem 2 (proof in the
full version) that Craig modal separability and modal separability coincide. Since ML enjoys Craig
interpolation over many classes of models [18, Theorem 1], Theorem 2 remains true over all classes of
models considered below. We thus focus on modal separability.

Theorem 2. 𝜙,𝜙′ ∈ 𝜇ML admit a modal separator iff they admit a Craig modal separator.



Inspired by the notion of uniform interpolation [19, 20], it is natural to ask whether every 𝜙 ∈ 𝜇ML
admits a uniform modal separator, that is, a formula 𝜓 ∈ ML that is a modal separator of 𝜙,𝜙′ for every
𝜙′ ∈ 𝜇ML with 𝜙 |= ¬𝜙′. However, substituting ¬𝜙 for 𝜙′ we get that the uniform modal separator
𝜓 for 𝜙 is actually equivalent to 𝜙. Consequently, a 𝜇ML-formula has a uniform modal separator iff
it is modally definable. This is contrast with the fact that both ML [19] and 𝜇ML [20] enjoy uniform
interpolation.

Since 𝜇ML has both the finite model property and the (finitely branching) tree model property, the
notions of a modal separator over finite models, arbitrary tree models, and finitely branching tree
models all coincide with modal separator (over arbitrary models). Unsurprisingly, this does not apply
to the class of all finite trees.

Example 2. Consider a 𝜇ML-formula 𝜙∞ = 𝜈𝑥.◇𝑥 expressing that there exists an infinite path originat-
ing in the root. It is satisfiable, but unsatisfiable over finite trees. Thus ⊥ is an ML-definition of 𝜙∞ over
finite trees, but 𝜙∞ is not ML-definable (over arbitrary models).

We deal with separability over finite trees as follows. Call a class 𝒞 of models 𝜇ML-definable in 𝒟 if
there is a 𝜇ML-formula 𝜃 such thatℳ∈ 𝒞 iffℳ |= 𝜃, for all modelsℳ∈ 𝒟.

Lemma 1. Let 𝒞 be 𝜇ML-definable in𝒟 by 𝜃 and let𝜓 ∈ ML. Then𝜓 is a modal separator of𝜙,𝜙′ ∈ 𝜇ML
over 𝒞 iff 𝜓 is a modal separator of 𝜃 ∧ 𝜙 and 𝜃 ∧ 𝜙′ over 𝒟.

Intuitively, Lemma 1 provides us with a reduction of modal separability over 𝒞 to modal separability
over (the larger) 𝒟. It has a number of interesting consequences. First, observe that the formula ¬𝜙∞
from Example 2 defines the class of finite trees in the class of all finitely branching trees. Hence ¬𝜙∞
provides a reduction of modal separability over finite trees to modal separability over finitely branching
trees, and thus to modal separability. Similarly, and again using𝜙∞, Lemma 1 reduces modal separability
over finite words and over infinite words to modal separability over (arbitrary) words. Finally, the
lemma can be used to reduce modal separability relative to background knowledge to modal separability.
Call 𝜓 a modal separator of 𝜙,𝜙′ ∈ 𝜇ML relative to 𝜃0 ∈ 𝜇ML if it is a modal separator of 𝜙,𝜙′ over the
class of models satisfying 𝜃0 in every point. This setting is most relevant for the DL community since
𝜃0 plays the role of an ontology. In particular, the question whether two 𝒜ℒ𝒞reg-concepts 𝜙,𝜙′ are
separable by an 𝒜ℒ𝒞-concept relative to an 𝒜ℒ𝒞reg-ontology is an instance of that problem (recall that
every 𝒜ℒ𝒞reg-concept can be expressed as a 𝜇ML-formula). Let 𝜃 be the 𝜇ML-formula expressing that
𝜃0 is satisfied in every point reachable via the accessibility relations. Using Lemma 1 and bisimulation
invariance of 𝜇ML, it is routine to verify that 𝜓 is a modal separator of 𝜙,𝜙′ relative to 𝜃0 iff 𝜓 is a
modal separator of 𝜃 ∧ 𝜙 and 𝜃 ∧ 𝜙′.

In view of what was said so far, we will from now on concentrate on deciding modal separability
over general and word models and computing separators if they exist. A main ingredient for both
tasks is to show that if there is a modal separator for 𝜇ML-formula 𝜙,𝜙′, then there is one of modal
depth 𝑛 at most exponential in the size of 𝜙 and 𝜙′. As a necessary tool for showing this exponential
bound on 𝑛, and for efficiently deciding if a given 𝑛 suffices, we establish the following model-theoretic
characterization. Fix 𝜙,𝜙′ ∈ 𝜇ML for the rest of the paper and denote their size by 𝑘 = |𝜙|+ |𝜙′|.

Proposition 1. Let 𝑛 ∈ N. The following are equivalent:

(i) There is 𝜓 ∈ ML of modal depth 𝑛 separating 𝜙 and 𝜙′;

(ii) For all modelsℳ andℳ′ bisimilar up to depth 𝑛:ℳ |= 𝜙 impliesℳ′ ̸|= 𝜙′;

(iii) For all treesℳ andℳ′ identical up to depth 𝑛:ℳ |= 𝜙 impliesℳ′ ̸|= 𝜙′;

(iv) For all treesℳ andℳ′ identical up to depth 𝑛 and whose branching is bounded by 𝑘:
ℳ |= 𝜙 impliesℳ′ ̸|= 𝜙′.

The proof can be found in the full version. Based on Proposition 1, we show that ML-separability of
𝜇ML-formulae is ExpTime-complete and thus not harder than ML-definability.



Theorem 3. Modal separability of 𝜇ML-formulae is ExpTime-complete over arbitrary models.

ExpTime-hardness already holds for ML-definability and is proved by an immediate reduction
from 𝜇ML-satisfiability, which is ExpTime-complete already for its fragment PDL [3, Section 4]. It
is not hard to modify the original hardness proof for PDL-satisfiability to work over finite trees, so
Theorem 3 remains valid over finite trees as well. For the upper bound, we mostly follow the technical
development in [6]. Thanks to Proposition 1 separability is equivalent to the existence of 𝑛 ∈ N for
which condition (iv) holds. This can be expressed as an MSO statement about the full 𝑘-ary tree, and
thus decided. However, for optimal complexity and to extract bounds that we use later we apply a
lower-level automata-theoretic analysis.

Over words, we essentially follow the same approach. Since the tree automata used in the proof
of Theorem 3 can be replaced by word automata, the complexity drops to PSpace. A matching lower
bound can be derived as above by a reduction from satisfiability in LTL over words [21, Theorem 4.1]
(which, in fact, can be rephrased in terms of PDL).

Theorem 4. Modal separability of 𝜇ML-formulae is PSpace-complete over words.

The proofs for both cases, the case of arbitrary models and the case of words, can be found in the full
version. As announced, an important step in the proofs of the upper bounds is the following proposition
which we will also use later.

Proposition 2. If 𝜙,𝜙′ ∈ 𝜇ML are separable then they are separable by a formula of modal depth 𝑙
exponential in their size 𝑘. The same is true over words.

In the remainder of the paper we will deal with computing separators based on Proposition 2. Before
we proceed, let us note that our approach differs from the treatment of modal definability from [7].
There, the authors rewrite given 𝜙 into modal 𝜓 in such a way that if the initial 𝜙 is modally definable
then 𝜙 and 𝜓 are equivalent. In the case when 𝜙 is not modally definable, however, the output 𝜓 is
rather random. For example, 𝜓 obtained from the formula 𝜙∞ from Example 2 is equivalent to⊥ which
is not even a consequence of 𝜙∞. Thus, a different construction is needed to obtain separators. We will
actually compute something slightly stronger that might be of independent interest.

Definition 2. Given 𝜙 ∈ 𝜇ML and 𝑛 ∈ N, a formula 𝜓 ∈ ML𝑛 is an 𝑛-uniform consequence of 𝜙 if, for
all 𝜃 ∈ ML𝑛:

𝜙 |= 𝜃 ⇐⇒ 𝜓 |= 𝜃

An analogous notion relative to a fixed class 𝒞 of models is obtained by replacing |= with |=𝒞 .

In words: 𝜓 is an 𝑛-uniform consequence of 𝜙 if it has modal depth 𝑛, is a consequence of 𝜙, and
entails every other consequence of 𝜙 of modal depth 𝑛. In particular, if 𝜙 and 𝜙′ are separable by some
modal formula of modal depth 𝑛 and 𝜓 is an 𝑛-uniform consequence of 𝜙, then this 𝜓 separates 𝜙 from
𝜙′ as well. Observe that 𝑛-uniform consequences exist for every 𝜙 ∈ 𝜇ML and 𝑛 ∈ N. Indeed, given
𝜙 and 𝑛 we can obtain an 𝑛-uniform consequence 𝜓 of 𝜙 by taking the disjunction of all ML𝑛-types
consistent with 𝜙. Here, by an ML𝑛-type we mean a maximal consistent subset of ML𝑛. Since up to
equivalence there are only finitely many formulae in ML𝑛, each ML𝑛-type can be represented as a
single ML𝑛-formula and the mentioned disjunction 𝜓 is well-defined.

In view of Proposition 2, it thus suffices to compute 𝑛-uniform consequences of 𝜙. Unfortunately,
the naive construction given above is nonelementary in the size of the separated formulae 𝜙 and 𝜙′. In
the next sections we give better constructions.

4. Optimal Separators: Arbitrary Models

We construct doubly exponentially sized separators and provide matching lower bounds.



4.1. Construction

Theorem 5. If 𝜙 and 𝜙′ are modally separable then a separator 𝜙 of size doubly exponential in 𝑘 =
|𝜙|+ |𝜙′| exists and can be computed in doubly exponential time.

The above is a consequence of the following lemma.

Lemma 2. For every 𝜙 ∈ 𝜇ML and 𝑛 ∈ N, one can construct an 𝑛-uniform consequence 𝜓𝑛 ∈ ML𝑛 of 𝜙
with branching doubly exponential in |𝜙| and depth linear in 𝑛.

We show how Theorem 5 follows from Lemma 2. Proposition 2 guarantees that if a modal separator
for 𝜙 and 𝜙′ exists then there is one with modal depth 𝑙 exponential in 𝑘. Since 𝜓𝑙 entails this separator
it follows that 𝜓𝑙 is a separator itself.

The branching 𝑚 of 𝜓𝑙 is at most doubly exponential in |𝜙| and thus also in 𝑘: 𝑚 ≤ 22
𝑘𝑥

for some
constant 𝑥. The depth 𝑑 of 𝜓𝑙 is linear in 𝑙 and therefore 𝑑 ≤ 2𝑘

𝑦
for some 𝑦. Altogether this means

that the size of 𝜓𝑙:
|𝜓𝑙| ≤ 𝑚𝑑 ≤ (22

𝑘𝑥

)2
𝑘𝑦

is at most doubly exponential in 𝑘. It remains to prove Lemma 2.

Proof. Let 𝒜 = (𝑄,Σ, 𝑞𝐼 , 𝛿, rank) be the NPTA equivalent to 𝜙 with exponentially many states, which
exists due to Theorem 1. For each 𝑛 ∈ N and 𝑞 ∈ 𝑄 we construct 𝜓𝑛,𝑞 ∈ ML𝑛 of branching 22

|𝑄|
such

that:

ℳ |= 𝜓𝑛,𝑞 ⇐⇒ there exists 𝒩 |= 𝒜[𝑞𝐼 ←[ 𝑞] withℳ -𝑛 𝒩 (2)

for every structureℳ. Then, 𝜓𝑛,𝑞𝐼 is our desired 𝑛-uniform consequence 𝜓𝑛 of 𝜙.
We proceed by induction on 𝑛 ∈ N. For the base case we put:

𝜓0,𝑞 =
⋁︁
{𝑐 ∈ Σ | there is 𝒩 |= 𝒜[𝑞𝐼 ←[ 𝑞] with 𝒩 |= 𝑐}

which clearly satisfies the induction goal (2). For the induction step define:

𝜓𝑛+1,𝑞 =
⋁︁
𝑐∈Σ

⋁︁
𝑆∈𝛿(𝑞,𝑐)

𝑐 ∧∇{𝜓𝑛,𝑝 | 𝑝 ∈ 𝑆}.

The proof that the above construction preserves (2) is not hard and can be found in the full version.

Let us remark that Lemma 2 can be easily adapted to deal with vocabulary restrictions. That is,
given 𝑃 ⊆ Prop we could construct 𝜓𝑃

𝑛 similar to 𝜓𝑛 but only using atomic propositions from 𝑃 and
only entailing ML𝑛-consequences of 𝜙 whose vocabulary is contained in 𝑃 . To that end, it suffices
to project-out atomic propositions not in 𝑃 from the automaton 𝒜 and only then proceed with our
construction. Such (𝑃, 𝑛)-uniform consequence 𝜓𝑃

𝑛 of 𝜙 can then be taken as a Craig modal separator,
in the same way as 𝜓𝑛 serves as a modal separator.

4.2. Lower bounds

For the lower bounds, we show that over arbitrary structures (in fact, already binary trees) 𝜇ML is
doubly exponentially more succinct than ML. The example is essentially taken from [22, Section 3.1].
There the authors use game-theoretic tools which are later applied to more complicated cases. Since we
are only interested in this example, we provide a straightforward self-contained argument.

Proposition 3. There is a sequence (𝜙𝑛)𝑛∈N of 𝜇ML-formulae of size polynomial in 𝑛 such that each 𝜙𝑛

is equivalent to a ML-formula but every 𝜓 ∈ ML equivalent to 𝜙𝑛 has size at least 22
𝑛

.

Proof. We only give a sketch, the details are found in the full version. We assume two different actions
a and b. For each 𝑛 ∈ N consider the property:



𝐵𝑛: “No path (over all actions) longer than 2𝑛 starts in the root.”

This can be enforced by encoding an 𝑛-bit binary counter into the structure of the model, and requiring
that on every path the counter values are strictly increasing. Let 𝐶𝑛 be this (technically stronger)
property expressing the behavior of the encoded counter. Assuming that the encoding is reasonably
efficient, 𝐶𝑛 can be easily expressed by a 𝜇ML-formula 𝜙𝑛 of size polynomial in 𝑛 (in fact, a weak
fragment of PDL is already sufficient). Since the lengths of paths are bounded, 𝐶𝑛 can be also expressed
in ML.

However, every 𝜓 ∈ ML equivalent to 𝜙𝑛 has size at least 22
𝑛

. The reason is that for every sequence
of actions a and b of length 2𝑛, the syntax tree of 𝜓 must contain a descending sequence of subformulae
of length 2𝑛 such that the 𝑖-th subformula begins with a modal operator corresponding to the 𝑖-th
action. This allows to embed a binary tree of height 2𝑛 into the syntax tree of 𝜓.

Note that the presence of two different actions a and b is essential for the argument. We conjecture
that 𝜇ML is doubly exponentially more succinct than ML already in the monomodal setting. Consider
the following Property 𝑃𝑛, parameterized by 𝑛 ∈ N:

𝑃𝑛: “𝐶𝑛 and there exists a maximal path on which the number of points satisfying 𝜏 is even.”

where 𝐶𝑛 is the same as in Proposition 3. It is not difficult to come up with small, that is, of size
polynomial in 𝑛, 𝜇ML-formulae 𝜙′

𝑛 expressing 𝑃𝑛. Unfortunately, proving that no small ML formula
can be equivalent to 𝜙′

𝑛 seems difficult. For instance, consider models where every non-leaf point has
a child satisfying 𝜏 and a child satisfying ¬𝜏 . Then a trick similar to the famous example of Potthoff
(showing, roughly, that the language of all binary trees of even depth is first-order definable) [23,
Example 1] can be exploited to get a modal formula equivalent to 𝜙′

𝑛 (over such models), but of size
only single exponential in 𝑛. Moreover, the results in the next Section 5 show that looking at words
only is not sufficient either.

5. Optimal Separators: Word Case

In this section we show that optimal modal separators (over words) can be computed exponentially
faster and are exponentially smaller compared to the case with arbitrary models.

Theorem 6. If 𝜙 and 𝜙′ are modally separable over words, then a separator of size exponential in |𝜙|+ |𝜙′|
exists and can be computed in exponential time.

As with arbitrary models, Proposition 2 gives an upper bound on the modal depth of a separator and
so it suffices to construct 𝑛-uniform consequences of 𝜙 of small size.

We illustrate the idea first. Consider the classes EVEN𝑛 and ODD𝑛, 𝑛 ∈ N of all word structures
of length 𝑛 in which proposition 𝑎 is satisfied in an even and odd, respectively, number of points.
Constructing modal formulae 𝜙𝑛 and 𝜙′

𝑛 defining EVEN𝑛 and ODD𝑛 in the following, naive way leads
to exponential formulae since 𝜙𝑖+1 contains both and 𝜙𝑖 and 𝜙′

𝑖:

𝜙0 = ¬𝑎 ∧2⊥ 𝜙𝑖+1 = ◇⊤ ∧
(︀
(𝑎 ∧ 𝜙′

𝑖) ∨ (¬𝑎 ∧ 𝜙𝑖)
)︀

𝜙′
0 = 𝑎 ∧2⊥ 𝜙′

𝑖+1 = ◇⊤ ∧
(︀
(𝑎 ∧ 𝜙𝑖) ∨ (¬𝑎 ∧ 𝜙′

𝑖)
)︀

This exponential blow-up can be avoided, however, using “divide-and-conquer” as follows:

𝜙2𝑛 =
(︀
𝜙𝑛 ∧◇𝑛𝜙𝑛

)︀
∨
(︀
𝜙′
𝑛 ∧◇𝑛𝜙′

𝑛

)︀
𝜙′
2𝑛 =

(︀
𝜙𝑛 ∧◇𝑛𝜙′

𝑛

)︀
∨
(︀
𝜙′
𝑛 ∧◇𝑛𝜙𝑛

)︀
Although several copies of formulae of smaller index are used as well, but since the index is halved, we
end up with formulae of roughly quadradic size. The proof of the following analogue of Lemma 2 relies
on this idea.



Lemma 3. For every 𝑛 ∈ N and every NPWA 𝒜 with states 𝑄, one can construct a formula 𝜓𝑛 ∈ ML𝑛

which is 𝒜’s 𝑛-uniform consequence over words and has size polynomial in 𝑛 and |𝑄|. The construction
requires polynomial time.

To see that Lemma 3 implies Theorem 6, let 𝜙 and 𝜙′ admit a modal separator over words. Let 𝒜 be
an NPWA that is equivalent to 𝜙. By Theorem 1,𝒜 has exponentially many states and can be computed
in exponential time. Proposition 2 implies that there is a modal separator of modal depth 𝑙 at most
exponential in 𝑘 = |𝜙|+ |𝜙′|. As with arbitrary models, 𝒜’s 𝑙-uniform consequence 𝜓𝑙 from Lemma 3
is the sought separator. We now prove the lemma.

Proof. Let 𝒜 = (𝑄,Σ, 𝛿, 𝑞𝐼 , rank) be an NPWA. The main idea is to construct, for every 𝑝, 𝑞 ∈ 𝑄 and
𝑚 ∈ N, a formula 𝜓𝑚

𝑝,𝑞 such that for every input wordℳ:

ℳ |= 𝜓𝑚
𝑝,𝑞 ⇐⇒ there is a run from 𝑝 to 𝑞 over the 𝑚-prefix ofℳ,

The key step is the recursive splitting similar to the definitions of EVEN𝑛 and ODD𝑛 above. Intuitively,
𝜓2𝑚
𝑝,𝑞 is the disjunction over all 𝑠 ∈ 𝑄 of the conditions “there is a run from 𝑝 in the initial position to 𝑠

in position 𝑚, and a run from 𝑠 in position 𝑚 to 𝑞 in position 2𝑚.” The latter conditions are recursively
expressed using 𝜓𝑚

𝑝,𝑠 and 𝜓𝑚
𝑠,𝑞 . The constructed formulas 𝜓𝑚

𝑞𝐼 ,𝑞
, 𝑚 ≤ 𝑛 are then used to describe all

possible 𝑛-prefixes of models of 𝒜. The details of the construction are described in the full version.

We conclude the section with the comment that Theorem 6 is optimal in the sense that there are
modally separable formulae which require a large separator. We actually show the following stronger
statement implying that, over words, 𝜇ML is exponentially more succinct than ML.

Proposition 4. There is a sequence of 𝜇ML-formulae (𝜙𝑛)𝑛∈N of size polynomial in 𝑛 such that each 𝜙𝑛

is equivalent to a ML-formula but every 𝜓 ∈ ML equivalent to 𝜙𝑛 has size at least 2𝑛.

The proof is entirely standard. The main idea is that, already in PDL one can stipulate (with a
small formula) a finite word of exponential length. Clearly, any ML-formula expressing this requires
exponential size. The only difficulty is doing it with a fixed signature: instead of encoding 𝑖-bit counters
using 𝑖 propositions, we use just two propositions and encode numbers in 𝑖 consecutive points.

6. Conclusion and Open Problems

We have studied the problem of deciding separability of 𝜇ML-formulae by fixpoint free formulae
from ML, and computing separators if they exist. Our results cover several interesting classes of models
such as trees, finite trees, and words. Due to the great expressivity of 𝜇ML the results remain valid in
the presence of ontologies.

A notably missing case is the class of trees of fixed outdegree 𝑑 independent from formulae. This
is surprisingly different from the classes we studied. The key difficulty here lies in the fact that the
implication (iii)⇒ (ii) from Proposition 1 is not true over such trees.

An intriguing challenge left for future study is to look at extensions of 𝜇ML and/or ML. Natural
extensions are inverse modalities, the universal modality, graded modalities, and constants (correspond-
ing to inverse roles, the universal role, counting quantifiers, and nominals in DL speech). We expect
the adaptation to inverse modalities to be only minor. Also graded modalities look innocent if they
are allowed both in the larger logic and in the separator logic. If we only extend 𝜇ML with graded
modalities and ask for separators in ML (without graded modailites), we would have to combine our
techniques with the ones from [10], which is potentially challenging. We expect universal modality
and/or constants to pose more technical difficulties as well. Intuitively, adding a universal modality or
constants leads to the loss of the strong locality underlying Proposition 1.

Acknowledgements We are grateful to the anonymous referees for their valuable remarks.
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