
On the Computation of a Productive Partially Ordered
Possibilistic Repair
Ahmed Laouar1, Sihem Belabbes2 and Salem Benferhat1

1CRIL, Univ. Artois & CNRS, UMR 8188, Lens, 62300, France
2LIASD, IUT de Montreuil, Univ. Paris 8, Saint-Denis, 93200, France

Abstract
We deal with repairing inconsistent partially ordered lightweight ontologies in the possibilistic setting. More
specifically, we consider the closure-based C𝜋-repair method, which yields a more productive partially ordered
possibilistic repair and is tractable in DL-Liteℛ. In this work, we refine the characterization of the C𝜋-repair
method and propose an equivalent algorithm that is more efficient. We illustrate our findings with an experimental
analysis. In particular, we highlight the main situations in which the C𝜋-repair method achieves the best
performance both in terms of productivity and computational cost.

Keywords
Lightweight Ontologies, Inconsistency, Partial orders, Data repairs

1. Introduction

Reasoning with inconsistent lightweight ontologies commonly consists in evaluating queries over the
repairs of the ABox, defined as maximal subsets of the ABox that are consistent with respect to the
TBox. Inconsistency-tolerant semantics are strategies for selecting which repairs to query in order
to derive valid conclusions from an inconsistent ontology. Some of the most prominent semantics
have been implemented in reasoning systems. For example, the CQAPri system (Consistent Query
Answering with Priorities) [1] resolves conjunctive queries in DL-Liteℛ ontologies over the repairs
of the ABox. It returns as valid conclusions the query answers that follow: from every repair under
the ABox Repair (AR) semantics [2], from the intersection of all the repairs under the Intersection of
ABox Repair (IAR) semantics [2], and from any repair under the brave semantics [3]. Another example
is the QuID system [4] which implements conjunctive query answering under the IAR semantics in
ontologies specified in DL-Lite𝒜.

The issue of inconsistency management in DL-Liteℛ has been investigated for both totally ordered
ontologies [1, 5] and partially ordered ontologies [6]. Some other methods focus on a preference
relation defined only over minimal inconsistent subsets of the ABox. The issue was first investigated in
prioritized databases [7] and then adapted to DL-Lite in [8].

Besides, inconsistency has been considered within the framework of possibility theory. One can
cite the method for computing a totally ordered possibilistic repair [9], which infers all the assertions
that are strictly more certain than some inconsistency degree of the ABox. The possibilistic repair is
tractable in DL-Liteℛ, because its computation can be reduced to checking the consistency of a subset of
the ABox. This makes it more efficient than the other repairs that apply to totally ordered ABoxes [9].

Furthermore, in the case of partially ordered ontologies, there is the method for computing the
partially ordered possibilistic repair (𝜋-repair) [10], and its closure-based counterpart (C𝜋-repair) [11],
which is more productive. In both methods, the partial order over the ABox is interpreted as a family of
total orders which define the compatible totally ordered ABoxes extending the partial order. The 𝜋-repair
is obtained from the intersection of the totally ordered possibilistic repairs of the compatible ABoxes,
whereas the C𝜋-repair intersects their closure. Note that the 𝜋-repair is included in the C𝜋-repair.

DL 2024: 37th International Workshop on Description Logics, June 18–21, 2024, Bergen, Norway
$ laouar@cril.fr (A. Laouar); belabbes@iut.univ-paris8.fr (S. Belabbes); benferhat@cril.fr (S. Benferhat)
� 0009-0002-0028-3234 (A. Laouar); 0000-0002-8159-7122 (S. Belabbes); 0000-0002-4853-3637 (S. Benferhat)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:laouar@cril.fr
mailto:belabbes@iut.univ-paris8.fr
mailto:benferhat@cril.fr
https://orcid.org/0009-0002-0028-3234
https://orcid.org/0000-0002-8159-7122
https://orcid.org/0000-0002-4853-3637
https://creativecommons.org/licenses/by/4.0/deed.en

Equivalent characterizations have been proposed for the 𝜋-repair and the C𝜋-repair methods, without
exhibiting the all compatible ABoxes, and have been shown to be tractable in DL-Liteℛ. The 𝜋-repair
method is characterized by the notion of 𝜋-accepted assertion [12], which boils down to checking the
consistency of the said assertion together with the subset of all the assertions that are at least equally
certain or are incomparable to it. The C𝜋-repair method is characterized using the notions of support
and dominance [11] against the conflicts of the ABox, which are minimal subsets of the ABox that are
inconsistent with respect to the TBox. Basically, a valid conclusion is an assertion that can be derived
from consistent minimal subsets of the ABox, called supports, that dominate (i.e., are strictly more
certain than) all the conflicts.

In this work, we first implement a naive algorithm for the C𝜋-repair method, using the tractable
characterization based on the notions of support and dominance. We then provide an improved
equivalent algorithm by exploiting the fact that C𝜋-repair is composed of the 𝜋-repair and a complement
set. We revise the notion of dominance by exploiting the partial order relation in order to reduce the
number of conflicts and supports that need to be processed by the algorithm. Thus, computing C𝜋-repair
amounts to computing the 𝜋-repair with the tractable characterization of 𝜋-accepted assertions, and
computing the rest by applying the revised notion of dominance to the remaining assertions. We
perform an experimental analysis and confirm that computing the C𝜋-repair with the new algorithm
benefits from the efficiency of computing the 𝜋-repair. We highlight the main situations in which the
C𝜋-repair method achieves the best performance both in terms of productivity and computational cost.

This paper is structured as follows. Section 2 recalls some preliminaries then describes a naive
algorithm for the C𝜋-repair method. Section 3 studies properties of C𝜋-repair which serve to introduce
an improved algorithm. Section 4 provides an experimental evaluation of these algorithms. A brief
discussion concludes the paper.

2. Preliminaries: The C𝜋-repair method

DL-Liteℛ Syntax A DL-Liteℛ ontology [13] is a finite knowledge base (KB) 𝒦 = ⟨𝒯 ,𝒜⟩, built by
recursively applying the following grammar:

𝑅 := 𝑃 | 𝑃− 𝐸 := 𝑅 | ¬𝑅 𝐵 := 𝐴 | ∃𝑅 𝐶 := 𝐵 | ¬𝐵
where 𝐴 is a concept name, 𝑃 is a role name and 𝑃− is its inverse. The symbol ¬ designates a
complement set and ∃ denotes existential restriction on roles.
The TBox 𝒯 contains axioms of the form 𝐵 ⊑ 𝐶 and 𝑅 ⊑ 𝐸. The ABox 𝒜 contains assertions of the
form 𝐴(𝑎) and 𝑃 (𝑎, 𝑏), where 𝑎 and 𝑏 are individuals. The axioms in 𝒯 may be positive inclusions of
the form 𝐵1 ⊑ 𝐵2 or 𝑅1 ⊑ 𝑅2 which allow to derive new assertions from 𝒜. The axioms in 𝒯 may
also be negative inclusions of the form 𝐵1 ⊑ ¬𝐵2 or 𝑅1 ⊑ ¬𝑅2 which serve to exhibit the conflicts
in 𝒜. A conflict is a minimal subset of 𝒜 that is inconsistent with respect to 𝒯 , with a size of (at most)
two assertions in DL-Liteℛ [14]. Inconsistency refers to the absence of a model for the KB. We omit the
semantics of DL-Liteℛ for space considerations.

Partially preordered KB A partial preorder ⊵ over an ABox 𝒜 is a reflexive and transitive binary
relation. Let ▷ be the associated strict order. Let ◁▷ denote incomparability, i.e., for 𝜙𝑗 and 𝜙𝑘 two
assertions, 𝜙𝑗 ◁▷ 𝜙𝑘 means that neither 𝜙𝑗 ⊵ 𝜙𝑘 nor 𝜙𝑘 ⊵ 𝜙𝑗 applies. The partially preordered ABox
is denoted by 𝒜⊵. In the rest of this paper, we deal with an inconsistent partially preordered KB and
denote it by 𝒦 = ⟨𝒯 ,𝒜⊵⟩.

Next, we provide an algorithmic definition for each of the core notions of the C𝜋-repair method,
namely the deductive closure, the conflict set and the support of an assertion.

2.1. Deductive closure of the ABox

The deductive closure of the ABox contains all the assertions that may be inferred from the KB using
the positive axioms of the TBox. The individuals included in the closure are limited to those present

in the ABox, which makes the closure finite. Algorithm 1 computes the deductive closure of 𝒜⊵ by
running a set of First Order SQL queries. For each concept or role name in an axiom of the TBox, it
creates a conjunctive query (CQ) 𝑞(−→𝑥) to retrieve the individuals in the corresponding assertion (in
line 3). Then, the algorithm reformulates the query into a union of conjunctive queries (UCQ), under
classical semantics, to get all the individuals present in any subsume or subrole of the initial concept or
role name. Any CQ-rewriting procedure may be used. Here, we use the PerfectRef algorithm [13]. The
results of the reformulation are then executed on the ABox (in line 6). This corresponds to computing
the set of the answers for each query over ℐ𝒜⊵ , which is the interpretation that satisfies exactly the
assertions of 𝒜⊵.

Algorithm 1: ComputeClosure

Input: 𝒦 = ⟨𝒯,𝒜⊵⟩: a KB
Output: 𝑐𝑙(𝒜⊵) : the deductive closure of 𝒜⊵.

1 𝑐𝑙(𝒜⊵)← ∅
2 foreach N : a concept name or role name in𝒯 do
3 𝑞(−→𝑥)← 𝛿(N)
4 PR← PerfectRef(𝑞, 𝒯)
5 foreach 𝑞𝑖(

−→𝑥) in PR do
6 foreach −→𝑎 ∈ ans(𝑞𝑖,ℐ𝒜⊵) do
7 𝑐𝑙(𝒜⊵)← 𝑐𝑙(𝒜⊵) ∪ {𝜆(N,−→𝑎)}

8 return (𝑐𝑙(𝒜⊵))

• 𝛿: a translation function mapping a con-
cept name 𝐵 with a variable 𝑥, and a role
name 𝑅 with the variables 𝑥1, 𝑥2 (adapted
from [13]).

• ans(𝑞𝑖,ℐ𝒜⊵): the result of running the
query 𝑞𝑖 on the interpretation ℐ𝒜⊵ .

• 𝜆: a translation function mapping the con-
cept name or the role name 𝑁 with each
of the answers −→𝑎 (adapted from [13]).

2.2. Conflict set of the ABox

In an inconsistent DL-Liteℛ KB, a conflict is a minimal subset of (at most) two assertions that are
contradictory in terms of the axioms [14]. In the following, we assume that a conflict contains exactly
two assertions, and denote the conflict set of the ABox𝒜⊵ byCf(𝒜⊵). Algorithm 2 uses query generation
and reformulation (similar to the algorithm in [15]) to compute the conflict set. The algorithm creates a
conjunctive query (𝑞𝑖(−→𝑥)) for each negative axiom in 𝒯 . Then it performs CQ-rewriting under classical
semantics, to get queries for the negative axioms that are not explicitly stated in the TBox. The size
of each query at this step is 2. After that, the obtained queries are evaluated over the ABox to get the
individuals (−→𝑎) that are present in both assertions of any conflicting concept names or role names. −→𝑎
are substituted for the variables −→𝑥 , and the set of atoms in 𝑞𝑖(

−→𝑎) are added to the conflict set.

Algorithm 2: ComputeConflicts

Input: 𝒦 = ⟨𝒯,𝒜⊵⟩: a KB
Output: Cf(𝒜⊵) : the conflict set of 𝒜⊵

1 Cf(𝒜⊵)← ∅
2 𝑄← ∅
3 foreach 𝛼: a negative axiom in 𝒯 do
4 𝑄← 𝑄 ∪ {𝑞𝑖(−→𝑥)← 𝛿(𝛼)}
5 PR←

⋃︀
𝑞𝑖∈𝑄 PerfectRef(𝑞𝑖, 𝒯)

6 foreach 𝑞𝑖(
−→𝑥) in PR do

7 foreach −→𝑎 ∈ ans(𝑞𝑖,ℐ𝒜⊵) do
8 Cf(𝒜⊵)← Cf(𝒜⊵) ∪ {{atoms(𝑞𝑖(−→𝑎))}}

9 return (Cf(𝒜⊵))

• 𝛿: a translation function from a negative
axiom 𝛼 in 𝒯 to a conjunctive query (de-
fined in [13]).

• ans(𝑞𝑖,ℐ𝒜⊵): the result of running the
query 𝑞𝑖 on the interpretation ℐ𝒜⊵ .

• atoms(𝑞𝑖(
−→𝑎)): the set of atoms in the

query 𝑞𝑖(
−→𝑎).

2.3. Supports of an assertion

The support of an assertion in an ABox is a minimal consistent subset of the ABox that allows to derive
it. In DL-Liteℛ, a support consists of at most a single assertion of the ABox. Algorithm 3 computes

the union of boolean queries that represent the instance checking queries of the supports for a given
assertion. This is achieved via the reformulation of the instance checking query of the assertion under
classical semantics (using the PerfectRef algorithm). The verified instances are added to the set of
supports of the assertion.

Algorithm 3: ComputeSupports

Input: 𝒦 = ⟨𝒯,𝒜⊵⟩: a KB, 𝐵(𝑎), resp. 𝑅(𝑎1, 𝑎2): an assertion in 𝑐𝑙(𝒜⊵)
Output: 𝒮 : the supports of 𝐵(𝑎), resp. 𝑅(𝑎1, 𝑎2), in 𝒜⊵

1 𝒮 ← ∅
2 𝑞(−→𝑎)← 𝐵(𝑎) /* resp. 𝑅(𝑎1, 𝑎2) */
3 PR← PerfectRef(𝑞, 𝒯)
4 foreach 𝑞𝑖(

−→𝑎) in PR do
5 if ans(𝑞𝑖,ℐ𝒜⊵) is 𝑡𝑟𝑢𝑒 then
6 𝒮 ← 𝒮 ∪ {{atoms(𝑞𝑖(−→𝑎)}}

7 return (𝒮)

2.4. C𝜋-repair algorithm

Given the notions of deductive closure, conflict set and support introduced in Algorithms 1 to 3, the
C𝜋-repair method also relies on the notion of dominance. This notion is a way for extending the
partial preorder defined over an ABox into a partial preorder defined over subsets of the ABox 𝒜⊵. The
dominance is defined as follows.

Definition 1 (Dominance). Let two subsets ℬ1 and ℬ2 of 𝒜⊵. We say that ℬ1 dominates ℬ2 if ∀𝜙𝑗 ∈ ℬ1,
∃𝜙𝑘 ∈ ℬ2 such that 𝜙𝑗 ▷ 𝜙𝑘.

The C𝜋-repair method is characterized as the dominance of the supports of an assertion over the
conflicts of the ABox. The characterization solely applies when the KB is inconsistent. Otherwise, The
C𝜋-repair amounts to the deductive closure of the ABox.

Definition 2 (C𝜋-repair). A given assertion 𝜙 is in 𝑐𝜋(𝒜⊵) if ∀𝒞 ∈ Cf(𝒜⊵), ∃ℬ ⊆ 𝒜⊵ such that ℬ
supports 𝜙 (as per Algorithm 3), and ℬ dominates 𝒞 (as per Definition 1).

Note that in DL-Liteℛ, a support (a singleton) dominates a conflict (a pair) means that there is an
assertion in the ABox that is strictly more certain than at least one element of the conflict.

Algorithm 4 (given in the next page) is a naive implementation of the C𝜋-repair method which applies
the characterization given in Definition 2 to each assertion of the closed ABox returned by Algorithm 1.

Lemma 1. The algorithm ComputeC𝜋-repair (Algorithm 4) runs in polynomial time and space in |𝒜⊵|
(in data complexity).

The proofs of all propositions and lemmas are provided in the appendix.

3. Revisiting the C𝜋-repair method

In this section, we aim at computing C𝜋-repair more efficiently. Thus, we propose to improve Algo-
rithm 4 by exploring two ideas. First, we exhibit additional properties of the dominance relation, in
order to reduce the number of the processed conflicts and supports. We do so by focusing on subsets of
conflicts and of supports called dominant conflicts and dominant supports. Second, since the C𝜋-repair
contains the 𝜋-repair, we start by computing the 𝜋-repair using its tractable characterization. We
then complete the C𝜋-repair by applying the revised characterization to the assertions that cannot be
inferred from the 𝜋-repair.

Algorithm 4: ComputeC𝜋-repair
Input: 𝒦 = ⟨𝒯,𝒜⊵⟩: a KB
Output: 𝐶𝜋(𝒜⊵) : the C𝜋-repair of 𝒜⊵

1 𝑐𝑙(𝒜⊵)← ComputeClosure(𝒦)
2 Cf(𝒜⊵)← ComputeConflicts(𝒦)
3 if Cf(𝒜⊵) = ∅ then
4 return 𝑐𝑙(𝒜⊵)

5 else
6 𝐶𝜋(𝒜⊵)← ∅
7 foreach 𝜙 in 𝑐𝑙(𝒜⊵) do
8 𝒮(𝜙)← ComputeSupports(𝜙,𝒦)
9 visited← ∅ /* visited: the set of visited conflicts */

10 repeat
11 select 𝒞 = {𝑐𝑖, 𝑐𝑗} from Cf(𝒜⊵)
12 Cf(𝒜⊵)← Cf(𝒜⊵) ∖ {𝒞}
13 visited ← visited ∪ {𝒞}
14 supported ← false /* supported: a boolean, true if 𝜙 has a support */
15 repeat
16 select {𝑠} from 𝒮(𝜙)
17 𝒮(𝜙)← 𝒮(𝜙) ∖ {𝑠}
18 if 𝑠▷ 𝑐𝑖 or 𝑠▷ 𝑐𝑗 then
19 supported← true

20 until supported is true or 𝒮(𝜙) = ∅ /* exit when a support is found or there are no supports */
21 until supported is false or Cf(𝒜⊵) = ∅ /* exit after parsing all the conflicts or there is no support */
22 if supported is true then
23 𝐶𝜋(𝒜⊵)← 𝐶𝜋(𝒜⊵) ∪ {𝜙} /* 𝜙 is supported against each conflict */

24 Cf(𝒜⊵)← Cf(𝒜⊵) ∪ visited

25 return (𝐶𝜋(𝒜⊵))

3.1. Dominant conflicts

Definition 3 (Dominant conflicts). The set of dominant conflicts, denoted Cf𝑑𝑜𝑚(𝒜⊵), is the maximal
subset Cf𝑑𝑜𝑚(𝒜⊵) ⊆ Cf(𝒜⊵) such that ∀𝒞𝑖 ∈ Cf(𝒜⊵), if ∃𝒞𝑗 ∈ Cf(𝒜⊵) such that 𝒞𝑗 dominates 𝒞𝑖, then
𝒞𝑖 ̸∈ Cf𝑑𝑜𝑚(𝒜⊵).

The following proposition states that it is sufficient to consider only the dominant conflicts within the
conflict set to compute the C𝜋-repair. This stems from the fact that the dominance relation is transitive,
which follows from the transitivity of the partial preorder relation ⊵.

Proposition 1. A given assertion 𝜙 is in 𝑐𝜋(𝒜⊵) if and only if ∀𝒞 ∈ Cf𝑑𝑜𝑚(𝒜⊵), ∃ℬ ⊆ 𝒜⊵ such that ℬ
supports 𝜙 and ℬ dominates 𝒞.

3.2. Dominant supports

Definition 4 (Dominant supports). Let 𝒮(𝜙) be the set of supports of an assertion 𝜙 in 𝒜⊵. The set of
dominant supports of 𝜙, denoted 𝒮𝑑𝑜𝑚(𝜙), is the maximal subset 𝒮𝑑𝑜𝑚(𝜙) ⊆ 𝒮(𝜙) such that ∀ℬ𝑖 ∈ 𝒮(𝜙),
if ∃ℬ𝑗 ∈ 𝒮(𝜙) such that ℬ𝑗 dominates ℬ𝑖, then ℬ𝑖 ̸∈ 𝒮𝑑𝑜𝑚(𝜙).

The following proposition states that it is sufficient to consider only the set of dominant supports of
any given assertion 𝜙 in order to check its membership in C𝜋-repair. This result also follows from the
transitivity of the partial preorder relation ⊵.

Proposition 2. Let 𝜙 be an assertion and let 𝒮(𝜙) be its set of supports in 𝒜⊵. 𝜙 is in 𝑐𝜋(𝒜⊵) if and
only if ∀𝒞 ∈ Cf𝑑𝑜𝑚(𝒜⊵), ∃ℬ ∈ 𝒮𝑑𝑜𝑚(𝜙) such that ℬ dominates 𝒞.

Proposition 2 entails that Algorithm 4 can actually consider (strict) subsets of the conflicts and the
supports. This has the potential for considerably reducing the number of elements over which the
algorithm iterates to check membership of an assertion in the C𝜋-repair.

3.3. Properties of the C𝜋-repair

We exploit two key properties of the C𝜋-repair [11] to improve Algorithm 4. First, the C𝜋-repair
(strictly) contains all the assertions of the 𝜋-repair [12], which is characterized as follows.

Definition 5 (𝜋-repair). Let 𝜙𝑖 ∈ 𝒜⊵ and Δ(𝜙𝑖) = 𝒜⊵ ∖ {𝜙𝑗 |𝜙𝑗 ∈ 𝒜⊵ such that 𝜙𝑖 ▷𝜙𝑗} be the set of
assertions that are at least equally certain or incomparable to 𝜙𝑖. Then 𝜙𝑖 ∈ 𝜋(𝒜⊵) if ⟨𝒯 , {𝜙𝑖} ∪Δ(𝜙𝑖)⟩
is consistent.

We conclude that Algorithm 4 does not need to consider all the assertions of the deductively closed
ABox in order to compute the C𝜋-repair. Instead, an improved version of the algorithm first computes
the 𝜋-repair 1, before iterating over the remaining assertions of the closed ABox.

Moreover, we explore a second property of the C𝜋-repair in order to reduce the number of remaining
assertions that need to be checked by the algorithm. This relates to the set difference between the
C𝜋-repair and the deductive closure of the 𝜋-repair. In essence, if an assertion is neither accepted in
the 𝜋-repair nor its closure, it must have strictly more than one support to be in the C𝜋-repair. This is
formalized in the following lemma.

Lemma 2. Let 𝜙 be an assertion in 𝑐𝜋(𝒜⊵). Let 𝒮(𝜙) be the set of supports of 𝜙. If |𝒮(𝜙)| = 1, then
𝜙 ∈ 𝑐𝑙(𝜋(𝒜⊵)).

The converse of Lemma 2 does not hold, a non-accepted assertion may have multiple supports.
Algorithm 5 (given in the next page) constitutes an improved version of Algorithm 4. It begins by

computing the closed ABox followed by the set of dominant conflicts. If the KB is consistent, the closed
ABox is returned. Otherwise, the algorithm computes the assertions of the 𝜋-repair and inserts them
in the C𝜋-repair. Next, it iterates over the assertions of the closed ABox minus the 𝜋-repair, and for
each such assertion, it computes its set of dominant supports. If one of the supports is in the 𝜋-repair,
the assertion is added to the C𝜋-repair. This step retrieves the assertions that are in the closure of the
𝜋-repair. Otherwise, the algorithm checks whether the assertion has more than one support. If it does,
then for each conflict, the algorithm checks whether the assertion has a support dominating the conflict
(like in Algorithm 4).

Lemma 3. The algorithm ComputeC𝜋-repair (Algorithm 5) runs in polynomial time and space in |𝒜⊵|
(in data complexity).

4. Experimental evaluation

We implemented all the algorithms of this paper in Python. Our system relies on the RDFLib library [16]
to read the ontology, a SQLite3 relational DBMS [17] to store the ABox, and the Rapid query rewriting
engine [18] to reformulate queries. Our system is publicly available at: https://github.com/ahmedlaouar/
py_reasoner. We performed the experiments on an Intel 3.60GHz CPU with 32 GB RAM under Ubuntu,
and provided instructions for reproducing them. Let us first discuss how to elicit partial orders to obtain
a partially ordered KB.

4.1. Directed acyclic graphs for partial orders

One way for implementing a partially ordered KB is to assign partially ordered priority degrees to
the assertions of the ABox [10]. These degrees can be represented graphically using Hasse diagrams
or directed acyclic graphs (DAGs). We opt for transitive DAGs [19], which explicitly represent arcs
within the graph. In a transitive DAG, nodes represent the degrees of a partially ordered set (POS),
an arc indicates the strict preference of a degree over the other, and the absence of an arc expresses
incompatibility of two degrees. A set of random DAGs was generated using the R package bnlearn [20],
based on different numbers of nodes ({50, 100, 500, 1000, 2500}) and different probabilities for the

1A suggested algorithm for computing the 𝜋-repair is given in the appendix.

https://github.com/ahmedlaouar/py_reasoner
https://github.com/ahmedlaouar/py_reasoner

Algorithm 5: ComputeC𝜋-repair
Input: 𝒦 = ⟨𝒯,𝒜⊵⟩: a KB
Output: 𝐶𝜋(𝒜⊵) : the C𝜋-repair of 𝒜⊵

1 𝑐𝑙(𝒜⊵)← ComputeClosure(𝒦)
2 Cf𝑑𝑜𝑚(𝒜⊵)← ComputeDominantConflicts(𝒦) /* the set given by Definition 3 */
3 if Cf𝑑𝑜𝑚(𝒜⊵) = ∅ then
4 return 𝑐𝑙(𝒜⊵)

5 else
6 𝜋(𝒜⊵)← Compute𝜋-repair(𝒦)
7 𝑐𝑙(𝒜⊵)← 𝑐𝑙(𝒜⊵) ∖ 𝜋(𝒜⊵)
8 𝐶𝜋(𝒜⊵)← 𝜋(𝒜⊵)
9 foreach 𝜙 in 𝑐𝑙(𝒜⊵) do

10 𝒮𝑑𝑜𝑚(𝜙)← ComputeDominantSupports(𝜙,𝒦) /* the set given by Definition 4 */
11 if 𝒮𝑑𝑜𝑚(𝜙) ∩ 𝜋(𝒜⊵) ̸= ∅ then
12 𝐶𝜋(𝒜⊵)← 𝐶𝜋(𝒜⊵) ∪ {𝜙}
13 else
14 if size (𝒮𝑑𝑜𝑚(𝜙)) > 1 then
15 visited← ∅ /* visited: the set of visited conflicts */
16 repeat
17 select 𝒞 = {𝑐𝑖, 𝑐𝑗} from Cf𝑑𝑜𝑚(𝒜⊵)
18 Cf𝑑𝑜𝑚(𝒜⊵)← Cf𝑑𝑜𝑚(𝒜⊵) ∖ {𝒞}
19 visited ← visited ∪ {𝒞}
20 supported← false /* supported: a boolean, true if 𝜙 has a support */
21 repeat
22 select {𝑠} from 𝒮𝑑𝑜𝑚(𝜙)
23 𝒮𝑑𝑜𝑚(𝜙)← 𝒮𝑑𝑜𝑚(𝜙) ∖ {𝑠}
24 if 𝑠▷ 𝑐𝑖 or 𝑠▷ 𝑐𝑗 then
25 supported← true

26 until supported is true or 𝒮𝑑𝑜𝑚(𝜙) = ∅ /* exit when support is found or no support */
27 until supported is false or Cf𝑑𝑜𝑚(𝒜⊵) = ∅ /* exit if all conflicts parsed or no support */
28 if supported is true then
29 𝐶𝜋(𝒜⊵)← 𝐶𝜋(𝒜⊵) ∪ {𝜙} /* 𝜙 is supported against each conflict */

30 Cf𝑑𝑜𝑚(𝒜⊵)← Cf𝑑𝑜𝑚(𝒜⊵) ∪ visited

31 return (𝐶𝜋(𝒜⊵))

presence of arcs (0.1, . . . , 0.9). A probability indicates the density of the DAG, hence a less dense DAG
has more occurrences of incomparability.

4.2. Experimental setting

We used an OWL ontology as the TBox. We opted for the DL-Liteℛ version of the modified LUBM
benchmark (LUBM∃

20) [21] (available at https://home.uni-leipzig.de/clu/). Since this version does not
contain negative axioms, we added a set of negative axioms to the TBox in order to create conflicts. Next,
we used the Extended University Data Generator (EUDG) [21] to generate three ABoxes of different
sizes, and transformed each ABox into a SQLite database. Then, we introduced inconsistency by adding
contradictory assertions in each ABox as follows. For each negative axiom inferred from the TBox, we
contradict the presence of an individual in a concept assertion (resp. role assertion) with probability 𝑝
(resp. 𝑝

2). We used different values of 𝑝 in order to create five different situations within each ABox in
terms of inconsistency, which is measured with by the number of conflicts. For each execution of the
algorithms, degrees from a previously generated DAG are randomly assigned to the assertions of each
ABox. We refer to the 𝜋-repair (Definition 5) and Algorithms 4 and 5 by 𝜋, 𝑐𝜋 and 𝑐𝜋++, respectively.
We consider three different cases for the evaluation:

Case 1: We analyse both the performance of the algorithms as a function of the size of the ABox and the

https://home.uni-leipzig.de/clu/

ID #A # Cf Cf (s) #𝜋 𝜋 (s) #𝑐𝜋 𝑐𝜋 (s) 𝑐𝜋++ (s)
u.5p5e-6 9156 111 1.08 8078 1.24 22740 27.65 11.26
u.5p1e-5 9158 387 1.42 5344 1.33 15859 30.56 18.15
u.5p5e-5 9193 1268 1.43 742 1.28 2473 30.15 30.86
u.5p5e-4 9228 3372 1.6 1102 1.41 3651 30.75 29.35
u.5p1e-3 9375 7733 1.7 442 1.57 1475 28.83 28.65
u1p5e-6 75671 753 2.51 36083 4.36 66867 203.59 53.45
u1p1e-5 75678 3049 2.77 22804 8.38 46257 261.47 74.74
u1p5e-5 75718 10388 4.14 5856 5.07 14992 267.33 130.9
u1p15e-5 75842 28553 4.84 2378 6.54 6834 258.71 168.25
u1p5e-4 76255 83863 6.5 988 6.9 2994 251.23 170.61
u5p5e-6 463349 4505 22.48 74511 39.39 167473 6635.11 2160.48
u5p1e-5 463400 8327 23.6 30204 38.89 78857 6711.89 2941.02
u5p5e-5 463684 57054 26.3 8693 35.85 25921 5772.07 3105.82
u5p1e-4 464060 121621 29.76 6213 34.12 18794 6492.42 3566.24
u5p5e-4 466785 544500 49.95 1470 95.88 4713 5868.32 3956.46

Table 1
ABoxes in terms of: size (#A), conflicts number (# Cf) and computation time (Cf (s)), 𝜋-repair size (#𝜋) and
computation time (𝜋 (s)), C𝜋-repair size (#𝑐𝜋) and computation time (𝑐𝜋 (s) and 𝑐𝜋++ (s)).

impact of the number of conflicts on the size of the repairs and the running time (for computing
the repairs). The results are presented in Table 1 and Figure 1.

Case 2: We consider different configurations for the associated DAG (POS). We analyze the impact of
changing the size and density of the DAG. This allows us to measure the difference 𝑐𝜋(𝒜⊵) ∖
𝑐𝑙(𝜋(𝒜⊵)). We point out the main situations where the C𝜋-repair is more productive than the
𝜋-repair. The results are depicted in Figure 2 [left].

Case 3: We use ABox u.5 to compare the proportion of time spent in each step of Algorithms 4 and 5.
For each ABox by number of conflicts, we computed the median time from different executions.
The results are presented in Figure 2 [middle] and [right].

4.3. Experimental results

Impact of the number of conflicts (Case 1) First, we compare the running time of Algorithms 4
and 5 (𝑐𝜋 and 𝑐𝜋++) to compute the C𝜋-repair, and can see that the improved method largely outruns
the naive method. Mainly, in situations of weakly conflicting ABoxes, which correspond to ABoxes with
(111, 387) conflicts for u.5, (753, 3049) conflicts for u1 and (4505, 8327) for u5. For these ABoxes,
the improved method reduces the running time to a mere 25% of the naive method’s. This can be
observed in Figure 1 [left], with (753, 3049) conflicts. This also holds for large sized ABoxes, as ABox
u5 in Table 1. Moreover, for highly conflicting ABoxes, the improved method takes at most half of the
time taken by the naive one. In these ABoxes, the 𝜋-repair becomes smaller and more assertions must
be checked using the C𝜋-repair characterization. We can observe in Figure 1 [left] that the 𝜋-repair
is computed in a stable time. This is because it runs a constant time verification step for each ABox
assertion.

Regarding the size of the obtained repairs, we observe that a large subset of assertions is discarded
when the number of conflicts exceeds 10% of the size of the ABox (1268 for ABox u.5, 10388 for
ABox u1 and 57054 for ABox u5). This is confirmed by Figure 1 [right]. This outcome is expected.
Moreover, it is true even for the IAR semantics, which is considered by nature to be more productive
than possibilistic repairs (for more details on IAR, see [4, 1]).

Impact of the used partial order (Case 2) In order to point out the main situations where the
C𝜋-repair is more productive than the 𝜋-repair, we illustrate the size of the 𝜋-repair (𝜋), the closure of

Figure 1: Evolution of repair time [left] and repair size [right] w.r.t. the number of conflicts (ABox u1).

the 𝜋-repair (𝑐𝑙(𝜋)) and the additional assertions that are only in the C𝜋-repair (only 𝑐𝜋), as a function
of the density of the used POS. Figure 2 [left] depicts the results of these executions. Note that in this
case, we used ABox u1 with 753, 3049 and 10388 conflicts. The evaluation of the density shows that
lower probabilities, which indicate a higher presence of incomparabilities, lead to a more productive
C𝜋-repair. When the probability of having a strict preference between two degrees in the POS is
lower than 0.5, the C𝜋-repair is larger than the 𝜋-repair. Conversely, POSs with higher probabilities
corresponds to a decreased likelihood of C𝜋-repair being more productive than the 𝜋-repair, such partial
orders approximate a total order. This result illustrates Lemma 2, with more incomparabilities, there is
a higher chance for an assertion to have different supports dominating different conflicts. This is the
case for the assertions that are only in the C𝜋-repair.

We can also observe that, for POSs with many incomparabilities, the C𝜋-repair returns more answers
when the 𝜋-repair is empty. This can be observed in Figure 2 [left], with the densities 0.1 and 0.3.
Furthermore, we concluded, trough multiple executions with different POS densities, that the C𝜋-repair
returns an important number of assertions in 80% of the cases where the 𝜋-repair contains less than 10%
of the ABox assertions. In addition, for weakly conflicting ABoxes, the C𝜋-repair provided additional
assertions in 10% of the times. This percentage falls under 5% for the highly conflicting ABoxes.

Proportion of time spent by Algorithms 4 and 5 (Case 3) Figure 2 ([middle] and [right]) illustrates
the running time taken by each step of Algorithms 4 and 5. For both algorithms, the computation of
the ABox closure is achieved in constant time. The time taken to compute the set of conflicts increases
slightly as their number increases. This also results in an increase in total time, as there are more
conflicts to go through. In the improved method (Figure 2 [right]), computing the 𝜋-repair is run
in constant time with respect to the changing number of conflicts, whereas computing its closure is
more time-consuming in weakly conflicting ABoxes. Computing the supports involves processing each
assertion in the ABox closure through multiple SQL queries to retrieve them. Although significantly
faster in the improved algorithm, as shown in the results of Table 1, supports computation is the most
time-intensive step of the process.

5. Concluding discussions

In this paper, we conducted an experimental study of data repair methods for partially ordered
possibilistic knowledge bases, including three principal phases. Initially, it involved developing
suitable algorithms for the computation of repairs. Subsequently, we delved into examining the
inherent properties of the repair strategies and the algorithms’ to enhance their efficiency. Finally,
we tested the algorithms across various scenarios to evaluate their performance. We provided an
algorithmic investigation, complemented by experimental analysis of the closure-based partially
ordered possibilistic repair. Starting with the repair’s characterization, we showed that leveraging
certain properties allows for a more efficient repair process. Our experiments, conducted across

Figure 2: Proportion of assertions in each repair vs POS density [left]. Proportion of repair time for ABox u.5,
using Algorithm 4 [middle] and Algorithm 5 [right].

diverse ABoxes, featuring a varying number of conflicts and configuration of partial orders, led to the
insight that the C𝜋-repair is particularly beneficial in cases where the partial order defined over the
ABox incorporates numerous incomparabilities and its subset, the 𝜋-repair, includes fewer assertions.
Furthermore, the algorithms we developed are capable of batch processing, enabling an incremental
computation of repairs for larger ABoxes. Future work involves checking whether polynomial time
complexity holds also in combined complexity.

Acknowledgments: This research was supported by the European Union’s Horizon research and
innovation program under the MSCA-SE (Marie Skłodowska-Curie Actions Staff Exchange) [grant
agreement 101086252]; Call: HORIZON-MSCA-2021-SE-01; Project title: STARWARS (STormwAteR
and WastewAteR networkS heterogeneous data AI-driven management).
Ahmed Laouar’s PhD is supported by the French national project ANR (Agence Nationale de la
Recherche) Vivah (Vers une intelligence artificielle à visage humain) [grant number ANR-20-THIA-0004].
This research has also received support from the two French national ANR (Agence Nationale de la
Recherche) projects EXPIDA (EXplainable and parsimonious Preference models to get the most out of
Inconsistent DAtabases) [grant number ANR-22-CE23-0017] and AGGREEY (Une plate-forme basée sur
l’argumentation pour la démocratie participative) [ANR-22-CE23-0005].
The authors would like to thank the reviewers for their useful comments.

References

[1] M. Bienvenu, C. Bourgaux, F. Goasdoué, Querying inconsistent description logic knowledge
bases under preferred repair semantics, in: Proceedings of the AAAI Conference on Artificial
Intelligence, volume 28, 2014, pp. 996–1002.

[2] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D. F. Savo, Inconsistency-tolerant semantics for
description logics, in: Web Reasoning and Rule Systemss, RR 2010, Bressanone/Brixen, Italy, 2010,
pp. 103–117.

[3] M. Bienvenu, R. Rosati, Tractable approximations of consistent query answering for robust
ontology-based data access, in: IJCAI, 2013, pp. 775–781.

[4] R. Rosati, M. Ruzzi, M. Graziosi, G. Masotti, Evaluation of techniques for inconsistency handling
in OWL 2 QL ontologies, in: The Semantic Web–ISWC 2012: 11th International Semantic Web
Conference, Boston, MA, USA, November 11-15, 2012, Proceedings, Part II 11, Springer, 2012, pp.
337–349.

[5] S. Benferhat, Z. Bouraoui, K. Tabia, How to select one preferred assertional-based repair from
inconsistent and prioritized DL-Lite knowledge bases?, in: International Joint Conference on
Artificial Intelligence (IJCAI), Buenos Aires, Argentina, 2015, pp. 1450–1456.

[6] S. Belabbes, S. Benferhat, J. Chomicki, Elect: An inconsistency handling approach for partially
preordered lightweight ontologies, in: Logic Programming and Nonmonotonic Reasoning (LPNMR),
Philadelphia, USA, 2019, pp. 210–223.

[7] S. Staworko, J. Chomicki, J. Marcinkowski, Prioritized repairing and consistent query answering
in relational databases, AMAI 64 (2012) 209–246.

[8] M. Bienvenu, C. Bourgaux, Querying and repairing inconsistent prioritized knowledge bases: Com-
plexity analysis and links with abstract argumentation, in: Principles of Knowledge Representation
and Reasoning (KR), Virtual Event, 2020, pp. 141–151.

[9] A. Telli, S. Benferhat, M. Bourahla, Z. Bouraoui, K. Tabia, Polynomial algorithms for computing a
single preferred assertional-based repair, KI-Künstliche Intelligenz 31 (2017) 15–30.

[10] S. Belabbes, S. Benferhat, Computing a possibility theory repair for partially preordered inconsis-
tent ontologies, IEEE Transactions on Fuzzy Systems (2021) 1–10.

[11] A. Laouar, S. Belabbes, S. Benferhat, Tractable closure-based possibilistic repair for partially
ordered dl-lite ontologies, in: European Conference on Logics in Artificial Intelligence, Springer,
2023, pp. 353–368.

[12] S. Belabbes, S. Benferhat, Characterizing the possibilistic repair for inconsistent partially ordered
assertions, in: Information Processing and Management of Uncertainty in Knowledge-Based
Systems - 19th International Conference, IPMU 2022, Milan, Italy, Proceedings, Part II, volume
1602, 2022, pp. 652–666.

[13] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient
query answering in description logics: The DL-Lite family, Journal of Automated Reasoning 39
(2007) 385–429.

[14] D. Calvanese, E. Kharlamov, W. Nutt, D. Zheleznyakov, Evolution of DL-Lite knowledge bases, in:
International Semantic Web Conference (1), Shanghai, China, 2010, pp. 112–128.

[15] M. Bienvenu, C. Bourgaux, F. Goasdoué, Computing and explaining query answers over inconsis-
tent dl-lite knowledge bases, Journal of Artificial Intelligence Research 64 (2019) 563–644.

[16] D. Krech, G. A. Grimnes, G. Higgins, J. Hees, I. Aucamp, N. Lindström, N. Arndt, A. Sommer,
E. Chuc, I. Herman, A. Nelson, J. McCusker, T. Gillespie, T. Kluyver, F. Ludwig, P.-A. Champin,
M. Watts, U. Holzer, E. Summers, W. Morriss, D. Winston, D. Perttula, F. Kovacevic, R. Chateauneu,
H. Solbrig, B. Cogrel, V. Stuart, Rdflib, 2023. URL: https://zenodo.org/record/6845245.

[17] R. D. Hipp, SQLite, 2020. URL: https://www.sqlite.org/index.html.
[18] A. Chortaras, D. Trivela, G. Stamou, Optimized query rewriting for owl 2 ql, in: Automated

Deduction–CADE-23: 23rd International Conference on Automated Deduction, Wrocław, Poland,
July 31-August 5, 2011. Proceedings 23, Springer, 2011, pp. 192–206.

[19] G. Gutin, Acyclic digraphs, Classes of Directed Graphs (2018) 125–172.
[20] M. Scutari, Learning bayesian networks with the bnlearn r package, arXiv preprint arXiv:0908.3817

(2009).
[21] C. Lutz, I. Seylan, D. Toman, F. Wolter, The combined approach to OBDA: taming role hierarchies

using filters, in: The Semantic Web - ISWC 2013 - 12th International Semantic Web Conference,
Sydney, Australia, 2013, pp. 314–330.

https://zenodo.org/record/6845245
https://www.sqlite.org/index.html

	1 Introduction
	2 Preliminaries: The Cπ-repair method
	2.1 Deductive closure of the ABox
	2.2 Conflict set of the ABox
	2.3 Supports of an assertion
	2.4 Cπ-repair algorithm

	3 Revisiting the Cπ-repair method
	3.1 Dominant conflicts
	3.2 Dominant supports
	3.3 Properties of the Cπ-repair

	4 Experimental evaluation
	4.1 Directed acyclic graphs for partial orders
	4.2 Experimental setting
	4.3 Experimental results

	5 Concluding discussions

