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Abstract
This paper presents a transformer-based approach for disease Named Entity Recognition (NER) in Spanish clinical
texts using the DisTEMIST dataset and drug multi-lingual NER in Spanish, English and Italian clinical texts
using the DrugTEMIST dataset. For the disease NER task, we use CLIN-X-ES, a BERT-based model pretrained
on Spanish clinical texts and additional pretrained on a custom dataset, and fine-tuned on token classification,
achieving F1 score 0.8049 on the test set. For the drug NER task, we experiment with language-specific clinical
models as well as general domain multilingual models and achieved the best results with the language-specific
models. For Spanish we fine-tuned the CLIN-X-ES model and our best model showed 0.9238 F1 score, for English
we fine-tuned BioLinkBERT which scored F1 - 0.9223, and for Italian we pretrained the CLIN-X-ES model with a
custom Italian dataset and achieved F1 score - 0.8838. Our system placed first on the English and Italian tracks in
the drug subtask in MultiCardioNER challenge.
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1. Introduction

Clinical narratives are a valuable source of healthcare information, but it requires design of special
NLP models for effective data extraction. Automated identification of key terms such as diseases,
medications, and procedures within clinical documents is known as clinical named entity recognition
(NER). This process plays a significant role in clinical natural language processing (NLP) by facilitating
the extraction of structured data from clinical narratives for subsequent analysis and interpretation
by downstream healthcare applications. MultiCardioNER1 [1] is a shared task part of CLEF BioASQ
[2], which aims to detect diseases in Spanish clinical texts as well as drugs in a multilingual setting,
including Spanish, English and Italian. The organizers have provided annotated datasets for training
and evaluation of the systems - DisTEMIST for disease NER and DrugTEMIST for drug NER. The
shared task consists of two subtask - Subtask 1 addressing disease recognition in Spanish, and Subtask
2 addressing drug recognition in multiple languages. In both subtasks, the challenge is to recognize
terms in cardiology reports.

This paper describes our approach for disease and drug NER which we submitted for the Mul-
tiCardioNER challenge. Our code is available on GitHub 2. The contributions of this paper are as
follows:
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• Developed a system for disease entity recognition in Spanish and performed different experiments
with BERT-based models, achieving 0.8049 F1 score on the DisTEMIST dataset;

• Developed a system for drug entity recognition in Spanish, English, and Italian which achieved
state-of-the-art (SOTA) results on English and Italian DrugTEMIST dataset and very competitive
results on Spanish;

• We investigated and compared the performance of multilingual BERT-based models vs language-
specific models for named entity recognition;

• We adapted a clinical Spanish RoBERTa model to the Italian language and showed the best result
on the drug NER task for Italian;

2. Related Work

The state-of-the-art methods for biomedical named entity recognition are predominantly using deep
learning based models [3], [4]. The most recent NER approaches for clinical documents also include
some hybrid models like dictionary guided attention based model [5] and transfer learning [6],[7].
Besides classical approaches like machine learning [8], hidden Markov models (HMM) and conditional
random fields (CRF) [9], an interesting application of Fourier Networks for NER and relation extraction
were proposed in [10]. Another direction of research is using models based on knowledge graphs [11]
as additional source for information. The limited availability of annotated data, imbalanced training
datasets and lack of resources in low resource languages triggered another direction in the NER model
development using data augmentation techniques to tackle these issues [12], [13].

Specifically for the task of NER for medication extraction the SOTA methods are based on BiL-
STM+CRF [14] reporting F1-score 0.93 for the best performing system for NER tasks over MIMIC-III3

dataset. Another approach is based on Question-Answering (QA) for medication event extraction [15]
translating the NER task to span identification task in QA, reporting NER F1-score 0.98. The classical
models like SVM, CRF and rule-based models [16],[17] show comparable results. In the n2c2 shared task
on medication event extraction in clinical notes [18] the top score model for NER task scores strict F1
0.97 using transformer based pretrained LLM, using a BERT-based model (RoBERTa-large-PM-M3-Voc)
with classification layer and BILOU tags.

For the task of NER for diagnoses, the SOTA methods are also based on transformers [19], [20] of
various architectures. Most widely used are domain and task adaptations of the transformer architecture,
such as BERT, RoBERTa and ELECTRA. Additional enhancement using knowledge bases in deep learning
models [21] can help in dataset annotation and expansion.

The organizers of MultiCardioNER have organized multiple challenges in the area of information
extraction from Spanish clinical texts for different entity types - diseases, procedures, symptoms, etc.
Transformer-based approaches are very commonly used for NER tasks in different languages. In
previous challenges for diseases using the DisTEMIST dataset, the top teams have used BERT-based
models trained for token classification like Spanish RoBERTa (PlanTL-GOB-ES/roberta-base-biomedical-
clinical-es [22]) ([23], [24], [25]), mBERT and the Spanish BETO [26]. In a similar challenge for named
entity recognition of medical procedures in Spanish text, competitors used an architecture including
the same Spanish RoBERTa or XLM-RoBERTa model and adding BiLSTM and CRF layers on top ([27],
[28]). In the task of symptoms NER, ensemble of transformer models for Spanish clinical text achieved
the best result - F1 0.74 (strict) [29].

3. Data

3.1. Subtask 1

MultiCardioNER corpus for disease named entity recognition task consists of two data subsets of
different nature: DisTEMIST and CardioCCC. The DisTEMIST dataset consists of 1000 clinical cases of

3https://mimic.mit.edu/
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different medical specialities (incl. oncology, otorhinolaryngology, dentistry, pediatrics, primary care,
allergology, radiology, psychiatry, ophthalmology and more). CardioCCC is a collection of 508 cardiology
clinical case reports, which are longer on average than the DisTEMIST reports. The CardioCCC dataset
contains 508 documents, split in 258 for development and 250 for testing. Following the suggestions
by the organizers, we used DisTEMIST as a train set, leaving CardioCCC documents for validation.
Additionally, a custom dataset was used for clinical domain adaptation (see Section 3.2). Each team
had to provide their model predictions on a dataset containing the CardioCCC test data and a large
unlabelled background dataset. At the time of submission, the organizers had not released which
examples were part of the test set. Therefore the number of documents in the prediction set is a lot
higher than the train or validation sets, however only a small portion was used for evaluating the model
performance by the organizers.

Table 1
Number of sentences per dataset after pre-processing

Dataset No. sentences

DisTEMIST 15 885
CardioCCC 19 405
CardioCCC test + Background 197 430

3.2. Subtask 2

Similar to Subtask1, the MultiCardioNER corpus for the drug prediction task consists of two data
subsets of different nature: DrugTEMIST and CardioCCC. The difference between the datasets is quite
substantial. DrugTEMIST is a task-specific adaptation of DisTEMIST dataset that consists of 1000
clinical cases of different medical specialities. CardioCCC is a collection of 508 cardiology clinical case
reports, meaning that reports are longer on average. Similarly to subtask 1, we used DrugTEMIST as a
train set, leaving CardioCCC documents for validation.

One of the important aspects of the dataset is the sparsity of annotations. For DrugTEMIST only 9%
sentences contain drugs, while for CardioCCC the share is even lower - 6%.

3.3. Custom Medical Text Dataset

To adapt foundation models for the clinical domain, we collected language-specific datasets with raw
texts. The data statistics can be found in Table 2.

Table 2
Domain adaptation dataset statistics in tokens

Data split English Spanish Italian

Train 20 198 997 21 218 064 21 402 113
Dev 1 935 176 1 494 718 2 000 500
Test 1 387 661 2 660 891 2 271 500

The data was collected using the following sources:

1. Wikidata concepts related to medicine: We ran a SPARQL query over WikiData4 extracting
labels that are included in the following medical ontologies and classifications: ICD-115; ICD-10,

4https://query.wikidata.org/
5https://icd.who.int/es
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ICD-10 CM 6, Symptom Ontology7, eMedicine8, DiseasesDB, MedlinePlus9, MONDO10 , Human
Disease Ontology11, SNOMED CT12, UMLS13.

2. Wikipedia articles related to medical concepts: Based on the extracted WikiData concepts,
we went through the concept list and downloaded the texts of WikiPedia articles that were created
for those concepts. For some concepts the articles did not exist. We used Mediawiki API 14 for
text extraction.

3. Abbreviation lists found online: For each of the languages, we browsed for medical abbrevia-
tion lists available online. Some of them were extracted from the open-source articles, others
were scraped from websites.

4. Drug descriptions: As drug descriptions usually contain quite useful information on symptoms,
side effects and dosages, we leveraged multilingual drug description lists15.

5. EMA medical documentation: We leveraged a parallel corpus of the European Medical Agency
Documentation16.

6. Machine-translated data: To enrich the amount of medical data, we decided to use machine
translated datasets. For this purpose, we used medical abstracts corpus17.

3.4. Drug Gazetteer

As drug lists are dynamic and changing over time, specifically designed dictionaries were created
based on various official drug sources to support model-based drug extraction. For the English drug
dictionary, we used OMOP Standardized Vocabulary V5.0 18 (incl. ATC, RxNorm), DrugCentral19 (FDA
Approved Drugs, EMA Approved Drugs, PMDA Approved Drugs, PMDA+EMA+FDA Approved Drug),
DrugBank20, DailyMed21 (NIHS human drugs), Top25022, UnatedHealthcare23, and Drugs.com24 (My
Med List). For Spanish, we used Centro de información online de medicamentos de la AEMPS - (CIMA)25

(incl. ATC Spanish version and Arbol Medicamentos DSCA Spanish). For Italian, we used ATC and
Lists of Class A and Class H medicinal products of Italian Medicine Agency26. The drug names and
synonyms are aggregated in three dictionaries for English, Italian and Spanish. The total number of
generic and brand names of drugs included in the cleaned lists, after removing duplication are presented
on Table 3. In addition to the drug dictionaries were used some procedures names for lab test from
LOINC27 for all languages in order to disambiguate some drug mentions from lab tests for measuring
levels of some minerals and vitamins, like Vitamin D, Magnesium, Calcium, etc.

6https://www.eciemaps.sanidad.gob.es/browser/metabuscador
7https://raw.githubusercontent.com/DiseaseOntology/SymptomOntology/main/src/ontology/symp.owl
8https://emedicine.medscape.com/
9https://medlineplus.gov/
10https://obofoundry.org/ontology/mondo
11https://www.disease-ontology.org/
12https://www.snomed.org/
13https://www.nlm.nih.gov/research/umls/index.html
14https://www.mediawiki.org/wiki/API:Main_page
15https://www.ema.europa.eu/en/medicines/human
16https://live.european-language-grid.eu/catalogue/corpus/12729
17https://github.com/sebischair/medical-abstracts-tc-corpus
18https://www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary
19https://drugcentral.org/
20https://go.drugbank.com/
21https://www.dailymed.nlm.nih.gov/dailymed/
22https://clincalc.com/PronounceTop200Drugs/
23https://www.uhc.com/member-resources/pharmacy-benefits/prescription-drug-lists
24https://www.drugs.com/mednotes/
25https://cima.aemps.es/cima/publico/nomenclator.html
26https://www.aifa.gov.it/en/liste-farmaci-a-h/
27https://loinc.org/
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Table 3
Drug dictionary after cleaning

Drug Dictionary English Spanish Italian

Drug names 26 843 51151 39985

3.5. Data pre-processing

As clinical documents are quite lengthy, especially in the case of the CardioCCC corpus, we decided to
split the documents into sentences using the following tools for different languages:

• English - MedSpaCy Sentence Splitting 28

• Italian - Tint Sentence Splitting 29 [30]
• Spanish - SPACCC Sentence splitter 30

Afterwards, we used the Brat tool 31 [31] for data transformation from BRAT to CONLL format. The
dataset statistics after pre-processing are shown in Table 4.

Table 4
Number of sentences per dataset after pre-processing

Dataset Spanish English Italian Total

DrugTEMIST 15 885 16 342 15 913 48 140
CardioCCC 19 405 18 738 19 396 57 539
CardioCCC test + Background 197 430 195 053 198 084 590 567

4. Methods

4.1. Subtask 1

Our system was built using transformer-based models that were either multilingual or adapted to
Spanish and that were preferably adapted to the biomedical domain as well. The models we used were:

• PlanTL-GOB-ES/roberta-base-biomedical-clinical-es [22]: Biomedical pretrained
language model for Spanish. This model is a RoBERTa-based model trained on a biomedical-
clinical corpus in Spanish collected from several sources.

• CLIN-X-ES [32]: This model is based on the multilingual XLM-R transformer (xlm-roberta-large)
further pretrained on a Spanish clinical corpus.

• DeBERTa v3 [33]: A transformer-based model with disentagled attention trained using ELECTRA
style pretraining. Both base and large versions were used and also a version of DeBERTa that
was further pretrained on clinical data.

• mDeBERTa v3 32: A multilingual version of DeBERTa.

Additionally, some of the models were further pretrained on medical data from the Custom Medical Text
Dataset described in Section 3.3. Approximately 0.08 of the tokens are annotated entities per sentence
which corresponds to a very sparse annotation setting. Hence the majority of tokens to be evaluated by
the model will be negative examples. Therefore, we tried to fine-tune our models with different class
weight ratios (positive to negative samples) to try to make up for the class imbalance. The ratios chosen
were inversely proportional to the prevalence of the class.
28https://github.com/medspacy/medspacy
29https://github.com/dhfbk/tint
30https://github.com/PlanTL-GOB-ES/SPACCC_Sentence-Splitter
31http://brat.nlplab.org
32https://huggingface.co/microsoft/mdeberta-v3-base
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4.2. Subtask 2

The drug name extraction task was reformulated as a drug Named Entity Recognition (NER) task.
As the setting for this task was multilingual, we focused on two major approaches: building a single
multilingual model capable of making predictions on all languages by leveraging knowledge transfer
between languages during training, and training language-specific models which are independent from
each other. In addition, as the drug name list is dynamic, we experimented with adding drug names
from official drug registries such as DrugBank as a gazzetteer. The gazetteer collection is described in
Section 3.4.

In particular we experimented with the following methods:

• Multilingual model
For the foundation multilingual model we used a FacebookAI/xlm-roberta-base33 backbone.
We experimented with training the original model and also performing domain adaptation. The
adapted model was trained on English, Spanish and Italian medical datasets on the Masked
Language Modeling objective using the dataset from Section 3.3. In addition, we experimented
with a multilingual model pretrained on several NER datasets which has shown good results on
similar tasks: numind/NuNER-multilingual-v0.134

• Language-specific models
As a set of language-specific models we focused on michiyasunaga/BioLinkBERT-base35

for English, PlanTL-GOB-ES/roberta-base-biomedical-clinical-es36 for Spanish and
dbmdz/bert-base-italian-cased37 for Italian. As the models for English and Spanish were
originally pretrained on medical data, we expected them to perform well as is, whilst for the Italian
model, we conducted additional domain adaptation. Furthermore, as Italian medical vocabulary
is relatively close to Spanish, we conducted language adaptation of the Spanish model on the
Italian medical dataset too.

• Drug Gazetteer
The gazetteer was applied before model predictions by finding exact match of drug names in the
text. Dictionary statistics and description can be found in Section 3.4.

Figure 1: The architecture of the system for named entity recognition. Optional modules are displayed with a
dashed border.

33https://huggingface.co/FacebookAI/xlm-roberta-base
34https://huggingface.co/numind/NuNER-multilingual-v0.1
35https://huggingface.co/michiyasunaga/BioLinkBERT-base
36https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es
37https://huggingface.co/dbmdz/bert-base-italian-cased
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As described in Section 3.2, the dataset is highly imbalanced and as a potential solution for boosting
the precision of predictions, we experimented with training a binary classification model to identify sen-
tences that contain drug annotations and sort out empty sentences. FacebookAI/xlm-roberta-base
after domain adaptation was used t train the classifier model. Furthermore, as many drug names in-
cluded punctuation marks, we added a post-processing step joining drug names divided by symbols /
and +.

Figure 1 shows the overall architecture of the approach. Depending on the configuration we either
include or do not include filtering and dictionary-based annotations.

5. Experiments & Results

5.1. Subtask 1

For the Named Entity Recognition task we employed a standard approach for token classification
task. To simplify the setting and to avoid truncation due to limits in the input sequence length, we
trained on the split sentences (see Section 3.5). Standard token classification pipeline from Huggingface
Transformers was used. For the pretraining, we used a standard masked language modeling pretraining
objective. In general, the models achieved better recall than precision. The models that achieved the
best results were the models that had domain adaptation for both Spanish and clinical language domains.
Despite that DeBERTa is generally a model that achieves better performance than XLM-R, the best
model in our experiments was CLIN-X-ES, a XLM-R-based model pretrained on a Spanish clinical corpus.
It is notable that DeBERTa-base achieved better performance than DeBERTa-large probably because the
dataset was quite small. Using pretraining generally gave small improvements or no improvements, but
pertained models converged much faster - on average it took them between 2-6 epochs less to converge.

Table 5
Models performance on dev dataset. Pretaining data 1 is proprietary biomedical data, and data 2 is the Custom
Medical Text Dataset (see Section 3.2)

Model Token Precision Token Recall Token F1

roberta-base-biomedical-clinical-es 0.744 0.760 0.752
CLIN-X-ES 0.814 0.823 0.819
CLIN-X-ES + weighted loss 0.793 0.828 0.810
Deberta-v3-base 0.786 0.784 0.785
mDeberta-v3-base 0.778 0.810 0.793
Deberta-v3-large 0.785 0.755 0.770
Deberta-v3-base + pretraining data 1 0.768 0.782 0.775
Deberta-v3-base + pretraining data 2 0.776 0.802 0.789
CLIN-X-ES + pretraining data 2 0.818 0.816 0.817

5.2. Subtask 2

For the second subtask the setup was quite similar to the first one. During the first set of experiments we
compared the multilingual candidate models. The results are reported at Table 6. It could be observed
that in-domain pretraining positively influences the overall performance of the model. For each of the
languages, the F-score improves by circa 2%.

As for the monolingual model comparison reported at Table 7, we can observe that in general
monolingual models exhibit slightly better performance for all the target languages except for Italian.
Curiously, a Spanish model trained on medical data and fine-tuned on Italian medical data performs
better compared to Italian foundation model adapted to the clinical domain.

Table 8 reports results of the submitted systems on the validation dataset. In general, language-specific
models show better performance for this task. Filtering consistently increases precision but slightly



Table 6
Multilingual models experiments

Model F1-es F1-it F1-en F1 overall

NuNER 0.848 0.849 0.852 0.844
XLMR 0.851 0.860 0.845 0.849
XLMR-med 0.871 0.875 0.863 0.873

Table 7
Monolingual models experiments

Model Language F1

roberta-base-biomedical-clinical-es es 0.922
BioLinkBERT en 0.878
ClinicalBERT en 0.863
italian-bert-base-cased it 0.860
italian-bert-base-cased_med it 0.863
roberta-base-biomedical-clinical-es it 0.866
roberta-base-biomedical-clinical-es_it it 0.869

reduces recall for medical XLM-R model pipelines for all the languages. The result is quite natural as by
filtering out extra sentences we are adding more false negative examples to the final prediction. The
most significant difference is observed for Italian.

Table 8
Comparison of monolingual and multilingual pipeline performance on dev dataset.

Model Lang Token Precision Token Recall Token F1

XLMR_med es 0.843 0.907 0.874
XLMR_med en 0.825 0.895 0.859
XLMR_med it 0.836 0.892 0.863
XLMR_med + filtering es 0.853 0.902 0.877
XLMR_med + filtering en 0.838 0.891 0.864
XLMR_med + filtering it 0.855 0.889 0.871
roberta-base-biomedical-clinical-es es 0.915 0.928 0.922
BioLinkBERT en 0.860 0.897 0.878
roberta-base-biomedical-clinical-es_it it 0.864 0.874 0.869
XLMR_med + filtering + dict1 es 0.610 0.909 0.731
XLMR_med + filtering + dict1 en 0.770 0.911 0.834
XLMR_med + filtering + dict1 it 0.569 0.863 0.686
XLMR_med + filtering + dict2 es 0.615 0.911 0.734
XLMR_med + filtering + dict2 en 0.794 0.911 0.848
XLMR_med + filtering + dict2 it 0.574 0.866 0.690

The final evaluation on the test set showed that medical XLM-R is a SOTA result for Italian and
BioLinkBERT is the best approach for English.

As for the final submission, the best candidate models remained unchanged. Although on the
validation set filtering out empty sentences proved to be a beneficial strategy, on the test set results of
the pipeline without filtering are generally better.

5.3. Error Analysis

After the annotated test data was released, we conducted error analysis and found the following patterns.
First, most of the errors related to recall are the cases of drugs that include numbers and special symbols.



Table 9
Test set F1 score on the entity level for all submitted systems

Model Spanish English Italian

XLMR 0.912 0.902 0.884
XLMR_filtering 0.908 0.901 0.881
Monolingual 0.924 0.922 0.883
XLMR_filtering_dict1 0.561 0.873 0.684
XLMR_filtering_dict2 0.822 0.887 0.681

However, there were cases where the model predicted drugs names that were missing in the annotations
(e.g. it was the case with Angiotensin-converting enzyme (ACE) inhibitors).

Figure 2: Inconsistent annotation example.

Based on the performance evaluation one can see that adding dictionary-based matching decreases
precision of the models. This can be explained by several factors rooting from the nature of the dictionary
we used. In the official drug registries there are quite a lot of drugs with ambiguous brand names (e.g.
vita - life in Italian), which increases the number of false positive predictions. In addition, there are
drug names that are homonymous with laboratory test measures, for instance sodium, vitamin K,
etc. Rule-based matching does not rule out such cases. Lastly, official names of the medications include
dosages and concentrations, while in the challenge data those were not included in the annotations (e.g.
official name lidocain 2%, annotated name lidocain).

The issue with drug dosage and medication concentration is relevant for model predictions too.
While the Italian models rarely included concentrations in the predictions, for English and Spanish this
was often the case. Such inconsistencies originate from training data differences. The final models were
trained on 2 different datasets (DrugTEMIST, CardioCCC) and those appeared to be annotated differently.
While in DrugTEMIST dosages and concentrations were consistently included in the drug span, for
CardioCCC this is not the case. Moreover, combined drug names were also annotated inconsistently
being either split into 2 drugs, or combined into one. Figure 2 shows an example of drug annotations
which do not include the respective dosages as part of the labelled span. The inconsistency of labelling
between the train, dev, and test sets is a source of errors for the final trained model.

6. Conclusion

In this paper we presented transformer based models for drug and disease named entity recognition
in multilingual clinical texts. The experiments for disease NER showed that the domain-adapted
and language-specific model CLIN-X-ES scored 0.819 F1 and outperformed DeBERTa-based models.
For the drug NER task, the best scores for English and Spanish were achieved using monolingual
models BioLinkBERT and RoBerta-base-biomedical-clinical-es respectively. For Italian, in contrast,
the multilingual model XLMR_med outperformed the monolingual one by a small margin. Although
dictionaries showed contribution to the recall metric, the ambiguities in the drug names that contain
some common vocabulary or the common confusion with lab test results cause a significant drop in
the precision. We experimented with different approaches to attempt to tackle the label sparsity issue -
adjusting class weights during training as well as adding a classification step which predicts whether



the sentence contains a drug name. The approach using a classifier as a filtering step showed improved
performance on the validation set, however, did not work so well on the actual test set. As future work,
using hybrid solution with the help of LLMs can improve the system performance and address the
issues with the disambiguation of the term usage in context.
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The methods described in this paper were submitted as part of the MultiCardioNER challenge and
were validated only on the challenge datasets. Further investigation on different datasets is needed to
explore the generalizability of the approach. The specific labeling approach on the datasets impacts the
model performance, as in the case of drug NER the inconsistencies of dosage labelling was a source of
errors. In different settings, the labelling guidelines used might be different and therefore the presented
approach may not perform as well.
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Appendix A

Hyperparameters

For fine-tuning the models we used the following hyperparameters settings:

• learning rate: We used AdamW[34] optimizer with between 1-e5 and 5-e5 learning rate.
• number of epochs: We experimented between 5-20 epochs depending on how long it took the

model to converge.
• batch size: Initialized to 8 with gradient accumulation steps 1-2 giving an effective batch size of

8-16 due to GPU memory limitations).
• learning rate scheduler: linear

For pretraining we used the following hyperparameter settings:

• learning rate: We used AdamW optimizer with 5-e5 learning rate.
• number of epochs: 3 epochs due to resource limitations.
• weight decay: 0.01.
• batch size: Initialized to 8 due to GPU memory limitations.
• learning rate scheduler: linear
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