
LLM Fine-Tuning With Biomedical Open-Source Data
Christopher Anaya1, Maria Fernandes2,1 and Francisco M Couto1

1LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal
2Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark

Abstract
In BioASQ Task 12b, we explored the potential of enhancing Large Language Models (LLMs) with external
biomedical data. We fine-tuned Mistral-7B-Instruct v0.1 using open-source data and efficient techniques
like QLoRA. To further enrich the model’s knowledge, we incorporated manually curated biomedical data
alongside open-source resources. During the competition, our model tackled three question types: yes/no,
factoid, and summary. While the results weren’t competitive, the process identified key areas for im-
provement, including data augmentation, hyperparameter tuning, and automation—aspects we intend to
address in future iterations. The data is available at our group’s GitHub: https://github.com/lasigeBioTM.
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1. Introduction

BioASQ [1] is an annual competition that releases a series of challenges in the area of Biomedical
Semantic Indexing and Question Answering (QA). Specifically, Task 12b: Biomedical Semantic
QA Phase b consists of responding to test questions in the biomedical domain with relevant an-
swers [2]. The challenge is organized into a series of four question batches, usually, taking place
between March and May. The competition provides a comprehensive training set, composed of
the previous years batch releases with the corresponding answers. The participants then use
this training set as guidance to develop their Question Answering systems. The training set is a
manually curated corpus by a committee of experts in the field [3].

Recent developments in state-of-the-art QA models used in task b have largely mirrored
advancements in transformer models in the wider Natural Language Processing community.
Before the 11th edition of BioASQ in 2023, a majority of competitive models were built atop
BERT based models that had been fine-tuned for a biomedical QA downstream task. Task 11b
saw the emergence of GPT models yielding competitive results. Oftentimes these language
models were modified minimally or not at all, relying on a prompt-learning strategy to improve
results and appropriately format the responses.

In parallel, open-source Large Language Models (LLMs), such as LLaMA and Mistral 7B have
removed barriers for end users to develop and implement language models. This has been
carried out both through the publication of open-source models themselves, as well as through
the development of computationally-efficient models that can run on consumer grade hardware.

For this work, we set out with the objective of developing a QA model from an available
open-source LLM. Our goal was to test whether these models could be significantly improved by
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incorporating additional specialized curated data and integrating specialized external knowledge
bases. By participating in BioASQ 12b [2], we aimed to benchmark our model’s performance
against similar models and evaluate the impact of these enhancements.

2. Previous Work

The arrival of the Transformer [4] revolutionized NLP, with BERT [5] excelling in extracting
knowledge from text and being adapted for biomedical QA through models like BioBERT [6].
Concurrently developed GPT [7]models have recently outperformed encodermodels, generating
responses autoregressively using large, diverse datasets and a next-word prediction objective.
OpenAI’s ChatGPT, starting from version 3.0, showcases these advanced, though not open-
source, GPT models, driven by significant investments in computing infrastructure.

In recent time, efforts have been made to develop open-source LLMs that aim to have compa-
rable performance to the popular GPT models. Many of these models have had an additional
objective of increasing computational efficiency of the model prediction function so that end
users without large computational resources can implement these LLMs in their own systems.
Mistral 7B [8] exemplifies the use of Sliding Window Attention, which reduces computational
load by limiting attention to a sliding window of nearby elements. Additionally, Parameter
Efficient Fine-Tuning techniques, such as QLoRA (Quantized Low-Rank Adaptors), enhance
LLM fine-tuning efficiency. QLoRA reduces memory usage for weight storage (quantization)
and approximates weight updates with low-rank matrix products. Together, these methods
enable computationally efficient fine-tuning of large language models.

3. Methods

This section first introduces the selected data sources used to fine-tune the model. Subse-
quently, it describes the model selection and training process used to create our QA system for
participation in BioASQ Task 12b [2].

3.1. Data Sources

3.1.1. BioASQ Training Data 12b

The first dataset used for fine-tuning our model was the manually curated training data provided
by the BioASQ challenge organizers. This dataset, comprising questions, text snippet and
answers, serves as the gold standard for expected answers and aligns with the format required
for BioASQ Task 12b [2]. It includes four question types: yes/no, factoid, list, and summary, and
two answer types: exact answers (keywords or phrases) and ideal answers (a few sentences).

3.1.2. GO Data

Gene Ontology [9, 10] is a structured data resource, which was developed with the aim of
standardising the representation of our knowledge about genes and related concepts. It provides



a hierarchy of terms and definitions related to genes. This data resource features a wide range
of biological terms definitions that are of high relevance for the biomedical QA field.

The version of the GO dataset at the time of download was composed of 47,735 entries, which
were all considered for the fine-tuning of our model. An entry in GO has a unique identifier,
a GO ID or accession number, with the format GO then seven numerical digits. It also has a
term name and a definition. From the term name we can generate a question ”What is x?” and
we can use the definition as the answer. As an example, the term ”neuron recognition” with
GO ID GO:0008038, has the following definition: The process in which a neuronal cell in a
multicellular organism interprets its surroundings. From this data entry, we can generate a
question ”What is neuron recognition?” with the definition as the answer.

3.1.3. DrugBank Data

DrugBank [11, 12] is a pharmaceutical knowledge database, a comprehensive repository with
data about existing drugs, drug targets, and other drug-related information. This is an important
resource for drug researchers and healthcare practitioners. We sought to use training data from
DrugBank to integrate more drug-related knowledge in our model. The data from DrugBank is
available for research upon access request and validation.

We used DrugBank data from release version 5.1.12., which encompasses more than 500,000
drugs and drug products. From the DrugBank data entries, we used the name to formulate
a question and the description field to generate an answer. For example, the drug Aspirin
with DrugBank ID DB00945 has the following entry for description: ”Aspirin, also known as
acetylsalicylic acid (ASA), is a medication used to reduce pain, fever, or inflammation. Specific
inflammatory conditions in which aspirin is used include Kawasaki disease, pericarditis, and
rheumatic fever. It is also used long-term to help prevent heart attacks, strokes, and blood clots
in people at high risk. Aspirin is an NSAID and works by inhibiting the enzyme cyclooxygenase.”
From this data we can create a question ”What is Aspirin?” with the description as the answer.

3.1.4. BiQA Data

BiQA [13], consisting of mined data from forum-based social media platforms like Reddit, Stack
Exchange, and Quora. The relevant data fields include the following: user-submitted questions
and submissions of PubMed citations for articles that could answer the submitted question,
provided by different users. We considered this dataset, as it presented a compiled biology
related corpora (released in April 2020).

A particular challenge verified in the use of BiQA data was that the user-submitted answers
were not directly saved in the dataset. Therefore, we manually annotated the answer for each
question in the dateset, considering the cited articles as well as outside sources. Additionally,
we excluded any question not relevant to the biomedical context. Upon processing the data, we
noticed that the majority of the questions in the dataset would lie on the summary category.

As the curation and context validation was a full manual and time-consuming process, we
compiled a total of 714 manually curated BiQA question-answer pairs. The following is an
example of a generated data entry—question: ”Why does methylation not occur in viral DNA?”
with answer: ”Overall, the absence of DNA methylation in viral DNA may be attributed to



various factors, including viral replication strategies, genome size, evolutionary pressures, and
interactions with host cell processes. While some viruses may encode proteins that can modulate
host cell methylation machinery, the overall role of DNA methylation in viral replication and
pathogenesis remains an active area of research.”

3.2. Model Selection

LLMs have demonstrated comparable performance to BERT-like models for a variety of NLP
tasks. [14] However, with the ease of training LLMs from unprocessed data and from the
advances in computational efficiency, we assert that LLMs provide a more promising approach
to base QA models.

Therefore, we focused on LLMs, and furthermore, our model selection relied on three main
criteria: (i) model availability, (ii) performance, and (iii) fine-tuning capability. We considered
open-source LLMs for increased usability. We searched for reported comparisons of existing
open-source LLMs, i.e., Llama 2 and Mistral-7B [15]. At the time, January 2024, those were
the main open-source high-performance LLMs. Regarding the fine-tuning, we looked for
customization and training time, as our goal was to be able to integrate biomedical data and
improve the QA task results. We chose to use Mistral-7B-Instruct v0.1 as our underlying
language model, which is an already fine-tuned version of Mistral-7B model [8]. This was due
to its strong performance among open source LLMs and its compatibility with computationally
efficient fine tuning methods.

3.3. BiQA manual curation

Starting from the BiQA dataset, we manually evaluated the relevance of each question for
Biomedical Research. As the questions were posed by users from the general public, some
were not well posed or were not within a biomedical context. We then accessed the PubMed
API and retrieved the abstracts of the cited articles. For relevant questions, we classified each
question by type, as defined by BioASQ. We then used the article abstracts as well as other open
source information to annotate an answer to the question. The question-answer pairs were
then formatted in batches similar to what BioASQ uses.

3.4. Fine-Tuning

The ”out-of-the-box” Mistral-7B-Instruct v0.1 model is a general purpose fine-tuned generative
text model. From this base model, we further fine-tuned this model to improve performance
on biomedical QA task. Due to the model size (7 billion parameters) of Mistral-7B-Instruct, we
needed to use a Parameter Efficient Fine-Tuning method; if we had not used a PEFT method,
the computation time would be prohibitively long. We chose QLoRA, which combines datatype
quantization with Low Rank Adaptors (LoRA), as our PEFT method, as it works well with
our chosen language model, Mistral 7B. The fine-tuning was made through prompt-learning,
a technique where the user provides instructions to the model in order to integrate further
knowledge in it. This required a pre-processing step, where we integrate the question with the
instructions on how the model should answer the question, and provide the answer. Further
pre-processing details are described for each dataset, alongside the corresponding training
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Figure 1: Overview of the fine-tuning procedure and its alignment with the competition
batches. M is the base Mistral 7B instruct model. BC denotes the BioASQ provided training dataset.
MA are the manual annotations we generated from BiQA. GO refers to the Gene Ontology dataset. DB
is the DrugBank dataset.

parameters, which were adapted to the different dataset sizes. Therefore, under the assumption
that the model should not repeat questions to not overfit we adjusted the maximum number,
taking into account the batch size per GPU. The learning rate was kept constant through all
fine-tuning steps (0.00025), and per fine-tuning round 3 evaluation steps.

Regarding input format, the model accepts JSONL as input and the answers are saved into
a text file (.txt), which is then post-processed back to JSON format for the challenge answers
submissions.

To optimize our process and ensure the robustness of our results, we initially conducted a
brief fine-tuning of GO terms for batch 2, limiting the steps to 300 due to time constraints. For
batch 3, however, we extended the fine-tuning to 5000 steps. This adjustment aimed to enhance
the quality of our findings while managing the risk of over-fitting.

3.4.1. BioASQ Training Data 12b

BioASQ training data featured our first fine-tuning round and it was provided in JSON format.
It shares the same format as BioASQ test data, with provided question, question type, exact
and ideal answers, text snippets among other data fields. For our fine-tuning, we only used
these data fields in the model input. An example of a data entry is the following—body: ”Is
Hirschsprung disease a mendelian or a multifactorial disorder?”, type: summary, ideal answer:
”Coding sequence mutations in RET, GDNF, EDNRB, EDN3, and SOX10 are involved in the
development of Hirschsprung disease. The majority of these genes was shown to be related to
Mendelian syndromic forms of Hirschsprung’s disease, whereas the non-Mendelian inheritance
of sporadic non-syndromic Hirschsprung disease proved to be complex; involvement of multiple
loci was demonstrated in a multiplicative model.”. As this example belongs is for a ’summary’
question there is no exact answer, as defined by BioASQ.

Batch size is the number of training examples utilized in one iteration and is described in
each data type fine-tuning section.

3.4.2. GO terms fine-tuning

For the fine-tuning with GO terms data, the training was conducted for a maximum of 100 steps
(iterations). Additionally, in each step, a batch size of 6 was used, meaning that 6 data samples
were processed together in each iteration.



GO, as the name indicates, is an ontology 1 We used the defined GO term and the corre-
sponding definition. Due to limited time, this data was only considered for summary questions
fine-tuning. GO terms training set was built from including each GO term into ”What is ...?”
question structure and provide as reply the corresponding description. From the example
given in the data sources section, this corresponds to ”What is neuron recognition?” In case of
multiple paragraphs, the answer/description was restricted to the first paragraph. We opt for
this approach as BioASQ ideal answer was limited to 200 words.

For the fine-tuning with GO terms data we used a maximum number of steps of 5000, and
batch size of 6.

3.4.3. DrugBank fine-tuning

For our approach we used only the description field, truncated at the first paragraph due to
answers length limitation. Similar to the GO terms setting, here we also used DrugBank only
for summary questions fine-tuning. Drawing from our previous example, for the drug entry
”Aspirin”, the given question is ”What is Aspirin?” and the corresponding answer will be the
content of the Description section in the database.

For the fine-tuning with DrugBank data we used a maximum number of steps of 2300, and
batch size of 4.

3.4.4. BiQA data fine-tuning

Depending on the annotated questions dataset size, we adjusted the number of steps, which
was 100, and fixed the batch size to 4, for all the BiQA fine-tuning rounds.

3.5. Metrics

The BioASQ competition results for Task 12b [2] are evaluated using differentmethods depending
on question type and answer type. [16] For yes/no questions, the official metric is the ”macro
F1 score” between the yesses and nos. For the factoid questions, the official metric is Mean
Reciprocal Rank. Here, reciprocal rank refers to the inverse of the rank or position of the entry
containing the correct entity. For the list questions, the metric used by the competition is mean
average F-measure, which is a ”micro F1 score” among all correct answer classes given in the
golden entity list.

For the ideal answers, BioASQ conducts a manual scoring of submitted answers. However, a
set of automatic metrics, ROUGE scores, [17] are also calculated. These scores use n-grams and
skip-grams to characterize the similarity between the ideal answers generated by experts and
submitted by participant systems.

1Ontology – is a structured representation of a set of concepts and categories in a domain, which also describes their
properties and relations between them.



4. Results

Our QA model participated in BioASQ Task 12b [2], in all four test batches, that is, rounds of
competition, for yes/no and summary questions, and in factoid questions for batches three and
four. The different evaluation metrics are summarized in Tables 1 and 2.

Table 1
Evaluation results from BioASQ Task 12b - yes/no and factoid questions

Batch yes/no factoid
Accuracy F1 Yes F1 No Macro F1 Strict Acc. Lenient Acc. MRR

Batch 1 0.6400 0.7568 0.3077 0.5322 - - -
Batch 2 0.6154 0.7222 0.3750 0.5486 - - -
Batch 3 0.5000 0.2500 0.6250 0.4375 0.0769 0.0769 0.0769
Batch 4 0.4074 0.5294 0.2000 0.3647 0.1579 0.1579 0.1579

Table 2
Evaluation results from BioASQ Task 12b - summary questions

Batch summary
R-2 (Rec) R-2 (F1) R-SU4 (Rec) R-SU4 (F1)

Batch 1 0.0516 0.0331 0.0808 0.0432
Batch 2 0.0416 0.0227 0.0783 0.0404
Batch 3 0.1122 0.0474 0.1436 0.0607
Batch 4 0.0845 0.0543 0.1172 0.0719

As the competition rounds proceeded, we observed different trends depending on question
type. For yes/no questions, we saw a decrease in performance as measured by Accuracy and
Macro-F1 over the competition, with a Batch 1 accuracy of 0.64 and an Batch 4 accuracy of
0.4074. For the automated summary scores, there was a slight improvement over the course of
the competition over all of the ROUGE metrics. The factoid scores, both accuracy metrics and
the MRR score, also improved between Batches 3 and 4, the two in which we competed.

In terms of peer systems, the results obtained were within the middle part of the competition
results. As an illustrative example, for Batch 1 yes/no performance, the accuracy scores ranged
from 0.04 and 0.96, with our model performing at 0.64. However, we started with a limited
participation in yes/no and summary questions, and expanded our model to provide results for
factoid question.

5. Discussion and Conclusion

Our model did not achieve competitive results compared to peer systems participating in the
BioASQ challenge Task 12B.

The adopted strategies for fine-tuning with open-source biomedical data allowed the im-
provement of QA, with some fluctuations. We verified improvement when fine-tuning with
large datasets, such as GO terms and DrugBank data for the factoid MRR scores as well and the
various ROUGE scores, while when using manually curated data, as is the case of BiQA data, the



model often dropped its performance. One possible reason behind the decreased performance
is the size of the dataset, where manual annotation necessarily is time-intensive and limited our
capacity to generate data in large volume.

Of note, we observed a significant improvement in the ROUGE scores from batch 2 to batch 3.
This is probably due to the re-run of GO terms fine-tuning with 5000 steps (batch 3) instead of
the previous 300 steps (batch 2), which allows a better integration of the data features without
much underfiting. This is only demonstrated for the summary questions evaluation metrics, as
GO content was only used for fine-tuning in this category of questions.

The use of the snippets field was limited to the BioASQ training set, therefore we did not
included in our model prompt-learning. We faced several challenges when including the large
volume of text in the snippets in the prompt-learning methodology, namely model confusion an
hallucination. We are aware of the importance of using snippets in our training and prediction
procedures to develop QA systems that include context information in generating answers.

Developing a new QA system from a base language model has yielded many areas where
we can improve in the future. We believe by adding more data sources, specifically from large
open source repositories, and better curating the included data we can improve our system.
Particularly, we will focus on generating question-answer data in question types other than
summaries. Also, we can expand our hyperparameter space for our underlying language
model and for the fine tuning process. The integration of snippets data will be another major
improvement in our QA system, providing it with a better context for each question that can
be integrated in the answer generation. Where possible, we would like to automate as many
processes as possible to facilitate a greater volume of data processing. This would be tied to
finding data sources that require minimal manual annotation.
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