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Abstract
This paper addressed Task 4 of the challenge posed by Sexism Identification in Social Networks (EXIST) at
Conference and Labs of the Evaluation Forum (CLEF) 2024, which involves binary classification to determine
the presence of sexism in memes. The task dataset contains memes in both English and Spanish. We explored
the application of Large Language Models (LLMs), specifically GPT-4, for extracting textual descriptions from
memes. Our methodology integrated these descriptions with associated texts to fine-tune various models, both
monolingual and multilingual, to enhance the classifiers’ ability to identify sexist content in memes using hard
labels. By experimenting with diverse models and hyperparameters, we tailored our approach to optimize
performance. Our submissions achieved the top three positions on the hard-hard evaluation leaderboard, which
includes both English and Spanish instances.
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1. Introduction

Various social networking platforms provide a virtual space where internet users can freely express
themselves. However, this freedom is tainted by the presence of sexist or misogynistic content, poten-
tially leading to physical and psychological harm to women [1]. Thus, developing effective mechanisms
to detect and identify such content is crucial. The rapid expansion of Natural Language Processing
(NLP) in the social sciences has prompted researchers to explore its capabilities for identifying sexist
content in textual data. Previous studies have applied Long-Short-Term Memory networks (LSTMs)
[2] and Convolutional Neural Networks (CNNs) [3] to classify such content [4]. Additionally, more
advanced language models such as Electra [5], BERT [6], RoBERTa [7], and GPT-2 [8] have demonstrated
significant efficacy in the classification of sexist text.

The challenge extends beyond textual analysis as sexism in online content often includes visual
elements, particularly in memes. Memes, often considered jokes, gain attention through their rapid
digital dissemination within online communities [9]. While frequently humorous, memes can also
subtly propagate hate messages, including sexism and misogyny, causing harm at both individual and
societal levels. The Sexism Identification in EXIST [10], part of CLEF 2024 [11], reflects this complexity
by addressing sexism in both tweets and memes. Our research specifically focuses on Task 4: identifying
sexism within memes, aiming to effectively classify these multimodal expressions. The integration of
text and image in detecting sexism necessitates sophisticated vision-language models. While models like
Residual Network (ResNet) [12] and Vision Transformer (ViT) [13] are essential for processing images,
recent advancements have introduced more integrated models capable of handling the complexities
of memes. For instance, CLIP [14] and multimodal models like mPLUG-Owl [15] and OpenFlamingo
[16] have shown substantial proficiency in image classification tasks. Despite their effectiveness, these
architectures require significant computational resources and extensive processing time.
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To address these challenges and enhance cost-efficiency, our work incorporates zero-shot prompting
techniques with GPT-4 [17] to extract textual descriptions from memes, considering both text and
image information. This approach allows for a nuanced understanding of the meme’s context, crucial
for detecting underlying sexist themes. We refine this approach by fine-tuning models on a dataset
comprising both provided texts and GPT-4 generated descriptions. Given the multilingual nature of
social media content, we process memes in both English and Spanish, employing language-specific
models to process memes in the respective language, and using multilingual models for the entire
dataset.

2. Related Work

2.1. Text-Based Sexism Detection

Research on text-based sexism detection has mainly centered around analyzing social media texts.
The pioneering work by Waseem and Hovy [18] on detecting hate speech on Twitter, including sexist
content, highlighted the importance of linguistic and extra-linguistic features and expert annotations in
training classifiers. The research indicated the potential of character n-grams to outperform other textual
features like word n-grams and user demographic metadata. However, they also noted the challenge of
scalability due to the labor-intensive nature of manual tagging. More recent researchers have explored
automated feature extraction using transformer-based models like BERT and its variants [6][7], which
excel in contextual understanding and have shown remarkable improvements in detecting complex and
subtle sexist expressions. This advancement is evident in [19], which created the first Spanish corpus
for sexism on Twitter. They involved a combination of traditional classifiers like Logistic Regression
and Random Forest, neural network approaches including Bi-LSTM networks, and BERT. Their results
showed that BERT outperformed other methods. EXIST 2023 [10] tackled the challenge of detecting
sexism in tweets, focusing on identifying sexism, determining the source’s intention, and categorizing
types of sexism. The approaches for these tasks primarily involved fine-tuning models such as mBERT,
XLM-Roberta, GPT-NeoX, BERTIN-GPT-J-6B, and Bernice [20] [21] [22], employing techniques like
ensembling and contrastive learning. These methods demonstrated excellent performance on the tasks.

2.2. Multimodal Approaches to Sexism Identification

Given the complex nature of internet expressions, particularly within the realm of social media, sexism
detection has necessarily expanded beyond textual data to include visual content, where images often
carry implicit messages not evident in text alone. Fusion of multimodal information has become a
popular method in this domain. For instance,[23] employed a methodology for detecting sexism in
advertisements by combining outputs from visual and textual classifiers. The visual classifier analyzed
features like Local Binary Pattern (LBP) and deep learning features extracted using a pre-trained CNN
AlexNet[24], while the textual classifier utilized n-grams, syntactic tags, metadata about word usage,
and word embeddings. A notable study by [25] pioneered the challenge of identifying sexist content
in memes, proposing a framework that uses both unimodal and multimodal classifiers. This research
developed unimodal classifiers that analyzed either textual or visual meme features independently using
models like Support Vector Machines (SVM), Naive Bayes (NB), Decision Tree (DT), and 1-Nearest
Neighbors (1NN). The study explored both early and late fusion techniques for integrating these
modalities. Early fusion combined features at the input level before classification, whereas late fusion
aggregated outputs from the unimodal classifiers post-analysis to determine the presence of sexism.
Their findings indicated that textual classifiers typically outperformed visual classifiers, suggesting that
textual cues are stronger indicators of sexism in memes. Additionally, late fusion was found to be more
effective than early fusion, demonstrating that preserving the integrity of modality-specific features
by combining classifier outputs after individual analyses can enhance overall accuracy. The study
concluded that while unimodal approaches hold value, particularly in textual analysis, their integration



with multimodal strategies significantly improves the effectiveness and reliability of sexism detection
in memes.

More recent works on detecting sexist or misogynous memes used state-of-the-art (SOTA) pre-
trained models [26] [27]. Visual features are extracted using CLIP [14], and multimodal models such
as mPLUG-Owl [15] and OpenFlamingo [16] have also been employed. These pipelines achieve high
performance but are computationally intensive, necessitating substantial computational power and
memory. Considering these limitations, our work uses GPT-4, which can simultaneously process image
and text inputs, generating detailed descriptions of image content and integrating textual information
for comprehensive analysis. This capability is crucial for understanding the humor, context, and cultural
symbols in memes, addressing challenges highlighted by [25], which emphasize the difficulties of relying
solely on visual features, as they can be ambiguous and less directly indicative of sexism compared to
text.

3. Method

Our work focused on Task 4: Sexism Identification in Memes, which is a binary classification task aimed
at determining whether a given meme is sexist or not. Our approach pipeline is outlined in Figure 1: First,
inputs consisting of English and Spanish prompts, along with memes in the corresponding languages,
were processed using zero-shot Chain-of-Thought (CoT) prompting by the GPT-4 model. This resulted
in a one-sentence description of the meme and a hard-label output. Subsequently, this descriptive
text was concatenated with the text extracted from the memes. This combined text, which included
both visual and textual elements of the memes, was employed to fine-tune various language models.
Depending on the language-specific requirements, we either used the entire dataset or the Spanish and
English dataset respectively. Ultimately, the model made binary decisions, producing a definitive ’YES’
or ’NO’ hard-label.

Figure 1: Pipeline of the EXIST Task4

3.1. Dataset

The dataset used in this study is provided by EXIST 2024 and encompasses both training and test
datasets. The training dataset comprises a total of 4,044 memes, distributed between 2,034 Spanish
memes and 2,010 English memes. The test dataset consists of 1,053 memes, with 540 classified as
Spanish and 513 as English. The associated metadata for these memes is archived in a JSON file, which
includes extracted texts from the memes and task-specific annotations: six labels annotated by six
different annotators. Additionally, it captures detailed demographic information about each annotator,
including their gender, age, ethnicity, educational attainment, and country of residence. The gold labels
are provided in a separate JSON file; for hard-labels, when the human-annotated labels for a meme are
evenly split between "YES" and "NO," such memes are excluded from the training dataset.



To facilitate a more effective evaluation of the results, we subdivide the training sets into separate
training and validation datasets, using a random allocation of 20% for validation. The validation
dataset is designed to monitor model performance on unseen data and plays a crucial role in adjusting
hyperparameters to mitigate overfitting. For the multilingual mDeBERTa-v3-base model[28], we split the
entire dataset into training and validation subsets as a whole. In contrast, when fine-tuning monolingual
models such as BETO-uncased[29] for Spanish and bert-base-uncased[30] for English, we performed
splits for the Spanish and English memes first, followed by targeted fine-tuning for each language
group.

3.2. Image Information Extraction

Our task focuses on memes that typically contain both visual and textual elements. We employed a
two-step process to analyze these memes. First, we extracted the text from the memes provided in the
JSON dataset. Following this, we analyzed the visual content using the GPT-4 Turbo model API, chosen
for its robust multimodal understanding capabilities.

Figure 2: Prompting Input and Output for Spanish Memes

Figure 3: Prompting Input and Output for English Memes

Prompt Engineering. Prompt engineering is crucial to optimize the performance of the model.
We aim to keep the input and output not only informative, but also with a relatively short length.
Recent studies have highlighted the potential of LLMs in role-playing scenarios. Assigning specific
roles to an LLM can enhance the naturalness and interactivity of its responses [31, 32], and improve its
performance in complex tasks [33]. We therefore configured the system’s role as an expert in sexism



detection in memes. We experimented with prompts directing the model to analyze solely the image or
the combination of image and text. Results indicated that the latter approach yielded more informative
insights. This is due to the complementary nature of the image and text in memes, which, when analyzed
together, provide a fuller and more accurate understanding of the meme’s thematic message. In contrast,
the analysis based on images alone often leads to neutral descriptions that are less relevant to the
memes’ themes. This aligns with observations by [25], which highlight the interpretative challenges
posed by memes: first, identical images can be perceived as sexist or not based on the accompanying
text, which can alter the conveyed message. Second, sexism may be manifested through the image
alone, the text alone, or a combination of both.

We conducted prompt engineering primarily in English, and subsequently translated it into Spanish
to accommodate the Spanish memes in the dataset using GPT-4. We also involved three bilingual
(Spanish-native) speakers to evaluate the quality of the translations, ensuring the translations maintain
the efficacy and accuracy of the original prompts. The final prompts, along with the input meme and
the model output, are shown in Figure 2 (Spanish) and Figure 3 (English).

Model Configuration. The model was configured with specific settings to enhance performance and
efficiency:

• Model Setting: gpt-4-turbo
• Temperature: 0.75 (to modulate the randomness of the outputs, ensuring their coherence and

relevance)
• Seed: 1234 (to promote consistency in model responses across various runs, though absolute

consistency cannot be guaranteed)
• Detail: Low (to process images in a resource-efficient manner, as fine details are not critical for

our task)

3.3. Model Fine-tuning

At this stage, we experimented with various models, including multilingual models as well as mono-
lingual models for English and Spanish. For the Spanish dataset, we fine-tuned the BETO-uncased
model[29], and for the English dataset, the BERT-uncased model[30]. Additionally, we employed mul-
tilingual models including mBERT [30] (both cased and uncased), mDeBERTa[28], XLM-R[34], and
XLM-Twitter[35]. The hyperparameter optimization was facilitated using Optuna[36], a framework that
automates the search for optimal hyperparameters through systematic exploration, considering factors
like learning rate, number of training epochs, batch size, warmup steps, and weight decay. The learning
rate was varied between 1× 10−5 and 5× 10−5, with the number of training epochs ranging from 3 to
5. Batch sizes are set at 8 and 16, warmup steps ranged from 0 to 500, and weight decay from 0.0 to 0.3
to add a regularization term to the loss function to minimize overfitting. Early stopping mechanisms
were also incorporated to curtail training upon stabilization of validation losses. The objective function
for optimization was defined based on accuracy, with a total of 15 trials conducted to strike a balance
between obtaining the best hyperparameters and managing computational resources.

Table 1 presents the optimal hyperparameter settings for the three NLP models: mDeBERTa-v3-base,
BETO-uncased, and bert-base-uncased. The table includes values for learning rate, epoch, train batch
size, warmup steps, weight decay, and dropout rate. Each model’s settings are specifically configured
to enhance its training efficacy and overall performance in tasks, reflecting a strategic approach to
fine-tuning.

Following the identification of the best hyperparameters by Optuna, the models were fine-tuned again
on the full training dataset. The performance of the fine-tuned models was then evaluated using the
validation dataset, with particular focus on accuracy and the F1 score for the positive class (pos_label=1).



Table 1
Best Hyperparameters Setting for Different Models

Parameter / Model mDeBERTa-v3-base BETO-uncased bert-base-uncased

Learning rate 1.58 3.50 1.58
Epoch 4 4 5
Train batch size 8 8 8
Warmup steps 5 58 171
Weight decay 0.00067 0.01185 0.25118
Dropout rate 0.00925 0.23191 0.14459

4. Results

Figure 4 depicts the training loss for four models: bert-base-uncased, BETO-uncased, mDeBERTa-v3-
base, and a baseline model over five epochs. To have deeper insights into our approach, we introduced
a baseline model to assess whether adding descriptions to the input enhances model prediction perfor-
mance. This baseline model is a fine-tuned version of mDeBERTa-v3-base, which used only the meme
texts provided in the dataset as features, excluding any descriptions generated by GPT-4.

The bert-base-uncased model demonstrates a significant and steady reduction in training loss from
just below 0.6 to approximately 0.2. The BETO-uncased model exhibits a similar initial loss but a less
steep decline, stabilizing just below 0.4. The mDeBERTa-v3-base starts with the highest initial loss at
around 0.65 but shows a rapid decrease, converging close to 0.3, similar to the BETO-uncased in the final
epochs. The baseline model, however, indicates a fluctuating decrease in training loss, starting at around
0.6 and ending slightly above 0.4. This effectively illustrates the varying efficiency and speed of learning
across the models, with the bert-base-uncased model achieving the most pronounced improvement in
training loss.

Alongside a baseline model, Figure 5 shows the change of model accuracy throughout four and five
training epochs for three distinct models: BETO-uncased, mDeBERTa-v3-base, and bert-base-uncased.
Interestingly, the accuracy of the bert-base-uncased model shows a steady rising trend, peaking at
epoch 3 before settling, suggesting strong learning potential. The accuracy of the BETO-uncased model,
on the other hand, has a more gradual growth, with significant improvement especially during the
second epoch. While it still exhibits consistent improvement, the mDeBERTa-v3-base model displays
minor fluctuations in the later epochs. The comparison illustrates the variations in learning dynamics
and stability among the models in this comparison.

Table 2
Comparative Performance of NLP Models

Metric Baseline bert-base-uncased mDeBERTa-v3-base BETO-uncased

Evaluation Loss 0.648 0.722 0.614 0.540
Accuracy (%) 68.13 78.07 (+9.94) 76.50 (+8.37) 76.38 (+8.25)
F1 Score Positive (%) 74.94 79.78 (+4.84) 80.29 (+5.35) 81.38 (+6.44)
Runtime (s) 3.197 1.703 6.538 3.571
Samples per Second 213.98 200.825 104.769 96.059
Steps per Second 13.452 25.25 13.153 1.68
Epoch 4 5 4 4

With an emphasis on evaluation loss, accuracy, and F1 Score Positive, Table 2 compares the perfor-
mance of several NLP models on a number of metrics. The mDeBERTa-v3-base model comes in second
at 0.614, while the bert-base-uncased model has a greater evaluation loss of 0.722. The BETO-uncased
model has the lowest evaluation loss at 0.540, suggesting a better capacity to decrease mistakes during
the evaluation phase. The bert-base-uncased model has the highest accuracy at 78.07%, indicating a
noteworthy improvement of almost 9.94% above the baseline’s observed 68.13%. The BETO-uncased



Figure 4: Model Training Loss Across Epochs Figure 5: Model Evaluation Accuracy Across Epochs

Table 3
Official Results for Task 4 (Hard-hard evaluation for ALL Instances)

Run ICM-Hard ICM-Hard Norm F1_YES Ranking

RoJiNG-CL_3.json 0.3182 0.6618 0.7642 1
RoJiNG-CL_2.json 0.2272 0.6155 0.7437 2
RoJiNG-CL_1.json 0.1863 0.5947 0.7274 3

EXIST2024-majority-class.json -0.4038 0.2947 0.6821 39
EXIST2024-minority-class.json -0.6468 0.1711 0.0000 46

Table 4
Official Results for Task 4 (Hard-hard evaluation for EN and ES Instances)

Run Language ICM-Hard ICM-Hard Norm F1_YES

RoJiNG-CL_3.json EN 0.3422 0.6737 0.7760
RoJiNG-CL_3.json ES 0.2941 0.6498 0.7534
RoJiNG-CL_2.json EN 0.2698 0.6370 0.7486
RoJiNG-CL_2.json ES 0.1837 0.5936 0.7395
RoJiNG-CL_1.json EN 0.2086 0.6059 0.7259
RoJiNG-CL_1.json ES 0.1629 0.5830 0.7288

model has the greatest F1 Score Positive 81.38%, which is 6.44% higher than the baseline. This indicates
that BETO-uncased, which effectively balances recall and precision, is especially good at properly
recognizing the positive class even with a reduced evaluation loss. Overall, these findings highlight
the distinct advantages of each model, with bert-base-uncased achieving the highest accuracy and
BETO-uncased performs well at evaluation loss minimization and F1 score optimization.

Table 3 presents the official rankings for Task 4 on the Leaderboard. Our first run combined BERT
predictions fine-tuned on English data and BETO fine-tuned on Spanish data. Our second run employed
mDeBERTa, while the third run was the GPT-4 output results. We achieved top rankings out of more
than 50 results, although surprisingly, the GPT-4 based predictions emerged as the most effective,
delivering top results in a zero-shot setting, showcasing its exceptional capacity to comprehend and
analyze complex sexist memes.

Further analysis, as shown in Table 4, indicates a consistent trend where all models achieved higher
scores on the English dataset compared to the Spanish one. Despite the size similarities between
BERT and BETO, BETO’s lower performance relative to BERT highlights the challenge of achieving
effectiveness gap between English and Spanish.



5. Ablation Study

This ablation study was initiated to address the performance discrepancies observed between the
English and Spanish datasets. To explore whether translating the English datasets into Spanish could
serve as a method of data augmentation, we translated the entire English dataset, including both the
original meme texts and descriptions generated by GPT-4, into Spanish using the DeepL API. This
translated data was then combined with the existing Spanish training dataset. Following the integration,
the combined dataset was divided into training (80%) and validation sets (20%). For model evaluation
purposes, the validation portion of the original Spanish dataset was repurposed as our test set due to
the unavailability of gold labels for the original Spanish test dataset.

Table 5
Comparative Performance of NLP Models

Metric Baseline BETO-uncased BETO-uncased (Ablation)

Accuracy (%) 68.13 76.38 (+8.25) 72.59 (+4.46)
F1 Score Positive (%) 74.94 81.38 (+6.44) 78.44 (+3.50)

As illustrated in Table 5, the ablation study revealed no performance improvement with the augmented
Spanish dataset. Several factors might have influenced this result. Primarily, the translations provided
by the DeepL API could have introduced semantic inaccuracies or noise, complicating the training
process. Although these translation tools offer a quick method for converting large datasets from
one language to another, they may not always capture the nuanced cultural contexts and idiomatic
expressions necessary for accurate sentiment and thematic analysis. These translation errors likely
reduced the model’s ability to learn effectively, resulting in worse performance. Additionally, the
BETO-uncased model may not have been optimally fine-tuned for the nuances of the Spanish language,
potentially limiting its processing and comprehension abilities on the Spanish dataset. To mitigate
these issues, future research should concentrate on enhancing the quality of translations, employing
advanced data augmentation strategies, and ensuring thorough fine-tuning of the models for specific
language contexts.

6. Conclusion

In this working notes, we have demonstrated that LLMs, particularly GPT-4, can serve as competitive
tools for extracting textual information from memes. Our methodology, with the strategic use of prompt
engineering, has sidestepped the complexities typically associated with multimodal approaches and
focused on generating descriptive texts directly from meme content. This approach not only simplifies
the computing resources needed but also enhances our system’s ability to detect subtlety that cannot
be fully understood by mere texts. Our results are promising, showing that the application of LLMs,
when finely tuned with tailored prompts, can effectively interpret and describe meme content. This is
crucial for tasks requiring not just textual extraction but also an understanding of underlying societal
and cultural contexts conveyed through humor and satire in memes.

The scope and generalizability of this study are constrained by several factors. First, the outputs
of LLMs may exhibit intrinsic biases originating from their training data. These biases, particularly
gender biases, could potentially lead to descriptions that are not accurate or appropriate, thereby
misrepresenting the intent or sentiment of the memes. Another notable limitation is our reliance on
binary (’YES’ or ’NO’) hard labels for sexism classification. However, in reality, sexism often exists
on a continuous spectrum rather than a simple classification question. This complexity is particularly
pronounced in the context of memes, which are inherently open to interpretation. Variability in
perceptions among different individuals is common, as reflected in our dataset, where annotators
frequently disagree. In future work, we aim to explore this diversity of human perspectives more
thoroughly by incorporating soft labels that better capture the spectrum of responses.
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