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Abstract
This technical report details our participation in the iDPP CLEF 2024 challenge, focusing on predictive modeling
of ALS progression using sensor data from smartwatches. We competed in Tasks 1 and 2, aiming to predict
clinical and self-assessed ALS Functional Rating Scale-Revised (ALSFRS-R) scores. Our methodology centered on
machine learning techniques, primarily employing an ensemble of Random Forest classifiers. Our best model,
which utilized temporal analysis, achieved a Mean Absolute Error (MAE) of 0.25 in Task 1 and 0.326 in Task 2,
with corresponding Root Mean Square Errors (RMSE) of 0.544 and 0.608, respectively. This demonstrates the
model’s effective leverage of time-series data across different assessment settings While the temporal model
excelled in capturing the nuances of ALS progression through sensor data, variations in performance between
Tasks 1 and 2 highlighted the challenges posed by the subjective nature of self-assessments. Our results contribute
to understanding the potential and limitations of current predictive models, emphasizing the importance of
sophisticated time-series analysis in improving prognostic tools for ALS.
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1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder that primarily af-
fects motor neurons in the brain and spinal cord, leading to severe physical disability and ultimately,
respiratory failure [1]. Epidemiological studies indicate that ALS affects approximately 2 per 100,000
individuals annually, with most patients experiencing onset between the ages of 40 and 70 [2]. Despite
the advancement in understanding ALS pathophysiology, its etiology remains largely idiopathic, posing
significant challenges in its diagnosis and management [3]. Consequentially there is a need for reliable
diagnostic tools and methodologies to track disease progression and evaluate therapeutic outcomes
effectively.

The ALS Functional Rating Scale-Revised (ALSFRS-R) is a validated instrument used to determine the
degree of functional impairment in ALS patients. It encompasses twelve domains of daily activities, each
rated on a scale from 0 to 4, where higher scores denote greater functional independence. The ALSFRS-R
provides a quantifiable measure of disease progression, correlates significantly with quality of life
measures and is extensively used in clinical trials and practice [4]. However, the inherent subjectivity
of self-reported measures and the episodic nature of clinical evaluations necessitate the exploration of
objective, continuous monitoring methods to supplement these assessments.

In this context, wearable technology offers unprecedented opportunities for real-time, objective
monitoring of physiological parameters. Sensor data collected via smartwatches and specialized mobile
applications can provide detailed insights into the physical activity patterns and autonomic functions
of patients, potentially enabling early detection of disease progression markers [5]. Moreover, these
data could facilitate the development of predictive models that anticipate changes in ALSFRS-R scores,
thereby offering a proactive approach to disease management.

The 2024 Intelligent Disease Progression Prediction (iDPP) challenge at the Conference and Labs
of the Evaluation Forum (CLEF) [6, 7] encompasses a series of tasks aimed at leveraging sensor and
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environmental data to predict disease progression in ALS and Multiple Sclerosis (MS). Specifically, this
research focuses on two tasks within the ALS domain: predicting ALSFRS-R scores from longitudinal
sensor data and evaluating patient self-assessment scores derived through mobile health applications.
These tasks are designed to address the pressing need for tools that can predict disease trajectory and
patient-reported outcomes from objective data sources [8].

This work describes the participation of our team in iDPP at CLEF 2024, specifically in Tasks 1 and 2.

2. Related Work

Advancements in predictive modeling for ALS have utilized machine learning and deep learning to
forecast disease understanding and progression effectively.

Seminal work by Hothorn et al. [9] used the PRO-ACT database to develop a Random Forest algorithm
as part of the DREAM Phil Bowen ALS Prediction Prize4Life Challenge, highlighting the importance of
past disease progression. Subsequently, Tang et al. [10] expanded this approach by using both model-
based and model-free methods to predict changes in ALSFRS-R scores, demonstrating the capability of
machine learning in capturing complex interactions within ALS data. Further refining model capabilities,
Faghri et al. [11] applied machine learning techniques to identify distinct clinical subgroups within the
ALS population, enhancing the understanding of ALS’s heterogeneity and supporting the development
of targeted interventions.

On the other hand, recent studies like those by Johnson et al.[12] and Vieira et al.[13] have demon-
strated the potential of wearable technology and sensor data in monitoring ALS. These technologies
enable both active and passive data collection, providing continuous monitoring of ALS progression,
which is highly correlated with traditional ALSFRS-R scores.

Deep learning has notably advanced ALS research through diverse applications, for example, Van
der Burgh et al. [14] combined MRI data with deep learning to predict patient survival times with high
accuracy and Sengur et al. [15] and Yin et al. [16] applied convolutional neural networks to classify
EMG signals and genetic data enhancing the understanding of complex genetic interactions in ALS.
More recent work by Müller et al. [17] and Pancotti et al. [18] utilized advanced neural networks to
model disease progression and predict future ALSFRS-R scores.

The BRAINTEASER project [19] exemplifies the successful integration of clinical assessments with
real-time sensor data, creating comprehensive models that detect nuanced changes in ALS progression,
thereby facilitating more responsive patient care. The iDPP@CLEF challenges in 2023 [20] and the
current challenge [8] demonstrate the difficulties in integrating environmental data into predictive
models, highlighting the complex nature of environmental influences on ALS progression that remains
to be fully understood.

3. Methodology and Experimental Setup

3.1. Data Collection

This study uses data from smartwatches and mobile health applications, focusing on physiological
metrics such as heart rate, steps, and activity levels, alongside patient-reported outcomes. The data
captures continuous physiological data, giving detailed information on many features related to patient
activity and health status over time [6, 7]. The datasets employed are crucial for developing predictive
models for ALS progression. The primary datasets included:

• train-static.csv: Contains demographic and static information about the patients, including
variables such as age, sex, and baseline health metrics.

• train-sensor.csv: Comprises time-series data from various sensors, capturing daily physiological
and activity metrics.

• train-alsfrs.csv: Provides ALS Functional Rating Scale-Revised (ALSFRS-R) scores, which serve
as target variables for the models.



• Corresponding test datasets are used for evaluating model performance.

3.2. Data Preprocessing

To ensure the quality and consistency of the input data, a rigorous preprocessing pipeline was im-
plemented. The preprocessing steps included handling missing values, feature engineering, and data
cleaning.

3.2.1. Handling Missing Values

Given the longitudinal nature of the data, missing values occurred because some patients did not follow
the guidelines every day. To address this issue, we used imputation techniques.

Specifically, Iterative and Simple Imputation were employed to ascribe missing values in both static
and sensor datasets [21]. IterativeImputer performs multivariate imputation by modeling each feature
with missing values as a function of other features in a round-robin fashion, making it particularly
effective for datasets with complex interactions between variables. Additionally, in some cases, mean
and median imputation were experimented with for numeric columns, depending on their distribution
and specific characteristics. This approach ensures that the imputed values are reasonable and do not
introduce significant biases. Finally, rows with more than half of their values missing were excluded to
maintain data integrity. This threshold was chosen to balance retaining as much data as possible while
ensuring the remaining data was of high quality.

3.2.2. Feature Engineering

Several approaches were used for feature engineering to enhance the predictive power of the models by
creating new features from the raw data to capture underlying patterns and trends more effectively.
Particularly, we aggregated sensor data using statistical measures such as mean, median, standard
deviation, minimum, maximum, and range. These aggregations were performed over specified time
windows to capture temporal dynamics. On the other hand, we used the tsfresh library [22] for time-
series feature extraction. Tsfresh provided a wide range of feature extraction methods tailored for
time-series data, which helped capture complex temporal patterns of data. Finally, historical data
was incorporated by including previous ALSFRS-R scores as features to provide historical context and
improve model accuracy. This approach leverages the temporal aspect of the data, acknowledging that
past scores are indicative of future outcomes.

3.3. Feature Selection

The initial feature extraction process generated a vast number of features. To enhance model perfor-
mance and reduce computational complexity, feature selection was performed based on relevance and
significance.

Correlation analysis was conducted to analyze the correlation of features with target variables.
Highly correlated features were prioritized as they are more likely to have a significant impact on model
performance.

Preliminary models were trained to evaluate the importance of each feature. This approach helped
identify which features contributed most to the predictive accuracy of the models. Features with low
importance scores were discarded to streamline the model and improve efficiency.

3.4. Model Development

3.4.1. Algorithm Selection

The choice of a machine learning algorithm was crucial for the success of our predictive models. We
ultimately selected the Random Forest Classifier (RFC) for its robustness and superior performance
in handling multi-output regression tasks, very important for predicting multiple ALSFRS-R scores



simultaneously. Initially, we considered several algorithms, including linear regression, support vector
machines (SVM), and gradient boosting machines. The RFC’s ability to handle missing labels in
classification further justified our choice. As an ensemble learning method, the RFC constructs multiple
decision trees during training and averages their predictions. This approach is particularly advantageous
for managing large datasets with high dimensionality and is resistant to overfitting.

To manage the prediction of multiple ALSFRS-R scores, a Multi-output Classifier was used. This meta-
estimator fitted a separate Random Forest Classifier for each target variable, allowing for simultaneous
prediction of all 12 ALSFRS-R score components. By doing so, we ensured that each target is treated
independently, which is beneficial given the varying degrees of correlation between different ALSFRS-R
components.

3.4.2. Pipeline Construction

A comprehensive data processing and modeling pipeline was constructed to streamline the workflow
and ensure reproducibility. This pipeline was designed to handle all necessary preprocessing steps
before feeding the data into the classifier. The key components of the pipeline included:

Preprocessing steps involved normalization and encoding of features to prepare the data for modeling.
For numerical features, the StandardScaler was used to scale them to have a mean of zero and a standard
deviation of one. Scaling is crucial for algorithms like Random Forest that are sensitive to the scales
of input features. For categorical features such as sex, the OneHotEncoder was applied, transforming
them into a format suitable for machine learning algorithms.

The last step in the pipeline was the application of the Multi-Output Classifier with the RFC as the
underlying estimator. This step involved fitting the model to the training data and using it to make
predictions.

3.5. Hyperparameter Tuning

For this study, hyperparameter tuning was performed using Randomized Search, a method that allows
for more efficient exploration of the hyperparameter space compared to an exhaustive grid search.
Randomized Search CV samples a fixed number of parameter settings from the specified distributions
and evaluates them using cross-validation.

The hyperparameters tuned included the number of estimators, which refers to the number of trees in
the forest. This parameter influences the overall performance and stability of the predictions. Maximum
depth, the maximum depth of the trees, controls the complexity of the model and helps prevent
overfitting. Minimum samples split, the minimum number of samples required to split an internal node,
impacts the model’s ability to generalize to new data. Minimum samples leaf, the minimum number
of samples required to be at a leaf node, similarly affects the model’s complexity and generalization.
Maximum features, the number of features to consider when looking for the best split, can significantly
affect the model’s performance by reducing overfitting and improving generalization. Lastly, bootstrap,
which determines whether bootstrap samples are used when building trees, affects the diversity of the
trees in the forest.

3.6. Validation Strategy

To ensure the robustness of the model, first opted for a multi-label stratified shuffle split was used for
cross-validation. This method maintains the balance of multiple target variables across the training and
validation folds, ensuring that each fold is representative of the overall data distribution. However, due
to label misrepresentation, a simple multi-label shuffle split was used in most cases.

3.7. Approaches for ALSFRS-R Score Prediction

The following tables summarize the distinct methodological (Table 1) and ensemble approaches (Table 2)
utilized for predicting ALSFRS-R scores in Tasks 1 and 2 of the iDPP CLEF 2024 challenge.



Method Description

Mean Employs the average of observed values from the sensor data to estab-
lish a baseline prediction, simplifying the model by reducing noise and
variance in the data.

Median Uses the median of the sensor data to provide a robust prediction that
is less sensitive to outliers, aiming to capture the central tendency of
the ALSFRS-R scores.

More Metrics Integrates a wider array of statistical measures (mean, median, stan-
dard deviation, min, max) from the sensor data to create a comprehen-
sive profile for prediction.

Temporal Leverages advanced time-series analysis techniques to capture and
utilize the temporal patterns in the sensor data, emphasizing changes
over time in the ALSFRS-R scores.

Table 1
Table describing methodologies implemented for Task 1 and 2 of iDPP.

Ensemble Method Description

Minimum Uses the minimum value among all model predictions for each score,
aiming to provide a conservative estimate of the ALSFRS-R scores.

Average Calculates the average of predictions from all models, balancing the
influence of each model to mitigate extreme predictions and smooth
outliers.

Maximum Selects the maximum value from the predictions, reflecting an opti-
mistic estimation which may capture potential over-performances in
patient assessment scores.

Table 2
Table describing ensembles implemented for Task 1 and 2 of iDPP.

Each method and ensemble strategy is designed to address specific characteristics of ALS progression
data. These approaches range from basic statistical summaries to complex time-series models and
integrated ensemble methods, providing a solution set for diverse data analysis solutions.

3.8. Dataset Splits

The data was split into training, validation, and test sets, ensuring temporal consistency and patient-
specific segregation to prevent data leakage and ensure reliable evaluation. We first separated the train
datasets into an 80-20 split, where 80% of the data was used for training and the remainder for validation.
Upon receiving the test data, training was done using all data.

3.9. Hardware and Environment

Experiments were conducted on a virtual machine with a Ubunto OS equipped with 32 GB of memory
configurations to handle the computational demands of feature extraction and model training.

4. Results

In this section, we present the results for Task 1 and Task 2 of the iDPP CLEF 2024 challenge, covering
both the validation and test phases. For both tasks, the same methodological approaches—Mean, Median,
More Metrics, and Temporal Analysis—were consistently applied. Additionally, for the test predictions,
we employed an ensemble approach that combined the results of the Mean, Median, More Metrics, and
Temporal Analysis methods. This ensemble approach utilized the minimum, average, and maximum



values of each predicted score to enhance the robustness and accuracy of our final model outputs. This
approach allowed us to directly compare the effectiveness of each methodology across different stages
of the evaluation process and assess the robustness of our models under varying conditions inherent in
clinically-assessed and self-assessed ALS Functional Rating Scale-Revised (ALSFRS-R) scores.

4.1. Validation Results

The validation results for Task 1 and Task 2 of the iDPP CLEF 2024 challenge, presented in Tables 3
and 4 respectively, illustrate the performance of four methodologies—Mean, Median, Combination of
several metrics (More Metrics), and Temporal—across twelve parameters of the ALS Functional Rating
Scale-Revised (ALSFRS-R). These methodologies are quantified through Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE), providing insights into model accuracy and consistency across
two distinct tasks: clinically-assessed and self-assessed ALSFRS-R scores.

Method Mean Median More Metrics Temporal

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Q1 0.2963 0.6086 0.2593 0.5774 0.2963 0.6086 0.1852 0.4303
Q2 0.1111 0.3333 0.1481 0.3849 0.1481 0.3849 0.0370 0.1925
Q3 0.1481 0.3849 0.1481 0.3849 0.1481 0.3849 0.1111 0.3333
Q4 0.4074 0.6383 0.4074 0.6383 0.3333 0.5774 0.3333 0.5774
Q5 0.3333 0.6939 0.4815 0.7935 0.4815 0.7935 0.4444 0.7698
Q6 0.5185 0.8165 0.4815 0.7935 0.4815 0.7935 0.5926 0.8607
Q7 0.3704 0.6086 0.3333 0.5774 0.3333 0.5774 0.3704 0.7698
Q8 0.2222 0.5443 0.2222 0.5443 0.2222 0.5443 0.2963 0.6667
Q9 0.3333 0.7454 0.3333 0.7454 0.2593 0.6939 0.6667 1.1863
Q10 0.1852 0.4303 0.1852 0.4303 0.1852 0.4303 0.1111 0.3333
Q11 0.2222 0.6086 0.2593 0.6383 0.2222 0.6086 0.1111 0.3333
Q12 0.3704 0.9027 0.3333 0.8819 0.3333 0.8819 0.1852 0.6939

Average 0.2932 0.6096 0.2994 0.6158 0.2870 0.6066 0.2870 0.5956

Table 3
Task 1 validation results obtained from bitua team using different methodologies.

In Task 1, Temporal Analysis demonstrates the most consistent superior performance, notably
achieving the lowest MAE and RMSE in several quarters, exemplified by its notable performance in
Q2 with an MAE of 0.0370 and RMSE of 0.1925. This method effectively leverages time-series data to
capture the dynamic progression of ALS, indicating its robust capability to handle the complexities
inherent in clinical data. Conversely, the combined metrics approach, which integrates a broader array
of statistical features, shows comparable MAE but slightly less RMSE in some parameters.

The simpler statistical approaches of the Mean and Median methodologies exhibit higher error rates,
especially in parameters associated with complex symptomatology like respiratory functions in later
quarters. These methods, although computationally simpler, struggle with modeling nuanced changes
over time, leading to reduced predictive reliability.

For Task 2, the challenges shift towards handling the greater subjectivity of self-assessment data,
which introduces variability in reporting and perception by patients themselves. Here, the Temporal
method again shows its strength in specific quarters but with increased variability across all parameters,
reflecting the challenges of capturing subjective self-assessments over time. The combination of metrics
(More Metrics) method provides slightly more stable results compared to the Temporal approach, though
none of the methodologies achieve the lower error metrics seen in Task 1.

Both tasks reveal that performance disparities across different ALSFRS-R parameters highlight the
complexities of predictive modeling in ALS. Lower MAEs and RMSEs in the initial parameters suggest
clearer data patterns early in the disease progression, whereas increased errors in later quarters reflect
the inherent challenges with more complex or sporadically reported symptoms.



Method Mean Median More Metrics Temporal

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Q1 0.1600 0.4472 0.1600 0.4472 0.1600 0.4472 0.1429 0.4286
Q2 0.2400 0.5292 0.2000 0.4899 0.1800 0.4690 0.3061 0.7693
Q3 0.0400 0.2000 0.0200 0.1414 0.0400 0.2000 0.0816 0.2857
Q4 0.1200 0.4000 0.1600 0.4899 0.1600 0.4899 0.2449 0.5345
Q5 0.5000 0.8124 0.4800 0.7746 0.4600 0.7616 0.4082 0.6999
Q6 0.3200 0.6000 0.2600 0.5477 0.3400 0.6481 0.3061 0.5890
Q7 0.2400 0.5292 0.2200 0.4690 0.2600 0.5099 0.3673 0.6389
Q8 0.1600 0.4472 0.1800 0.4690 0.1400 0.4243 0.1429 0.4286
Q9 0.3000 0.5831 0.2600 0.5477 0.2400 0.5292 0.2041 0.4518
Q10 0.2000 0.5657 0.2200 0.6164 0.1800 0.5477 0.2653 0.6227
Q11 0.2600 0.7874 0.2800 0.8000 0.2600 0.7874 0.4898 1.2617
Q12 0.0600 0.3162 0.0800 0.3464 0.0800 0.3464 0.0816 0.3499

Average 0.2167 0.5181 0.2100 0.5116 0.2083 0.5134 0.2534 0.5884

Table 4
Task 2 validation results obtained from bitua team using different methodologies.

The comparative analysis of the two tasks underscores the crucial role of sophisticated modeling
techniques, particularly those capable of handling temporal dynamics, to enhance the accuracy of
predictive models in ALS monitoring.

4.2. Global Results

The global results of the participation in the challenge iDPP of CLEF 2024 are shown in Table 5 and
Table 6. In both cases, the results of our team in the test dataset mirror the validation results.

# Team Method MAE RSME

1 fcool fcool_T1_locf 0.202380952 0.491212504
1 idppexplorers idppexplorers_T1_naiveSubmission 0.202380952 0.491212504
1 mandatory mandatory_T1_d1 0.202380952 0.491212504
1 unipd UNIPD_t1_hold 0.202380952 0.491212504
2 idppexplorers idppexplorers_T1_EN 0.222222222 0.50478526
3 compbiomedunito RandomForest_MonoWindow 0.234126984 0.518945141
4 bitua bitua_T1_ensemble_max 0.25 0.544324192
6 bitua bitua_T1_temporalAnalysis 0.333333333 0.606889042
15 bitua bitua_T1_moremetrics 0.388888889 0.683397063
19 bitua bitua_T1_median 0.400793651 0.700515112
20 bitua bitua_T1_mean 0.400793651 0.706631136
23 bitua bitua_T1_ensemble_avg 0.412698413 0.709317604
39 bitua bitua_T1_ensemble_min 0.48015873 0.795525562

Median - - 0.403489069 0.707744917
Mean - - 0.412698413 0.709317604

Table 5
Task 1 results obtained from bitua team, compared to top results and mean and average results.

For Task 1, our most successful method, the 𝑏𝑖𝑡𝑢𝑎_𝑇1_𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑚𝑎𝑥, employed an ensemble model
that selected the maximum score from a set of predictions, achieving a Mean Absolute Error (MAE)
of 0.25 and a Root Mean Square Error (RMSE) of 0.544324192. This method ranked fourth overall,
suggesting that an optimistic perspective on ALS progression, where higher ALSFRS-R scores indicate
better functional ability, may align more closely with certain patient trajectories.

Following this, the 𝑏𝑖𝑡𝑢𝑎_𝑇1_𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 method, which incorporated advanced time-series



analysis tools like tsfresh for feature extraction, demonstrated the ability to capture the dynamic aspects
of ALS progression with an MAE of 0.333333333 and an RMSE of 0.606889042. This method which used
the temporal patterns in the sensor data demonstrates the importance of observing these results over
time in the classification of ALSFRS-R scores.

Conversely, our simpler approaches, specifically 𝑏𝑖𝑡𝑢𝑎_𝑇1_𝑚𝑒𝑑𝑖𝑎𝑛 and 𝑏𝑖𝑡𝑢𝑎_𝑇1_𝑚𝑒𝑎𝑛, which
condensed predictions into median or mean values, resulted in less precise outcomes with MAEs and
RMSEs around 0.40 and 0.70, respectively. These methods, while straightforward, struggled to model the
complexities of ALS progression adequately, reflecting the challenges in using reductionist approaches
for such multifaceted medical data.

On the opposite end of our ensemble spectrum, the 𝑏𝑖𝑡𝑢𝑎_𝑇1_𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑚𝑖𝑛, which utilized the
minimum scores from ensemble predictions, produced the least effective outcomes among our entries,
with an MAE of 0.48015873 and an RMSE of 0.795525562. This approach is likely overly pessimistic and
thus struggled to achieve good results.

Comparatively, the performance of 𝑏𝑖𝑡𝑢𝑎_𝑇1_𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒_𝑚𝑎𝑥 closely approached that of the compe-
tition leaders, who all achieved an MAE of 0.202380952 and an RMSE of 0.491212504. Although slightly
behind, the marginal differences of 0.0476 in MAE and 0.0531 in RMSE from the top results demonstrate
competitive capability and underscore the potential of our ensemble and temporal analysis strategies.

Moreover, these methods significantly outperformed the median competition results (MAE of
0.403489069 and RMSE of 0.707744917), marking a clear advantage over the average performance.
The distinctions in both MAE and RMSE underline the effectiveness of our approach and highlight our
method’s robustness compared to the broader field.

# Team Method MAE RSME

1 fcool fcool_T2_locf 0.287878788 0.577431447
1 unipd UNIPD_t2_hold 0.287878788 0.577431447
2 compbiomedunito RandomForest_MonoWindow 0.310606061 0.601358746
3 bitua bitua_T2_ensemble_max 0.325757576 0.608658838
4 bitua bitua_T2_moremetrics 0.371212121 0.654232661
5 bitua bitua_T2_mean 0.393939394 0.686437506
6 bitua bitua_T2_median 0.401515152 0.708103457
8 bitua bitua_T2_ensemble_avg 0.424242424 0.714777806
9 bitua bitua_T1_temporalAnalysis 0.431818182 0.720780408
13 bitua bitua_T2_ensemble_min 0.5 0.818368472

Median - - 0.585532747 0.896730391
Mean - - 0.515151515 0.837021651

Table 6
Task 2 results obtained from bitua team, compared to top results and mean and average results.

The best-performing method in Task 2 was also the 𝑏𝑖𝑡𝑢𝑎_𝑇2_𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒_𝑚𝑎𝑥, achieving a MAE
of 0.325757576 and a RMSE of 0.608658838. Although less accurate compared to its performance in
Task 1, this method still demonstrated robustness. It ranked third among all entries, suggesting that
maximizing predictions can effectively capture optimistic patient-reported outcomes, likely reflecting
better self-perceived functional abilities.

Following closely, the 𝑏𝑖𝑡𝑢𝑎_𝑇2_𝑚𝑜𝑟𝑒𝑚𝑒𝑡𝑟𝑖𝑐𝑠 method, which incorporated a broader array of met-
rics (mean, median, standard deviation, minimum and maximum values), posted an MAE of 0.371212121
and an RMSE of 0.654232661.

The variation in model performance between Tasks 1 and 2 can largely be attributed to the nature
of the target variables. Task 1 focused on medically assigned ALSFRS-R scores, which are likely more
consistent and standardized due to their clinical origin. In contrast, Task 2 dealt with self-assessment
scores that can be more subjective and influenced by the patient’s perception and mood at the time of
evaluation. This inherent subjectivity and variability in self-assessment could make modeling more
challenging, potentially explaining why the same methods yielded different levels of accuracy across



the tasks.
Moreover, patient self-assessment might not always align closely with clinical evaluations, leading to

discrepancies that can affect the performance of models trained primarily with clinical score patterns in
mind. This misalignment could particularly impact methods like the 𝑏𝑖𝑡𝑢𝑎_𝑇1_𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠,
which performed significantly worse in Task 2.

Despite these challenges, the 𝑏𝑖𝑡𝑢𝑎_𝑇2_𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒_𝑚𝑎𝑥 method’s performance was quite competi-
tive when compared to the leading entries in Task 2, fcool and unipd, both of which achieved an MAE
of 0.287878788 and an RMSE of 0.577431447. The differences in MAE and RMSE were 0.038 and 0.031,
respectively, indicating that even with the subjective nature of self-assessments, our method remained
robust.

Furthermore, this method significantly outperformed the median and mean results across all teams,
where the median MAE was 0.585532747 and the median RMSE was 0.896730391. This performance
indicates not only the effectiveness of the ensemble max strategy in capturing the higher ends of patient
self-reported outcomes but also its overall reliability in a more variably reported dataset.

5. Conclusion

This study has demonstrated the efficacy of using sensor data from smartwatches and mobile health
applications to predict ALS disease progression, substantiated through our participation in the iDPP
CLEF 2024’s Tasks 1 and 2. These tasks emphasize the potential of machine learning models, particularly
the Random Forest Classifier within an ensemble framework, to forecast the ALS Functional Rating
Scale-Revised (ALSFRS-R) scores both from a clinical and a patient-centered perspective.

Our findings reveal that ensemble methods, particularly the maximization strategy, were the most
effective across both tasks, though with varying degrees of success. Task 1, focusing on clinically
assigned ALSFRS-R scores, benefited from the objective consistency these scores typically maintain,
thereby allowing our models to achieve a higher predictive accuracy. Conversely, Task 2 involved
predicting patient self-assessment scores that inherently presented more variability and subjectivity,
posing greater challenges for our predictive models. The performance dip in Task 2 illustrates the
complexities and the nuanced differences between patient-perceived symptoms and clinically evaluated
symptoms.

These outcomes highlight the critical role of precise data handling and feature engineering in
enhancing model performance. The integration of advanced time-series analysis tools and the strategic
handling of missing data were crucial in developing models that could effectively interpret the complex
nature of ALS progression. However, the discrepancy in performance between the two tasks also
points to the need for models that can better accommodate the subjective variabilities inherent in
self-assessments.

Future research should focus on refining the algorithms used in predictive modeling of ALS progres-
sion. This involves enhancing data preprocessing techniques and incorporating advanced machine
learning frameworks that can better handle the variability and complexities of ALS data. Improving
feature engineering is essential, particularly by integrating sophisticated temporal features such as
rolling means and time-windowed aggregates, which can provide a deeper understanding of disease
dynamics. Additionally, applying deep learning techniques, especially those tailored for time-series anal-
ysis like Long Short-Term Memory (LSTM) networks, could significantly enhance model performance.
Incorporating anomaly detection for outlier identification and signal processing techniques will further
refine the models’ predictive capabilities. Exploring hybrid models that combine machine learning
flexibility with rule-based logic could also offer robust solutions by merging data-driven insights with
clinical expertise, leading to more accurate and responsive predictive models for ALS progression.
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