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Abstract
The 2024 ImageCLEFmedical GANs task Controlling the Quality of Synthetic Medical Images created via GANs
is in its second edition. It comprises two sub-tasks which address the security and privacy concerns related
to personal medical image data in the context of generating and using synthetic images in different real-life
scenarios. The first sub-task is an extension of the task presented in the previous edition, focusing on examining
the hypothesis that generative models (e.g., GANs, Diffusion Models) generate medical images containing certain
“fingerprints” of the original images used for network training. The second sub-task, new this year, explores the
hypothesis that generative models imprint unique fingerprints on generated images. The focus is on understanding
whether different generative models or architectures leave discernible signatures within the synthetic images they
produce. Ground truth data was made available to the participants. This paper presents the overview of systems
and runs submitted by describing the datasets, the evaluation metrics, and discussing the methods proposed by
the participating teams and their results.
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1. Introduction

ImageCLEF [1, 2], part of the CLEF initiative1, offers a range of multimedia information retrieval
challenges. Starting from its second edition in 2004, ImageCLEF has consistently featured medical tasks
annually. The 2024 ImageCLEFmedical GANs task is the second edition of the task, delving more in the
privacy and security concerns related to generated medical data.

Biomedical imaging has advanced significantly in recent years, as a result of the convergence of
machine learning (ML) and artificial intelligence (AI) technologies. Among these, generative models –
particularly Generative Adversarial Networks (GANs) – have shown to be effective tools for producing
synthetic images that mimic real biomedical images. The development of these models has created new
opportunities for study and application, high-quality synthetic images have been produced in a variety
of disciplines using generative models. The synthetic images produced by these models have several
potential advantages in the biomedical domain. They can augment existing datasets, thereby addressing
issues related to data scarcity and imbalances. This is especially helpful in the medical domain, where it
can be difficult, costly, and time-consuming to obtain huge amounts of labeled data. Furthermore, AI
algorithms can benefit greatly from synthetic images, reducing the dependency on real patient data and
mitigating privacy concerns.
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In this edition, we continue to study the first sub-task — "Detect generative models’ “fingerprints” —
proposed in the previous edition [3] focused on examining the existing hypothesis that GANs generate
medical images containing certain “fingerprints” of the authentic images used for generative network
training. We extended the task by investigating this hypothesis for two different generative models.
Another sub-task is introduced to this second edition — Detect generative models’ “fingerprints”.
The second sub-task explores the hypothesis that generative models imprint unique fingerprints on
generated images and whether different generative models or architectures leave discernible signatures
within the synthetic images they produce.

Similar to the previous year, the 2D gray-scale images being provided depict the axial slices of CT
scans of tuberculosis patients taken at different stages of their treatment. In 2024, we continue to use
the advanced Diffuse Models along with other Generative Adversarial Networks (GANs) for image
generation.

In this paper, we present an overview of the 2024 ImageCLEFmedical GANs task, describing the
objective of the two sub-tasks, datasets, evaluation metrics and the results and methods proposed by the
participant teams. The article is organized as follows: Section 2 introduces the 2 sub-tasks by presenting
the extended version of the task presented in the previous edition and the new one introduced for
this edition together with the data used for these sub-tasks. Section 3 presents the evaluation metrics,
Section 4 and Section 5 present the results obntained by the participant teams and the paper concludes
with Section 6.

2. Tasks description

2.1. Sub-task 1. Identify training data fingerprints

2.1.1. Description

We continued to investigate the hypothesis that generative models are generating medical images that
are in some way similar to the ones used for training. The task addresses the security and privacy
concerns related to personal medical image data in the context of generating and using artificial
images in different real-life scenarios. This edition, in addition to the Diffusion Model used in the
previous iteration of the task, we have also used a GAN model. The objective of the task was to detect
“fingerprints” within the synthetic biomedical image data to determine which real images were used
in training to produce the generated images. The task consisted in performing analysis of test image
datasets and assessment of the probability with which certain images of real patients were used for
training image generators and which were not. The task is formulated as follows:

• given two sets that contains generated and real images, the participants are requested to employ
machine learning and/or deep learning models to determine for each set which of the real images
were used to train the model to generate the provided synthetic images.

2.1.2. Data description

The benchmarking image data consists of axial slices of 3D CT images extracted from a bigger
dataset of about 8,000 lung tuberculosis patients. Considering this, some of the slices may appear
pretty “normal” whereas the others may contain certain lung lesions including severe ones. These
images are stored in the form of 8-bit/pixel PNG images with dimensions of 256×256 pixels. The
artificial slice images are 256×256 pixels in size and are obtained using two type of generative
models. Examples of real and generated images using the two generative models are provided in Figure 1.

Development dataset: comprises data for the two different generative models organized as follows:

• Model 1 (representing the ground truth for the test dataset of the previous edition [3]) consists of
10k generated images and 200 images annotated as used/not used for training to generate the
images. Specifically, 100 images were utilized for training, while the remaining 100 were not.



(a) real images

(b) synthetic images generated using Model 1

(c) synthetic images generated using Model 2

Figure 1: Examples of images provided for the first sub-task "Identify training data fingerprints".

• Model 2 consists of 10k generated images and 6k annotated images marked as used/not used
for training to generate the images. Specifically, 3k images were utilized for training, while the
remaining 3k were not.

Test dataset: has been structured similarly to the development dataset, with a key distinction. In this
iteration, the two subsets of real images have been mixed, with no disclosed proportion between unused
and used ones. The dataset is organized as follows:

• Folder 1: 7,200 generated images and 4,000 real images labeled as "real _unknown_1_%6d".
• Folder 2: 5,000 generated images and 4,000 real images labeled as "real _unknown_2_%6d".

2.2. Sub-task 2. Detect generative models’ fingerprints

2.2.1. Description

The second sub-task explores the hypothesis that generative models imprint unique fingerprints on
generated images. The focus is on understanding whether different generative models or architectures
leave discernible signatures within the synthetic images they produce. By providing a set of synthetic
images generated through various generative models, the objective is to identify and detect the distinct
"fingerprints" associated with each model. The number of clusters - the number of models used for
generating synthetic data - used for the train and development was different, as described below. This
task supposes analyzing the characteristics, patterns, or features embedded in the synthetic images.
The goal is not only to distinguish between images created by different models but also to uncover the
specific traits that define each model’s output. This investigation contributes to a deeper understanding
of the unique imprint left by generative models on the images they generate, allowing model attribution
recognition. The task is formulated as follows:



• given a set of generated images and the number of generative models used, the participants are
required to group the images based on the model that generated them.

2.3. Data description

The dataset comprise synthetic CT slice images, each with a resolution of 256×256 pixels, generated
using various generative models. The data used for training was extracted from the same dataset dataset
of approximately 8000 lung tuberculosis patients. Examples of generated images are depicted in Figure 2.

Development dataset: consists of 600 images generated using three different generative models. Each
model is represented by 200 images and are organized in annotated folders.

Test dataset: comprises of 3000 generated CT slices generated using four generative models. In addition
to the three models used for the development dataset, another GAN was also used.

(a) synthetic images generated using Model 1

(b) synthetic images generated using Model 2,

(c) synthetic images generated using Model 3

(d) synthetic images generated using Model 4

Figure 2: Examples of images from the provided dataset for the second sub-task "Detect generative models’
fingerprints".



Table 1
Overview of participating teams that submitted at least one run (* task organizing team)

Team Sub-task 1 Sub-task 2 Affiliation Country

SDVA/UCSD ✓ ✓
San Diego VA

Health Care System
US

Csmorgan ✓ ✓ Morgan State University US
Biomedical Imaging Goa ✓ ✓ Goa College of Engineering India

KDElab ✓ × Toyohashi University of Technology Japan
Inoue Koki ✓ × Toyohashi University of Technology Japan

Robot ✓ × Guangxi Key Laboratory of
Digital Infrastructure

China

Shitongcao ✓ × School of Information Science
and Engineering

China

KDE-med-lab ✓ ✓ Toyohashi University of Technology Japan

GAN-Amis × ✓
Pune Institute of

Computer Technology
India

AI Multimedia Lab* ✓ ✓ Politehnica University of Bucharest Romania

3. Evaluation Methodology

3.1. Sub-task 1. Identify training data fingerprints

The sub-task was assessed as a binary-class classification challenge, and the F1-score, accuracy, precision,
recall, and specificity are used as evaluation metrics. The F1-score serves as the official evaluation
metric for this year’s edition. The metrics are defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(3)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4)

𝐹1− 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(5)

where 𝑇𝑃 stands for true positive, 𝑇𝑁 for true negative, 𝐹𝑃 for false positive, and 𝐹𝑁 for false
negative. The evaluation metrics were computed for each model individually, and the leaderboard was
compiled in ascending order of the average F1-score obtained for the two models.

3.2. Sub-task 2. Detect generative models’ fingerprints

Adjusted Rand Index (ARI) is the official metric of the sub-task [4, 5]. It computes a similarity measure
between two clusterings, the clusters assigned by an algorithm and the ground truth labels, accounting
for the possibility of randomness in clustering assignments. On a scale of -1 to 1, an ARI around 1
indicates a high degree of agreement, whilst values near 0 point to random grouping. Scores that are
negative indicate a discrepancy between the two groups. When analyzing clustering algorithms in a
variety of fields, including the social sciences and biology, ARI is a preferred metric since it provides a
dependable assessment of clustering quality by controlling for chance.



4. Participants Runs

Overall, the same 32 teams registered to the both sub-tasks. Among them, 10 teams completed the first
sub-task and submitted their runs, while 7 teams completed the second sub-task (including the task
organizing team). Notably, 6 teams were common to both sub-tasks. This indicates that 31.25% of the
registered teams completed the first sub-task, while 21.87% completed the second sub-task. Table 1
presents a short overview of the participating teams. When it comes to submitting the working notes,
one team did not submit them, resulting in an adherence rate of 90.90%. For the first sub-task, 69 runs
were submitted, of which 54 are valid and included in this overview. For the second sub-task, 56 runs
were submitted, with 46 valid runs included here.

4.1. Sub-task 1. Identify training data fingerprints

Each participant team could submit up to 15 runs. The ranking according to the mean value of the
F1-scores for the two models is presented in Table 2. This section briefly describes the methods
proposed by the 9 participating teams for the first sub-task and the 6 participating teams for the second
sub-task. Further details about each method can be found in the respective team’s working note paper.

Inoue Koki [6] used various image processing techniques to enhance the distinct features of generated
images, particularly focusing on boundary sharpness, which they state is less clear in synthetic images
compared to real ones. The preprocessing steps include binarization, histogram equalization, Laplacian
process, and contrast adjustment. Each of these methods aims to highlight different aspects of the
images that might help differentiate between real and generated images. ResNet-152 was employed for
binary classification. Their proposed method involves training five different models: one without any
preprocessing and four with each of the mentioned image-processing techniques. The predictions from
these models are then integrated to form a single final prediction. This integration is achieved through
two strategies: majority voting and perfect agreement. In majority voting, the final prediction is the
most common result among the five models. In perfect agreement, a positive result is accepted only
if all five models agree; otherwise, a negative result is assumed. All results obtained by the team are
shown in Table 2 and consist in the following methods:

• Submission ID 896: Non-Preprocessed input
• Submission ID 895: Binarization
• Submission ID 894: Constrast adjustment
• Submission ID 892: Histogram equalization
• Submission ID 891: Laplacian process
• Submission ID 893: Majority voting
• Submission ID 890: Perfect agreement.

SDVAHCS/UCSD [7] solved the first sub-task after the second in order to gain significant insights that
helped with proposing the methods. Painters embedding were used. Embeddings were extracted from
the synthetic images, and they were paired with embeddings of a sample of the training images (both
used and not used for training). Multiple machine learning models were trained. All results obtained by
the team are shown in Table 2 and consist in the following methods:

• Submission ID 851: a random number generator was used to assign classification
• Submission ID 850: each generated image was matched with approximately 5 used and 5 not used

images
• Submission ID 849: each generated image was matched with approximately 10 used and 10 not

used images
• Submission ID 848: each generated image was matched with approximately 50 used and 50 not

used images



Robot [8] started by performing data visualization analysis to understand the relationship between
the provided real and generated data. Using histogram visualization comparisons, they concluded that
the generated images and the real images are highly similar. They proposed a method for calculating
feature similarity to enhance image recognition and classification. After extracting features using a
pre-trained Masked Autoencoder (MAE) network, they measured the similarity between images in the
feature space using metrics such as Euclidean distance, cosine similarity, and Manhattan distance. The
process involves acquiring feature vectors through the MAE encoder, selecting an appropriate similarity
measure based on the task, calculating similarity scores, and using these scores for classification. For
feature extraction, they used pre-trained models including VGG, InceptionNet, ResNet50, ResNet101,
MobileNetV2, MobileNetV3, EfficientNet, and MAE, with classification performed using similarity
calculations. All results obtained by the team are shown in Table 2 and the following methods were
used:

• Submission ID 840: ResNet50
• Submission ID 841: EfficientNet
• Submission ID 842: MobilenetV2
• Submission ID 843: MobileNetV3
• Submission ID 844: ResNet101
• Submission ID 845: MAE
• Submission ID 846: EfficientNet
• Submission ID 847: VGG InceptionNet

KDElab [9] proposed an interesting preprocessing step. They used tools from tensorflow library to
colorize the images and geometric augmentation by zooming, rotation, height and width shifts. They
tested multiple methods, but the submitted run involved using a MobileNetV2 for feature extraction
and classification.

KDE-med-lab [10] proposed fine-tuning deep neural network models using a two-stage transfer
learning approach. This dual-stage process aims to leverage diverse data sets to enhance the model’s
ability to generalize. For the baseline model, DenseNet-121 is employed without applying any masks
to lung images. After extracting features using the CNN, these features are processed using k-means
clustering to classify the images into two categories. In the proposed model, additional preprocessing
was performed by applying masks to lung images using a U-net architecture, which helps in focusing
on the relevant regions of the images. This method utilizes a more comprehensive set of deep neural
network models, including ResNet18, DenseNet-121, Inception-ResNet V2, EfficientNetB0, and Inception
V3. The features extracted by these CNNs are also processed using k-means clustering to predict the two
classes of features. All results obtained by the team are shown in Table 2 and consists in the following
methods:

• Submission ID 852: ResNet18 + U–net
• Submission ID 853: Densenet 121 (Baseline)
• Submission ID 854: Inception-Resnet V2 + U–net
• Submission ID 855: EfficientNetB03 + U–net
• Submission ID 856: Densenet 121 + U–net
• Submission ID 857: Inception V3 + U–net

Biomedical Imaging Goa [11] assumed that the images used for generation in the training and test
datasets are similar. They employed a pre-trained ResNet50 CNN to extract features from the images,
resulting in 2048-dimensional vectors. These vectors were then analyzed using a k-means clustering
approach, with the Manhattan distance used as a similarity measure to determine the closest cluster
center. During testing, each test image is compared with the 2×k cluster centers formed during training,
and the label of the closest cluster is assigned to the test image. Multiple runs with different values of k
(1, 2, 4, 8, 16, 32) were submitted, and the best performance was achieved with k=4.All results obtained
by the team are shown in Table 2 and consist in the following methods:



• Submission ID 898: 4 clusters
• Submission ID 877: 2 clusters
• Submission ID 876: 1 cluster
• Submission ID 875: 8 clusters
• Submission ID 874: 16 clusters
• Submission ID 873: 32 clusters

Csmorgan [12] started with reducing noise in the CT images through morphological operations. This
noise reduction is followed by using BLIP and DINOv2 as image signature generators to improve the
quality of synthetic images. Features are ranked individually and after concatenation, dimensionality
reduction is performed. Late fusion is then employed to refine the fingerprint identification results,
combining the strengths of various features and methods. Different methods were proposed: i) Additive
Mode Thresholding – this technique is implemented to enhance image processing by considering local
variations in image intensity. Principal Component Analysis (PCA) is used to reduce the dimension
of the feature vector, and the features are then combined and weighted by the total. The mode of this
weighted result serves as the threshold. For the test images, a similar weighting approach is applied: if
the weighted value is less than the mode, the image is tagged as not used; otherwise, it is tagged as used.
ii) Additive Average Thresholding – calculates the final result for each subject and averages these results
across all subjects to determine the threshold value for classification. This average threshold aims to
create a more generalized classification method that can effectively handle the overall distribution of
the data, providing a robust approach for classifying images. iii) Encoder Model with Dual Thresholding
– an encoder model is used to manage the extensive feature set generated by the backbone models.
The encoder compresses this concatenated feature set, reducing its dimensionality. With the reduced
feature set, both mode and mean thresholding techniques are applied. iv) Late Fusion with Majority
Voting – employs a late fusion strategy to combine the decisions from the previous methods. Late
fusion aggregates results at the decision level rather than at the feature level. Majority voting is used
to finalize the classification, ensuring that the combined decisions of the different methods provide a
more accurate and reliable result. v) Reranking with Agglomerative Clustering – conducts hierarchical
clustering with a bottom-up approach, allowing for the specification of parameters such as the number
of clusters, distance metric, and linkage criterion. The re-ranking is based on decisions from the previous
submissions, further refining the classification results by leveraging hierarchical clustering techniques.
All results obtained by the team are shown in Table 2 and consists in the following methods:

• Submission ID 886: Dinov2 model with additive mode thresholding
• Submission ID 884: Blip architecture with additive average thresholding
• Submission ID 883: Concatenated multiformer feature fusion
• Submission ID 881: concatenated multiformer feature fusion
• Submission ID 879: Re-ranking technique
• Submission ID 878: Re-ranking technique

Shitongcao [13] employed a similarity-based classification method, categorizing real images based on
their similarity to generated images. They proposed three different methods to calculate similarity. i)
they directly computed the similarity between the generated images and real images by comparing
their pixel values. ii) Another approch was to apply noise (Gaussian, salt and pepper) to the original
images and then calculated the similarity between the noisy images and the real images. iii) Extracted
features from the images using advanced deep learning models to obtain high-dimensional features
and then calculated the similarity between these features. All results obtained by the team are shown
in Table 2 (there was no reference in team’s working notes to the method used to obtain the results
provided for the other submitted runs) and consists in the following methods:

• Submission ID 834: Cosine simiarity
• Submission ID 836: Euclidian distance
• Submission ID 838: Structual similarity index



AI Multimedia Lab [14] proposed two different approaches for identifying training data fingerprints.
The first method consists in isolating and analyzing medically relevant regions in target images. The
process involves three main stages: medical image segmentation to detect lung areas, deep feature
extraction using pre-trained neural networks like ResNet50 and DenseNet121, and clustering to analyze
potential clusters of images. The segmentation was performed using a UNet deep neural network,
while features are extracted from ResNet50 and DenseNet121, followed by clustering using k-means
and hierarchical methods. Their hypothesis was that generative models trained on this data will
produce artificial images closely associated with clusters formed during training. Various distances
and numbers of clusters are tested to optimize performance on both training and testing sets. This
comprehensive approach allows for the identification of subtle fingerprints within the training data.
The second approach applied generative models - using autoencoders to capture the reconstruction
ability of the training dataset. Comprising an encoder and a decoder, the autoencoder transforms input
samples into a condensed feature vector and endeavors to reconstruct the input faithfully. The team
employs mean square error (MSE) as a metric to assess reconstruction quality, aiming for minimal
MSE values, indicative of a well-adapted autoencoder. They hypothesize that an autoencoder trained
on generated samples should exhibit low reconstruction errors for training data and higher errors for
samples outside the training set. The team explores two distinct approaches: in the first, they compute
the mean MSE at the pixel level to differentiate between used and not-used training samples, while in
the second, they compute pixel-level MSE for individual inputs and compare reconstruction errors with
centroid-like images of used and not-used training samples using Structural Similarity Index (SSIM).
This methodology enables the identification of anomalies in generated data based on reconstruction
errors, offering insights into the model’s performance and dataset coverage.

All results obtained by the team are shown in Table 2 (there was no reference in team’s working
notes to the method used to obtain the results provided for the other submitted runs) and consists in
the following methods:

• Submission ID 901: Analyzing medically relevant region method using full images and DenseNet
• Submission ID 902: Analyzing medically relevant region method using full images and ResNet
• Submission ID 903: Analyzing medically relevant region method using lung regions and ResNet
• Submission ID 904: Analyzing medically relevant region method using lung regions and DenseNet
• Submission ID 905: Analyzing medically relevant region method using outer regions and ResNet
• Submission ID 908: Analyzing medically relevant region method using outer regions and DenseNet
• Submission ID 908: Anomaly detection applied to generative models method using averge MSE
• Submission ID 909: Anomaly detection applied to generative models method using SSIM

Table 2: Summary on the participant submissions and their results for the first sub-task – Identify training data fingerprints.
Acc stands for Accuracy, Prec for Precision, and F1 for F1-score.

M1 M2

Rank Team ID # Run F1 Acc Prec Recall F1 Acc Prec Recall F1

#1 Inoue Koki 892 5 0.666 0.499 0.499 0.998 0.665 0.501 0.5 0.999 0.667
#2 Inoue Koki 896 1 0.663 0.495 0.497 0.987 0.661 0.5 0.5 0.996 0.665
#3 Inoue Koki 891 6 0.663 0.492 0.496 0.979 0.658 0.505 0.502 0.998 0.668
#4 Inoue Koki 894 3 0.66 0.491 0.495 0.973 0.656 0.499 0.499 0.993 0.664
#5 Inoue Koki 895 2 0.638 0.484 0.49 0.838 0.619 0.503 0.501 0.951 0.656
#6 Inoue Koki 890 8 0.631 0.473 0.484 0.805 0.604 0.508 0.504 0.945 0.657
#7 AI Multimedia Lab 909 8 0.627 0.499 0.499 0.977 0.661 0.523 0.517 0.697 0.593
#8 Inoue Koki 893 4 0.626 0.466 0.48 0.819 0.605 0.517 0.509 0.883 0.646
#9 SDVAHCS/UCSD 848 3 0.624 0.51 0.506 0.847 0.633 0.576 0.563 0.676 0.614
#10 SDVAHCS/UCSD 849 4 0.606 0.515 0.509 0.827 0.63 0.538 0.531 0.642 0.581
#11 Robot 844 4 0.603 0.711 0.824 0.538 0.651 0.504 0.503 0.619 0.555
#12 Shitongcao 834 6 0.598 0.614 0.599 0.689 0.641 0.504 0.503 0.622 0.556
#13 Shitongcao 836 4 0.598 0.615 0.6 0.688 0.641 0.504 0.503 0.619 0.555



Table 2: Summary on the participant submissions and their results for the first sub-task – Identify training data fingerprints.
Acc stands for Accuracy, Prec for Precision, and F1 for F1-score.

M1 M2

Rank Team ID # Run F1 Acc Prec Recall F1 Acc Prec Recall F1

#14 AI Multimedia Lab 905 5 0.538 0.529 0.529 0.529 0.529 0.547 0.547 0.547 0.547
#15 Biomedical Imaging Goa 898 3 0.531 0.538 0.543 0.488 0.514 0.533 0.531 0.569 0.549
#16 Shitongcao 838 2 0.529 0.711 0.824 0.538 0.651 0.593 0.751 0.279 0.407
#17 AI Multimedia Lab 906 6 0.527 0.524 0.524 0.524 0.524 0.529 0.529 0.529 0.529
#18 Robot 841 7 0.524 0.615 0.6 0.688 0.641 0.593 0.751 0.279 0.407
#19 AI Multimedia Lab 903 3 0.515 0.496 0.496 0.496 0.496 0.534 0.534 0.534 0.534
#20 Biomedical Imaging Goa 875 4 0.515 0.529 0.538 0.408 0.464 0.56 0.559 0.572 0.565
#21 SDVAHCS/UCSD 850 1 0.511 0.509 0.509 0.51 0.509 0.513 0.513 0.512 0.512
#22 KDE-med-lab 852 6 0.51 0.493 0.495 0.652 0.562 0.502 0.502 0.42 0.457
#23 AI Multimedia Lab 904 4 0.51 0.514 0.514 0.514 0.514 0.506 0.506 0.506 0.506
#24 Robot 840 8 0.503 0.503 0.504 0.409 0.451 0.504 0.503 0.619 0.555
#25 AI Multimedia Lab 902 2 0.502 0.476 0.476 0.476 0.476 0.528 0.528 0.528 0.528
#26 SDVAHCS/UCSD 851 2 0.501 0.524 0.531 0.401 0.457 0.525 0.523 0.57 0.545
#27 csmorgan 881 4 0.5 0.495 0.495 0.512 0.503 0.497 0.497 0.496 0.496
#28 csmorgan 884 2 0.5 0.504 0.504 0.515 0.509 0.499 0.499 0.483 0.491
#29 AI Multimedia Lab 901 1 0.499 0.48 0.48 0.48 0.48 0.519 0.519 0.519 0.519
#30 Biomedical Imaging Goa 874 5 0.499 0.533 0.549 0.373 0.444 0.557 0.558 0.55 0.554
#31 Biomedical Imaging Goa 873 6 0.497 0.508 0.51 0.396 0.446 0.538 0.536 0.564 0.549
#32 csmorgan 883 3 0.496 0.492 0.492 0.486 0.489 0.5 0.5 0.509 0.504
#33 csmorgan 886 1 0.492 0.502 0.502 0.489 0.495 0.491 0.491 0.487 0.489
#34 KDE-med-lab 854 4 0.488 0.504 0.504 0.422 0.459 0.527 0.528 0.505 0.516
#35 csmorgan 879 5 0.483 0.495 0.495 0.485 0.49 0.506 0.506 0.45 0.476
#36 csmorgan 878 5 0.47 0.51 0.511 0.449 0.478 0.495 0.494 0.436 0.463
#37 Shitongcao 833 7 0.462 0.615 0.6 0.688 0.641 0.559 0.761 0.174 0.283
#38 KDE-med-lab 857 1 0.46 0.468 0.47 0.505 0.487 0.479 0.475 0.398 0.433
#39 KDE-med-lab 853 5 0.455 0.506 0.509 0.331 0.401 0.497 0.497 0.521 0.509
#40 KDElab 897 1 0.454 0.484 0.476 0.317 0.38 0.481 0.484 0.579 0.527
#41 Shitongcao 835 5 0.451 0.584 0.803 0.222 0.348 0.504 0.503 0.617 0.554
#42 Shitongcao 839 1 0.448 0.583 0.812 0.216 0.341 0.504 0.503 0.619 0.555
#43 KDE-med-lab 856 2 0.443 0.502 0.503 0.314 0.386 0.49 0.49 0.511 0.5
#44 Biomedical Imaging Goa 876 1 0.43 0.505 0.511 0.239 0.325 0.527 0.526 0.544 0.534
#45 Robot 845 3 0.429 0.503 0.504 0.409 0.451 0.593 0.751 0.279 0.407
#46 Biomedical Imaging Goa 877 2 0.385 0.504 0.507 0.29 0.369 0.501 0.501 0.335 0.402
#47 Robot 846 2 0.35 0.615 0.6 0.688 0.641 0.504 0.579 0.031 0.058
#48 Robot 842 6 0.314 0.583 0.812 0.216 0.341 0.559 0.747 0.178 0.287
#49 Robot 843 5 0.312 0.583 0.812 0.216 0.341 0.559 0.761 0.174 0.283
#50 Robot 847 1 0.312 0.583 0.812 0.216 0.341 0.559 0.761 0.174 0.283
#51 Shitongcao 837 3 0.255 0.503 0.504 0.409 0.451 0.504 0.579 0.031 0.058
#52 AI Multimedia Lab 908 7 0.235 0.5 1 0.001 0.002 0.497 0.497 0.442 0.468
#53 Shitongcao 832 8 0.2 0.583 0.812 0.216 0.341 0.504 0.579 0.031 0.058
#54 KDE-med-lab 855 3 0.019 0.5 0.545 0.003 0.005 0.497 0.443 0.017 0.033

4.2. Subtask 2. Detect generative models’ fingerprints

Each participant team could submit up to 10 runs. The results are presented in Table 3, and arranged in
ascending order according to the ARI value.

SDVAHCS/UCSD [7] used all embedders included with Orange3 (SqueezeNet, Inception V3, VGG-16,
VGG-19, Painters, DeepLoc) and k-means clustering and two-dimensional data projection with t-SNE
using widgets provided by Orange3 were used for clustering. Another approach proposed by the team
was using CNNs as ResNet18, ResNet34 and ResNet50 pre-trained models. All results obtained by the
team are shown in Table 3 and consist in the following methods:

• Submission ID 545: t-SNE clustering on Painters embeddings



• Submission ID 550: ensamble method combining ResNet18, ResNet34 and ResNet50 models
trained on pseudo-labeled data

• Submission ID 590: ResNet34 model trained on pseudo-labeled data
• Submission ID 548 and 549: ResNet50 and ResNet18 trained on 224×224 images from the training

set, and after pseudo-labeling the test data, they were trained on a combination of the trainig
data and 200 pseudo-labeled images

• Submission ID 547 and 225: ResNet34 network trained only on the training data, without incor-
porating pseudo-labels

• Submission ID 546: k-means clustering algorithm

Biomedical Imaging Goa [11] used a pre-trained ResNet-50 for feature extraction. Furthermore,
they are clustered using Gaussian Mixture Model (GMM). The training involved experimenting with
GMMs that had 3 components, while during testing, the GMMs were assumed to have 4 components.
Different methods were used to initialize the means of the components in the GMMs, including k-means,
k-means++, random initialization, and random selection from the data. All results obtained by the team
are shown in Table 3 and consists in the following methods:

• Submission ID 307: k–means clustering algorithm for initialization
• Submission ID 321: k—means++ clustering algorithm in which the first clusters are chosen

randomly while the cluster centers in the subsequent iterations are chosen based on the maximum
squared distance

• Submission ID 324: chooses the component means randomly
• Submission ID 323: chooses random data points as component means

KDE-med-lab [10] employed the K-means algorithm to cluster features extracted from various CNNs,
utilizing unsupervised learning. The baseline method employs DenseNet-121, while the proposed
method combines five different deep neural network models: ResNet18, DenseNet-121, Inception-
ResNet V2, EfficientNetB0, and Inception V3. Both methods use K-means clustering to identify intrinsic
groups within the unlabeled dataset and draw inferences from these groups. In the proposed model,
lung images are preprocessed using a U-net to apply masks, enhancing the focus on relevant areas of the
images before passing the features through K-means clustering. This preprocessing step aims to improve
the model’s ability to identify meaningful patterns in the data, thereby enhancing the performance of
unsupervised learning. The results achieved by the team are presented in Table 3 and consist in the
following methods:

• Submission ID 270: Densenet 121 (baseline method)
• Submission ID 237: Densenet 121 + U–net
• Submission ID 257: Inception-Resnet V2 + U–net
• Submission ID 480: ResNet18 + U–net
• Submission ID 254: EfficientNetB03 + U–net
• Submission ID 271: Inception V3 + U–net

GAN-Amis [15] developed a methodology to detect fingerprints CNNs and various pre-trained deep
learning models. They first constructed and preprocessed the dataset, normalizing pixel values and
one-hot encoding the labels for three classes. Their custom CNN architecture included multiple
convolutional layers with increasing filters, batch normalization, ReLU activation, and max pooling,
followed by fully connected layers and a softmax output layer. The model was trained with the Adam
optimizer and categorical cross-entropy loss over 200 epochs. The final layer was removed to use
the penultimate layer’s activations as feature extractors, which were then clustered using K-means
to identify groups corresponding to different generative models. Additionally, the authors employed
pre-trained models—EfficientNet, ResNet50, MobileNetV2, VGG19, and Xception—fine-tuning them
on the development dataset. They removed the final classification layers to use the extracted features
for K-means clustering. This multi-architecture approach aimed to enhance the robustness of their
methodology by leveraging the strengths of different models to detect unique fingerprints left by



generative models in the synthetic lung CT images. The results achieved by the team are presented in
Table 3 and consist in the following methods:

• Submission ID 520: EfficientNet
• Submission ID 518: MobileNetV2
• Submission ID 517: Xception
• Submission ID 516: ResNet50
• Submission ID 513: VGG19
• Submission ID 277: custom CNN

Csmorgan [12] aimed to identify fingerprints of generative models in CT images through a multi-step
approach. Initially, noise was reduced in the CT images using morphological operations. They then
employed pre-trained BLIP2 and DINOv2 architectures for feature extraction. The results achieved by
the team are presented in Table 3 and consist in the following methods:

• Submission ID 446: a combination of feature sets from BLIP2 and DINOv2, referred to as the
’multiformer’ architecture, was used with various augmentation techniques (center cropping,
random affine transformations, resizing, and normalizing). K-means and agglomerative clustering
were then used to assign labels to each subject.

• Submission ID 447: a combination of feature sets from BLIP2 and DINOv2, referred to as the
’multiformer’ architecture, was used with various augmentation techniques (random cropping,
horizontal flipping, rotation, and color jittering to introduce variations and improve robustness).
K-means and agglomerative clustering were then used to assign labels to each subject.

• Submission ID 451 and 452: a combination of feature sets from BLIP2 and DINOv2, applied
Principal Component Analysis (PCA) and autoencoders for feature dimensionality reduction,
respectively, before using the same clustering algorithms for label assignment.

• Submission ID 453: BLIP base model for feature extraction. The normalized feature sets were
then clustered for labeling.

• Submission ID 454: LIP pre-trained ViT large model for feature extraction. The normalized feature
sets were then clustered for labeling.

• Submission ID 456 and 458: ensemble voting and reranking based on the decisions from previous
submissions. Ensemble voting combined results at the decision level using majority voting
to determine the final classification, enhancing accuracy and reliability. Reranking employed
Density-Based Spatial Clustering (DBSCAN) to identify clusters, ensuring each point within a
cluster had a dense neighborhood, thereby separating dense regions from sparser areas.

AI Multimedia Lab [14] built upon the method the method proposed in the previous edition [16]
and proposed various methods to detect the "fingerprints" of generative models in synthetic images.
The approach involved pattern recognition and feature extraction to analyze the embedded features in
generated images. They used two main feature extraction methods: transfer learning with pre-trained
models and a handcrafted technique. The pre-trained models, originally trained on ImageNet, included
VGG-16, ResNet50, MobileNetV2, EfficientNet, and DenseNet-121. These models were selected for their
efficacy in capturing complex patterns and hierarchical features. The extracted features were then
reduced in dimensionality using Principal Component Analysis (PCA) to manage high dimensionality.
Additionally, a handcrafted method using Local Binary Pattern (LBP) was employed for extracting
local spatial patterns and grayscale contrast. For clustering, the authors used k-means and hierarchical
clustering to group images based on similarity. They compared the clustering outcomes to validate
the effectiveness of the feature extraction methods.The results achieved by the team are presented in
Table 3 and consist in the following methods:

• Submission ID 327: feature extraction using DenseNet-121 and hierarchical clustering
• Submission ID 326: feature extraction using DenseNet-121 and k–means for clustering
• Submission ID 328: handcrafted feature extraction –LBP – and hierarchical clustering
• Submission ID 329: handcrafted feature extraction –LBP – and k–means for clustering



Figure 3: Distribution of the average F1-scores obtained by the participating teams to the first sub-task "Identify
training data fingerprints".

• Submission ID 330: feature extraction using MobileNetV2 and hierarchical clustering
• Submission ID 331: feature extraction using MobileNetV2 and k–means for clustering
• Submission ID 332: feature extraction using VGG–16, feature reduction using PCA (number of

components = 95%)
• Submission ID 333: feature extraction using VGG–16, feature reduction using PCA (number of

components = 95%) and k–means for clustering
• Submission ID 334: feature extraction using ResNet50 and hierarchical clustering
• Submission ID 335: feature extraction using ResNet50 and k–means clustering

5. Discussion

For the first sub-task, "Identify training data fingerprints", a variety of methods were employed, ranging
from advanced image preprocessing techniques to deep learning models. Various techniques such as
binarization, histogram equalization, feature extraction, noise reduction, noise addition, colorization
were used to accentuate distinct features. Different neural network architectures, including ResNet [17],
MobileNet [18], Densenet [19], Effiecientnet [20] and autoencoders were used for feature extraction
and classification. Additionally, strategies like majority voting, perfect agreement and agglomerative
clustering were used. The distribution of the F1–scores for the two models obtained by the participating
teams is depicted in Figure 3. The obtained F1-scores range from 0.019 to 0.666 with a median value
of 0.5. Inoue Koki team achieved the higher six F1-scores, ranging from 0.657 to 0.667. The top-
performing average F1-score of 0.667 was achieved by employing the ResNet-152 model, which used
images preprocessed through histogram equalization as input.

Comparing the results for the two models, it was observed that most teams achieved slightly higher
F1 scores for the first model. This indicates that they were better able to detect the training images for
this generative model. We are not revealing the two models as they will be featured in future editions.
However, these insights will contribute to enhancing the organization of upcoming editions. Analyzing
the rest of the metrics obtained by the participant teams, we observed that certain teams achieved
notably high true positive rates (recall), meaning that they managed to correctly identify the images
used as being used for training. Looking forward on this runs and analyzing the accuracy values, we
observed that it doesn’t exceed much the random value of 0.5. This suggests that while the proposed
methods succeeded in identifying used images as being used, they also misclassified a considerable
portion of unused images as used for training.

For the second sub-task, "Detect generative models fingerprints", most teams used pre-trained deep
learning models such as ResNet, DenseNet, EfficientNet, MobileNetV2, VGG, and Inception for feature



Table 3
Summary on the participant submissions and their results for the second sub-task. – Detect generative models’
fingerprints

rank Team ID # Run ID ARI

#1 SDVAHCS/UCSD 545 2 1
#2 AI Multimedia Lab 330 5 0.997085
#3 AI Multimedia Lab 327 1 0.996517
#4 AI Multimedia Lab 326 2 0.934709
#5 AI Multimedia Lab 331 6 0.900844
#6 Csmorgan 447 2 0.9000159
#7 SDVAHCS/UCSD 550 6 0.885478
#8 SDVAHCS/UCSD 590 8 0.877797
#9 SDVAHCS/UCSD 548 4 0.851990
#10 SDVAHCS/UCSD 549 6 0.851362
#11 Csmorgan 446 1 0.813749
#12 AI Multimedia Lab 334 9 0.722857
#13 AI Multimedia Lab 333 8 0.654021
#14 AI Multimedia Lab 335 10 0.645386
#15 Biomedical Imaging Goa 307 1 0.638117
#16 SDVAHCS/UCSD 547 1 0.577203
#17 SDVAHCS/UCSD 225 4 0.577203
#18 AI Multimedia Lab 332 7 0.552682
#19 AI Multimedia Lab 329 4 0.5037
#20 Biomedical Imaging Goa 321 2 0.434414
#21 Csmorgan 452 4 0.365604
#22 AI Multimedia Lab 328 3 0.329388
#23 Biomedical Imaging Goa 324 4 0.272975
#24 Csmorgan 451 3 0.267530
#25 Csmorgan 458 8 0.232390
#26 KDE-med-lab 237 2 0.226339
#27 Csmorgan 456 7 0.178545
#28 KDE-med-lab 248 3 0.166582
#29 KDE-med-lab 257 5 0.123426
#30 KDE-med-lab 271 9 0.091818
#31 KDE-med-lab 258 6 0.060058
#32 KDE-med-lab 254 4 0.045286
#33 KDE-med-lab 270 8 0.038242
#34 KDE-med-lab 259 7 0.014388
#35 KDE-med-lab 480 10 0.013856
#36 SDVAHCS/UCSD 546 3 0.003375
#37 Csmorgan 454 6 0.001776
#38 Csmorgan 453 5 0.001313
#39 KDE-med-lab 236 1 0.000816
#40 GAN-Amis 516 5 0.000079
#41 Biomedical Imaging Goa 323 3 0.000046
#42 GAN-Amis 518 7 -0.000010
#43 GAN-Amis 520 8 -0.000546
#44 GAN-Amis 277 1 -0.000615
#45 GAN-Amis 513 4 -0.000993
#46 GAN-Amis 517 6 -0.002019

extraction. These models were chosen for their proven efficacy in capturing complex patterns and
hierarchical features in images. A variety of clustering algorithms were employed across the methods.
K-means was the most commonly used clustering algorithm, but other techniques like hierarchical
clustering, Gaussian Mixture Models (GMM), and t-SNE were also applied to group the extracted



Figure 4: Distribution of the ARI scores obtained by the participating teams to the second sub-task "Detect
generative models’ fingerprints".

features based on their similarities. Several teams used dimensionality reduction techniques like
Principal Component Analysis (PCA) to manage the high dimensionality of the extracted features,
ensuring the retention of essential information while reducing computational complexity. Many
approaches involved combining multiple models or techniques to enhance robustness. For example,
some teams used ensemble methods or combined different neural network architectures to improve
feature extraction and clustering accuracy. These commonalities reflect a comprehensive approach
to identifying generative model fingerprints by leveraging a combination of advanced deep learning
techniques, traditional pattern recognition methods, and thorough experimental validation.

The distribution of the ARI scores obtained by the participating teams is depicted in Figure 4. The
obtained ARI scores range from -0.00201 to 1. The SDVAHCS/UCSD team achieved the highest possible
ARI score of 1, indicating perfect clustering of the synthetic images. This success was attained by
applying t-SNE clustering on Painters embeddings, a model trained to predict painters from artwork
images. The next four highest ARI scores, ranging from 0.9008 to 0.9970, were achieved by the task
organizing team, AI Multimedia Lab. Additionally, Csmorgan also managed to achieve an ARI above
0.9, demonstrating significant accuracy in their clustering results. Negative ARI values indicate that
the clustering performed worse than random, suggesting that GAN-Amis grouped the data points in a
way that significantly deviates from the ground truth. This result implies that the models proposed by
the team may not fully understand the underlying structure of the data, and both the models and the
feature extraction methods need refinement. These results offer valuable insights into the complexities
and challenges of the datasets. The low ARI value indicates that the clustering performance is close to
what would be expected by random chance. This means that the proposed algorithms failed to find
meaningful and correct groupings of the features. Essentially, the clustering results are equivalent to
randomly assigning data points to clusters, demonstrating that the models did not successfully capture
the underlying features of the provided data.

6. Conclusions

The second edition of the ImageCLEFmedical GANs task introduced two sub-tasks for participants: a
prediction-based task utilizing both real and generated images, and a clustering task using only generated
images. Ten teams participated in the first sub-task, and seven teams participated in the second sub-task.
A range of method were proposed for the first sub-task, "Identify training data fingerprints", including
advanced image preprocessing techniques and deep learning models. Techniques such as binarization,



histogram equalization, and feature extraction were employed to enhance features, with strategies
like majority voting and agglomerative clustering improving results. F1-scores ranged from 0.019 to
0.666, with the Inoue Koki team achieving the highest score of 0.667 using the ResNet-152 model on
histogram-equalized images. For the second sub-task, "Detect generative models’ fingerprints", the
majority of methods included using a pre-trained CNN for feature extraction. Clustering algorithms such
as k–means, hierarchical clustering, GMM and t-SNE were applied to group the extracted features, The
SDVAHCS/UCSD team achieved a perfect ARI score of 1 using t-SNE clustering on Painters embeddings.
High ARI scores from other teams, such as csmorgan, AI Multimedia Lab, further illustrated the
effectiveness of combining multiple models and techniques. However, negative ARI values highlighted
challenges, indicating that some models failed to understand the data’s underlying structure, pointing
to areas needing refinement.

The results highlight the complexities and challenges in both sub-tasks, offering valuable directions
for enhancing future editions of the task. Future editions of this task will broaden the scope of synthetic
medical data studies by varying aspects such as datasets and generation methods. Additionally, based
on the insights we gained during the first two editions, we plan to introduce new tasks focused on
different aspects of the privacy and security of the generated data. We will also investigate whether
any alternative metrics for evaluation could be more suitable for the already proposed tasks.
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