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Abstract
In this paper, we present our solution for the ImageCLEF 2024 Challenge MEDIQA-MAGIC task, which addresses
the problem of Multimodal and Generative Telemedicine (MAGIC) in dermatology. We report the results of
directly prompting existing small-scale multimodal models (moondream2 and TinyLLaVA) and evaluate the
impact of fine-tuning these models with domain-specific knowledge. The top-performing model, based on the
Moondream model and fine-tuned with domain-specific knowledge, achieved a 𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛 score of 8.629.
Our findings highlight the effectiveness of these approaches in improving model performance for dermatological
applications.
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1. Introduction

The advancement of telecommunication technologies, coupled with the increasing demand for healthcare
services and the impact of the recent pandemic, has significantly accelerated the adoption of remote
clinical diagnosis and treatment modalities. In addition to synchronous consultations with healthcare
providers via telephone or video conferencing, asynchronous communication methods such as emails
and chats have demonstrated considerable cost-effectiveness and convenience.

In this context, the Multimodal and Generative Telemedicine (MAGIC) initiative this year concentrated
on the field of dermatology. The inputs for the ImageCLEF 2024 Challenge MEDIQA-MAGIC task [1]
included text, which provided clinical context and queries, as well as one or more images. The primary
challenge was to generate a suitable textual response to the given queries.

In this paper, we present an attempt to solve the task using existing multimodal models. We focus
specifically on small-scale models for image-text-to-text generation. Due to their size, those models
are suitable for deployment on portable devices, enabling their application in telemedicine scenarios.
Device-only models offer a valuable solution for countries with limited or prohibitively expensive
internet access.

2. Related work

In the last years, we have witnessed enormous progress in artificial intelligence (AI) mainly in the field
of natural language processing (NLP) and computer vision (CV).

In 2017 Ashish et al. [2] presented Transformer architecture, encoder-decoder model, a key element of
which is a self-attention mechanism that helps the model focus on more important parts of the sequence,
giving more weight to specific words based on their relevance to the task. As the computational
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capabilities of GPU (Graphics Processing Unit) increased those two aspects have been crucial in the
evolution of Large Language Models (LLMs). One of the initial LLM models is BERT (Bidirectional
Encoder Representations from Transformers) was introduced in 2019 [3]. It has achieved state-of-the-art
results in numerous NLP benchmarks and tasks. The era of even larger LLMs began in 2020, introducing
models like GPT-3 provided by OpenAI [4] that was incredible good at generating human text. Today
open-source LLMs such as LLaMA [5], Llama 2 [6], Vicuna [7], and Mistral 7B [8] are also available.

Transformer models have found also numerous valuable applications in the field of computer vision,
where so far mainly architectures based on convolutional neural networks have been used. Vision
Transformer architecture (ViT) was introduced [9] that treats an image as a sequence of patches and
processes these patches using self-attention, allowing the model to capture long-range dependencies and
global context. It excellent results compared to state-of-the-art convolutional networks while requiring
substantially fewer computational resources to train. In 2021 DALL-E [10] and Stable Diffusion [11]
became state-of-the-art text-to-image generation models. CLIP (Contrastive Language-Image Pre-
training) [12] model which efficiently learns visual concepts from natural language supervision and can
act as a visual encoder and SigLip [13] model, compared to CLIP uses a simpler but computationally
cheaper loss function, were also introduced.

In real-world cases, we analyze data from many different sources, so there has been increased interest
in visual language models (VLMs). They combine visual and textual information to understand and
generate content and are good choices for downstream tasks such as Visual Question Answering (VQA),
image captioning as well as medical report generation. Most of the recent VLMs architectures consist
of three components 1) a visual representation backbone, 2) a vision-language projector, and 3) a
language model [14]. In this approach, a (pre-trained) visual backbone is used to map an input image to
the sequence of patch features that are then projected individually into the embedding space of the
language model. To better align LMMs with human preferences, recent works, such as LLaVA [15]
and InstructBLIP [16], propose fine-tuning VLMs with visual instruction tuning data, which greatly
enhances models’ zero-shot capabilities.

To adjust VLMs for medical purposes many approaches were presented [17] For example LLaVa-Med
model [18] authors proposed a novel curriculum learning method for adapting LLaVA to the biomedical
domain using their self-generated biomedical multi-modal instruction-following dataset. Another
existing solution is Visual Med-Alpaca [19], a system that connects multiple image captioning models
with an LLM, using a classifier to determine if or which biomedical captioning model is responsible for
the image. Many of the medical VLM’s have focused on radiology images - RaDialog [20] is a novel
approach to integrating advanced vision-language models for the generation, interactive modification,
and analysis of radiology reports.

However, we need to consider the computation bottleneck usually introduced by LLMs, which are
one of the core components of recent VLM architectures. Recent research shows that small-scale LLMs
such as Phi-2 [21], TinyLlama [22] and StableLM2 [23] have reached impressive performances while
maintaining reasonable compute budgets. Existing small vision language models such as TinyLLaVA
[24] or moondream2 [25] show promising results.

3. Proposed solution

Our objective was to evaluate the efficacy of existing multimodal solutions within the provided use
case. Given our limited access to extensive computational infrastructure, we elected to concentrate on
small-scale Large Multimodal Models (LMMs), specifically Moondream 2 and TinyLLaVA. These models
can be successfully run and fine-tuned on a private computer, making them ideal candidates for our
research. Fine-tuning was made possible by access to the training dataset provided by the challenge
organisers.



3.1. Dataset

The dataset provided by the challenge’s organizers consisted of 270 train and 43 validation clinical
dermatology textual queries with an associated image, as well as the answers to the queries (after
downloading from Reddit) [26]. Finally, the test split comprised 78 clinical dermatology textual queries
with an associated image.

3.2. Models

3.2.1. moondream 2

Moondream 2 is an open-source vision-language model [25]. Despite its modest size of 1.86 billion
parameters, which is relatively small considering that most effective models typically start at 7 billion
parameters, it is specifically designed for efficient operation on devices with limited computational
resources, such as Raspberry Pi, edge devices, or mobile phones. Like conventional vision-language
models, moondream 2 interprets visual data to generate textual responses based on the provided
information. It has demonstrated utility in various applications, including security and retail.

Moondream 2 leverages weights derived from SigLIP and Phi-1.5. Phi-1.5 is a compact language
model with 1.3 billion parameters and a transformer-based architecture, trained on the LLAVA training
dataset. SigLIP (Sigmoid Loss for Language Image Pre-Training) is a method that facilitates learning by
sequentially analyzing images and their captions, enhancing speed and efficacy, especially when han-
dling large datasets. Similar to the CLIP (Contrastive Language-Image Pre-training) model, Moondream
2 differentiates itself by substituting the softmax loss used in CLIP with a simple pairwise sigmoid loss.
This alteration ensures improved performance by focusing exclusively on image-text pairs, eliminating
the necessity for a global view of all pairwise data within a batch, thereby increasing the efficiency and
speed of the training process.

3.2.2. TinyLlava

TinyLLaVA presents a novel framework that integrates smaller-scale Large Language Models (LLMs)
with compact vision encoders through an intermediate connector [24]. This framework employs models
such as TinyLlama, StableLM-2, and Phi-2, in combination with vision encoders like CLIP and SigLIP.
The connector, a two-layer Multi-Layer Perceptron (MLP) with GELU activation, facilitates effective
communication between the vision encoders and the small-scale LLMs. This architecture yields a
resource-efficient multimodal system without compromising performance quality. The TinyLLaVA
framework is inspired by the design principles of LLaVA but provides a generalized implementation.

The tiny-llava-v1-hf model has undergone pretraining on two datasets: the LLaVA dataset and the
ShareGPT4V dataset. The pretraining process involved a blend of images and annotations from the
following subsets: the 558K LAION-CC-SBU subset, the SAM dataset, and the COCO dataset. The model
configuration used in our solution includes TinyLlama/TinyLlama-1.1B-Chat-v1.0 integrated with a
CLIP vision encoder.

3.3. Experimental settings

We initiated our investigation by directly prompting the specified models, acknowledging their limited
subject-related knowledge. After testing several potential prompts, we narrowed our focus to the
two prompts detailed in Table 1 for subsequent experiments. Evaluation metrics calculated during
experiments (𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛 and 𝐵𝐸𝑅𝑇𝑆𝑐𝑜𝑟𝑒𝑒𝑛) were the same as used in the challenge [1].

Utilizing evaluation metrics, we observed comparable results, with moondream 2 slightly outperform-
ing TinyLLaVA in terms of 𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛. Given the encouraging performance of these small-scale
models, we proceeded to fine-tune Moondream 2 using a train dataset. The fine-tuning process involved
extending the initial queries with the provided prompt templates and experimenting with different
prompting strategies. The images in the dataset were augmented through a series of transformations,
including rotation, horizontal flipping, and colour jitter.



Additionally, we varied the number of epochs for fine-tuning, carefully considering the dataset size
to avoid overfitting. This approach optimized model performance and enhanced the model’s awareness
of dermatology-specific knowledge, making it more proficient in the domain.

Table 1
Prompts templates.

ID Prompt template

1 USER: <IMAGE> This is additional information about the dermatology issue on the image: <QUERY>
What dermatological disease is on the image and how can it be treated?

2 USER <IMAGE> Patient wants to find out what dermatological disease he suffers from. Considering
patient additional description: <QUERY> Answer two questions: 1. What dermatological disease is on the
image? 2. How can it be treated?

4. Discussion of the results

Table 2 presents the results of all submitted runs on a test set, sorted in descending order of their
𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛 score. The top-performing model uses Moondream 2 architecture, prompt number
1, and is fine-tuned for 10 epochs. The next three models, fined-tuned for fewer epochs, achieve a
significant drop in performance compared to the top-performing model. The remaining four models,
which do not use fine-tuning, achieve lower 𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛 scores, ranging from 1.614 to 1.404.

The provided results confirm that fine-tuning is an important factor in achieving high 𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛

scores. The top four submissions, which are all run on fine-tuned Moondream 2 models, outperform the
remaining four submissions that are run by directly prompting Moondream 2 and TinyLLaVA models.
Additionally, the number of epochs used for fine-tuning also appears to have a significant impact on
performance. The top-performing model is fine-tuned for the highest number of epochs (10 epochs)
and the 𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛 score achieved by it is almost 6 times higher than for the same model without
fine-tuning. However, we are aware that there is still much room for improvement.

The results do not show a clear pattern in terms of the impact on the performance of prepared prompt
templates. Models when prompted directly without fine-tuning achieved slightly higher results with
prompt number 2. However, when the Moondream 2 model was fine-tuned, using prompt number 1
resulted in a significantly higher 𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛 score.

During the qualitative analysis of the top-performing model, over-fitting was observed. Ten out
of the seventy-eight answers generated by this model on the test set, presented partially in Table 3,
are highly repetitive (identical or almost identical). These answers are almost the same as one of the
answers from the train set (also shown partially in Table 3).

5. Conclusions

In conclusion, it was verified that small VLMs can be effectively applied to solve the VQA task in the
dermatological domain. The results suggest that fine-tuning small-scale VLMs is an important factor in
achieving a high 𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛 score. This process enhances the model’s awareness of dermatology-
specific knowledge, making the models more proficient in this domain. Utilizing subject-domain
knowledge may significantly increase the accuracy of results. However, it can also cause overfitting,
potentially leading to the generation of misleading, repetitive answers that may not be relevant to the
current context.

Future directions for improvement could include exploring other small-scale multimodal models,
refining prompts used for current models, or using more advanced fine-tuning techniques. Another
direction of experiments could be exploring large-scale VLMs. Nevertheless, we need to consider that
deployment of these models on edge devices could be impossible. Furthermore, while the models
show promise in generating relevant responses, clinical validation of models’ outputs to ensure their



Table 2
Results on test set sorted from highest to lowest 𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛 score.

Run ID
Model details Scores

Model Prompt version Fine-tuned Num. of epochs 𝑑𝑒𝑙𝑡𝑎𝐵𝐿𝐸𝑈𝑒𝑛 𝐵𝐸𝑅𝑇𝑆𝑐𝑜𝑟𝑒𝑒𝑛

6 moondream2 1 YES 10 8.629 0.848
2 moondream2 1 YES 5 4.600 0.843
3 moondream2 2 YES 5 3.420 0.846
4 moondream2 1 YES 2 2.231 0.834
8 moondream2 2 NO N/A 1.614 0.843
1 moondream2 1 NO N/A 1.502 0.839
7 tiny-llava-v1-hf 2 NO N/A 1.487 0.844
5 tiny-llava-v1-hf 1 NO N/A 1.404 0.839

Table 3
Examples of answers, which were generated by the Moondream 2 model fine-tuned for 10 epochs, that are
identical or very similar to an answer from the train dataset.

Set Encounter id Answer

Train 11htonk It is a case of eczema due to dry skin (xerosis). [...] Use topical steroid cream twice
daily for 2-4 weeks and oral antihistamines if needed.

Test 11urq4h It is a case of eczema due to dry skin (xerosis). [...] Use topical steroid cream twice
daily for 2-4 weeks and oral antihistamines if needed.

Test 11xqiex It is a case of eczema due to dry skin (xerosis). [...] Use topical steroid cream twice
daily for 2-4 weeks and oral antihistamines if needed.

Test 11q3s37 t is a case of eczema due to dry skin (xerosis). [...] Use topical steroid cream twice
daily for 2-4 weeks and oral antihistamines if needed.

Test 11gqgnw It is a case of dermatitis due to dry skin (xerosis). [...] Use topical steroid cream twice
daily for 2-4 weeks and oral antihistamines if needed.

Test 125d5do Most probably it is a case of eczema due to dry skin (xerosis). [...] Use topical steroid
cream twice daily for 2-4 weeks and oral antihistamines if needed.

Test 11hfupz It is a case of eczema due to dry skin (xerosis). [...] Use topical steroid cream twice
daily for 2-4 weeks and oral antihistamines if needed.

Test 11x2q0q It is a case of eczema due to dry skin (xerosis). [...] Use topical steroid cream twice
daily for 2-4 weeks and oral antihistamines if needed.

Test 11rxhph It is a case of eczema due to dry skin (xerosis). [...] Use topical steroid cream twice
daily for 2-4 weeks and oral antihistamines if needed.

Test 1248w9o It is a case of eczema due to dry skin (xerosis). [...] Use topical steroid cream twice
daily for 2-4 weeks and oral antihistamines if needed.

Test 11tjsat It is a case of eczema due to dry skin (xerosis), contact, allergy, or atopic eczema. [...]
Use topical steroid cream twice daily for 2-4 weeks and oral antihistamines if needed.
[...] as a possible diagnosis.

alignment with clinical guidelines and standards is essential. Collaboration with dermatology experts
and clinicians could be crucial in real-world scenarios.

It is also worth mentioning that while these models can provide support during telemedicine consul-
tations or prescreening, they should not fully substitute an appointment with a specialist.
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A. Online Resources

The source code of our approach is available via GitHub.
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