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Abstract
In the ever-changing realm of medical image processing, ImageCLEF brought a new dimension with the Identifying
GAN Fingerprint task, catering to the advancement of visual media analysis. This year, the author presented the
task of detecting training image fingerprints to control the quality of synthetic images for the second time (as
task 1) and introduced the task of detecting generative model fingerprints for the first time (as task 2). Both tasks
are aimed at discerning these fingerprints from images, on both real training images and the generative models.
The dataset utilized encompassed 3D CT images of lung tuberculosis patients, with the development dataset
featuring a mix of real and generated images, and the test dataset. Our team ’CSMorgan’ contributed several
approaches, leveraging multiformer (combined feature extracted using BLIP2 and DINOv2) networks, additive
and mode thresholding techniques, and late fusion methodologies, bolstered by morphological operations. In
Task 1, our optimal performance was attained through a late fusion-based reranking strategy, achieving an F1
score of 0.51, while the additive average thresholding approach closely followed with a score of 0.504. In Task 2,
our multiformer model garnered an impressive Adjusted Rand Index (ARI) score of 0.90, and a fine-tuned variant
of the multiformer yielded a score of 0.8137. These outcomes underscore the efficacy of the multiformer-based
approach in accurately discerning both real image and generative model fingerprints.
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1. Introduction

In 2004 ImageCLEF [1] was established for medical imaging which has pioneered advancements in this
field. After it advanced to its second edition [2], it marked a significant evolution by the inclusion of
medical Generative Adversarial Networks (GANs) tasks. And, the first iteration of its kind came in 2023.
This task aimed to explore a specific hypothesis which was that the GANs might embed "fingerprints" of
real images within the synthetic medical images they generate. Confirming this hypothesis could have
significant implications. It might lead to a reconsideration of the copyright status of synthetic images.
This would challenge the conventional view that synthetic images are entirely artificial. In recent years,
there has been a substantial surge in the application of GANs and diffusion models within the medical
domain [3, 4, 5]. These sophisticated architectures are capable of generating synthetic images and
facilitating their translation across different modalities. This burgeoning utilization underscores the
transformative potential of GANs and diffusion models in enhancing medical imaging and diagnostics.
Medical imaging professionals have been exploring various applications of GANs in medical image
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analysis, such as creating artificial medical images and distinguishing between real and fake images.
They have developed effective architectures like "Attention GAN" [6] and "ABC GAN" [7] to produce
lifelike medical images, which assist with various tasks, including training AI models and protecting
patient privacy. However, despite these advancements [8, 9], a major challenge remains: differentiating
between real and synthetic medical images. This is an area where scientists continue to focus their
efforts. Generative models [10, 11, 12, 13], a recent AI innovation, have driven significant advancements
across multiple domains [14, 15, 16], including generative medical imaging [17, 18, 19], such as authors
from [17] shows that synthesizing high-resolution images of skin lesions with Generative Adversarial
Networks (GANs) can address the lack of labeled data and skewed class distributions in skin image
analysis. Using progressive growing, they produce realistic dermoscopic images that are difficult for
expert dermatologists to distinguish from real ones, outperforming other GAN architectures like DCGAN
and LAPGAN. Synthetic biomedical images serve vital roles in research, healthcare professional training
[20], and patient care enhancement from anisotropic diffusion [21] to AnoGAN, an unsupervised
deep convolutional GAN to identify anomalies in imaging data for disease markers, demonstrated
by accurately detecting anomalies in retinal OCT images [22]. Additionally recent advancement
demonstrates that [23] discriminating between malignant and benign lung nodules remains challenging,
necessitating CAD systems to assist radiologists. Using unsupervised learning with Deep Convolutional-
Generative Adversarial Networks (DC-GANs), they aim to generate realistic lung nodule samples,
hypothesizing that difficult-to-differentiate imaging features will be highly discriminative, thereby
improving diagnostic accuracy, training radiologists, and generating realistic samples for deep network
training.They address challenges such as data scarcity, cost, and ethical considerations associated with
real patient data acquisition.

The 2024 ImageCLEFmedical GANs Task provides a forum to investigate the influence of GANs on the
generation of artificial biomedical images, facilitating the examination of the potential advantages and
ethical concerns of their application. This includes two basic objectives: (1) how to identify fingerprints
of training data in synthetic biomedical images (inspection), and (2) how to find fingerprints of different
generative models on images that they are designed to generate (differentiation). This essentially
allows researchers to compare models and highlight the characteristics, patterns, or features present in
synthetic images that would separate the models other than that they might not be alike. This dataset
includes axial slices of 3D CT images of around 8000 lung tuberculosis patients and acts as a great
resource for research.

Task 1 aims to identify the real images that GANs’ images were generated from, so as to address
privacy and security concerns associated with the use of artificial images [18]. The datasets were
provided by the organizers, with a development set divided into marked artificial and real images with
training while mentioning no information on the percentage of the used and unused images from
this set is disclosed. This extensive dataset is useful to rigorously test the hypotheses and push the
community forward with discoveries in biomedical image synthesis.

Task 2 is to detect the fingerprints of generative models in GANs-generated images. The authors
of ImageCLEFmed GANs argue that one way to understand this behavior is to envision that each AI
model imparts its own distinct “signature” on the images it generates. So, here, our aim is to reveal
these hidden signatures to identify what makes each model unique. It’s like reading differently styled
handwriting from different authors but in the AI area. We do not simply aim to differentiate models
but rather to gain a deeper understanding of them, by examining the hidden patterns and subtleties
contained within the synthetic images.

2. Datasets

In the second edition of the ImageCLEFmed GANs challenge, the organizers presented two tasks:
"Identify training data fingerprints" and "Detect generative models’ fingerprints."

For the first task, the hypothesis is that when images are generated using diffusion models, the
original real images leave specific fingerprints in the generated models. If this hypothesis is true, it



could impose additional restrictions on publishing or sharing such images publicly, as they would be as
sensitive as the original images. Conversely, if the hypothesis is false, it could lead to a vast dataset of
artificially generated images using diffusion models, potentially revolutionizing the medical imaging
field.

Figure 1: Examples of CT images: (a) from the dataset for identifying training data fingerprints; (b) not from
the dataset for identifying training data fingerprints; (c) generated from the dataset for identifying training data
fingerprints, and (d) generated from the dataset for detecting generative model fingerprints.

The second task, although different in its subjective nature, shares a similar objective: identifying
generative model fingerprints in images produced by various diffusion models. The challenge is to determine
whether these models imprint unique fingerprints in the generated images. The organizers did not
disclose the number of diffusion models used, but the approach remains consistent regardless of the
quantity.

The author of the ImageCLEFmed GANs task provided both a development set and a training set. For
Task 1, there were two datasets consisting of axial slices of 3D CT images from approximately 8,000 lung
tuberculosis patients. The artificial slice images, sized at 256×256 pixels, were generated using various
undisclosed generative adversarial networks and diffusion neural networks. Over 12,000 generative
images were included, and the test set contained a total of 8,000 images. For Task 2, a dataset comprising
3,000 generated image files was provided. Figure 1 depicts examples of images from the original dataset.

3. Proposed Methodology

Here we are going to explain the details of the approaches utilized in our submission for both tasks:
“Identify training data fingerprints” and “Detect generative models’ fingerprints”. For the task of
identifying training data fingerprints, we first performed morphological operations to reduce noise
in the CT images. This preprocessing step was crucial for improving the quality of synthetic medical



images generated by GANs. Subsequently, we implemented BLIP and DINOv2 as image signature
generators. As illustrated in Figure 2, these morphological operations helped control the quality of
the images. After preprocessing, we conducted individual feature rankings for each model and then
concatenated the feature rankings from both models. We also performed dimensionality reduction on
the concatenated features to enhance the ranking process. Finally, we applied late fusion to combine
the results from the previous steps, optimizing the identification of training data fingerprints.

Figure 2: A block diagram of the sequential processing steps (a) and detailed schematic of the the developed
system for identifying training data and detecting generative models’ fingerprints (b). The process in (b) begins
with morphological operations to reduce noise in CT images, followed by using BLIP and DINOv2 for image
signature generation. After concatenating and reducing the dimensionality of features using an encoder and
PCA, late fusion is applied to optimize the identification of training data.

3.1. Morphological operations

During image processing image opening is widely utilized for effective morphological operation. It
primarily aimed to remove small objects from 3D axial CT images. But at the same time preserves the
size and shape of larger structures. Which is an effective noise-releasing mechanism. As illustrated in
Figure 3, electronic noise in CT images often originates from the combination of the detector system and
the reconstruction kernel, with sharper kernels typically resulting in noisier images. According to [24],
this noise is a consequence of efforts to enhance image quality without increasing the radiation dose.
Our hypothesis is that applying image opening will eliminate small, noisy, and irrelevant details, thereby
potentially enhancing the efficiency of fingerprint detection in medical images. By preserving key
features, image opening maintains the integrity of essential image details, ensuring that the important
structures remain intact while the noise is reduced.

Image opening consists of two main steps erosion (Eq. 1) followed by dilation (Eq. 2). Image opening
(3) can be represented as:

𝐴⊖𝐵 = {𝑧 ∈ 𝐸|𝐵𝑧 ⊆ 𝐴} (1)

𝐴⊕𝐵 =
⋃︁
𝑏∈𝐵

𝐴𝑏 (2)

𝐴 ∘𝐵 = (𝐴⊖𝐵)⊕𝐵 (3)

Here in equation (1) above image erosion has been performed, where 𝐴 and 𝐵 are input image and
structuring elements respectively. And 𝐵𝑧 is the translation of 𝐵 by 𝑧. Then in equation (2), image



Figure 3: (a) Noisy CT images sampled from the ImageCLEF GAN dataset for task training image fingerprint
identification; (b) Processed images after applying the image opening operation, which involves an erosion step
followed by dilation. (c) Noisy CT images sampled from the ImageCLEF GAN dataset for the task of generative
model fingerprint identification; (d) Processed images after applying the image opening operation for task 2,
which also involves an erosion step followed by dilation.

dilation is performed where 𝐴𝑧 is the translation of 𝐴 by 𝑧. In the equation (3), # is the image opening
operation.

3.2. Multiformer

To build a multiformer we have chosen two foundation models which are BLIP and DINOv2 as backbone
architecture, see Fig. 4, for which details are given below.

3.2.1. BLIP Architecture

Bootstrapping Language-Image Pre-training 2 (BLIP2) [25, 26] utilize a Visual Transformer (ViT) [27]
for image encoding, dividing images into patches and encoding them into a sequence of embeddings
with a [CLS] token representing the global image feature. This method is computationally efficient
compared to traditional object detectors. BLIP is a multimodal Mixture of Encoder-Decoder (MED),
operates in three modes: unimodal encoder [28] (similar to BERT for text), image-grounded text
encoder (incorporates visual information via cross-attention layers), and image-grounded text decoder
(uses causal self-attention layers for text generation). During pre-training, we jointly optimize three
objectives: two for understanding and one for generation. Each image-text pair undergoes one forward
pass through the ViT and three through the text transformer for different tasks. The Image-Text
Contrastive Loss (ITC) inspired from [29, 30] to align visual and textual feature spaces, improving
vision-language understanding by encouraging positive image-text pairs to have similar representations.



Figure 4: A thematic block diagram of multiformer leveraging the powerful architecture of BLIP2 and DINOv2.

The Image-Text Matching Loss (ITM) [30] learns fine-grained multimodal representations through a
binary classification task to determine whether image-text pairs are matched, utilizing a hard negative
mining strategy. The Language Modeling Loss (LM) trains the model to generate textual descriptions
from images using cross-entropy loss, enhancing the model’s capability to convert visual information
into coherent captions. To maximize efficiency and leverage multi-task learning, the text encoder and
decoder share parameters except for the self-attention layers, which capture the differences between
encoding and decoding tasks. This shared architecture benefits from improved training efficiency and
effective multi-task learning.

The BLIP2 feature extractor is a multi-modal model designed to extract and integrate features from
both images and text. It begins with patch embedding for images, converting each image 𝑋 into patches
𝑃 using a convolutional layer, 𝑃 = Conv(𝑋). These patches are then processed through a transformer
encoder, 𝐹𝑣 = Transformer𝑣(𝑃 ), to capture visual relationships. Image data 𝐼 is tokenized and
embedded into high-dimensional space, 𝐸𝑡 = Embedding(𝐼), and passed through another transformer
encoder, 𝐹𝑡 = Transformer𝑡(𝐸𝑡). The cross-modal attention mechanisms enhance its performance
to state of the art, 𝐹𝑣𝑡 = CrossAttention(𝐹𝑣, 𝐹𝑡), are used to align and integrate visual features. The
model is pre-trained on large datasets with paired images and text to learn these representations. The
pre-trained model can be fine-tuned for downstream tasks to improve performance on specific datasets.
The BLIP2 feature extractor thus provides robust, high-level features suitable for tasks such as image
classification, object detection, and text-image matching.

3.2.2. DINOv2 Architecture

DINOv2 [31] is an enhanced version of DINO [32], integrating various improvements and using a larger,
more diverse dataset to accelerate and stabilize training at scale. It utilizes the LVD-142M curated
dataset, which includes data from sources like ImageNet [33], Google Landmarks [34], Mapillary SLS
[35], and Food-101 [36]. The dataset is de-duplicated using FAISS [37] batch searches and embeddings.
Training combines DINO and iBOT losses with SwAV centering, involving a learnable student and
an EMA teacher. Key techniques include multi-crop cross-entropy for global image representation,
patch-level masking, and separate weights for image and patch objectives. The teacher’s softmax-
centering is replaced by Sinkhorn-Knopp batch normalization, and the KoLeo regularizer ensures batch
uniformity. High-resolution images are used towards the end of pre-training. DINOv2’s implementation
features FlashAttention [38, 39] for efficiency, nested tensors from xFormers, stochastic depth, and
mixed-precision PyTorch FSDP. Distillation [40, 41] into smaller models from a larger teacher model
is also included. Ablation studies cover model selection, data curation strategies, model scaling, and



loss objectives. DINOv2 achieves results comparable to weakly supervised text models like EVA-
CLIP on ImageNet and performs better than SSL methods like Mugs, EsViT, and iBOT. It shows
strong performance in domain generalization, image and video classification, instance recognition,
and semantic segmentation. For depth estimation, DINOv2 uses a linear layer on frozen tokens and
experiments with concatenation of ViT [27] layers/blocks and regression over a DPT decoder, achieving
superior results on datasets like NYUd, KITTI, and SUN-RGBd. Qualitative results demonstrate effective
semantic matching and foreground extraction using PCA on patch features.

We utilized the DINO Vision Transformer because it is a sophisticated image processing model
capable of handling and analyzing images through a systematic series of steps. Below is a description
of how its architecture operates. Initially, the input image is divided into smaller patches, which are
then embedded into a higher-dimensional space using a convolutional layer. This embedding captures
the local features of each patch. These embedded patches pass through multiple nested tensor blocks,
each consisting of several components: layer normalization to standardize inputs, memory-efficient
attention mechanisms to focus on different parts of the image, and multi-layer perceptrons for feature
refinement. Each block also includes layer scaling and dropout layers to improve training stability and
prevent overfitting. The model incorporates 12 of these blocks, creating a deep network capable of
learning complex image representations. After processing through all blocks, a final normalization
layer is applied, followed by an identity layer that prepares the features for subsequent tasks. This
architecture allows the DINO ViT to effectively learn and process detailed image features, making it
suitable for various image processing applications.

3.3. Autoencoder for feature reduction

Initially, we employed raw features for clustering to assign labels to the test set. Subsequently, we
integrated robust features from both the BLIP and DINOv2 models. To enhance the clustering results,
we implemented an Autoencoder to encode this extensive feature set into a more meaningful and
reduced representation. This dimensionality reduction facilitated improved clustering performance.
Autoencoders (AEs) have been quite popularised in AI research over recent years and consequently,
there have been many studies and advancements made in this subject, There are mainly two types,
they are Fundamental AEs And Variants. The simplest ones, as used in our working example, one
can find, are auto-associative neural networks, connected to a multi-layer perceptron, where input
is being reconstructed. The encoders consist of an encoder that compresses an input vector with
recognition weights into a code vector and a decoder that decompresses the input vector from a code
vector with generative weights. This structure allows each layer of a deep network to be trained
separately using the basic AE as a building block. The encoder activation function (sf) may be, for
example, sigmoid or hyperbolic tangent, a weight matrix (W) is a bias vector (b), and x Wine are used
in the computation of the hidden representation of an input vector x with a 𝑦 = 𝑓Θ(𝑥) = 𝑠𝑓(𝑊𝑥+ 𝑏),
where 𝑊 is a weight matrix, 𝑏 is a bias vector, and 𝑠𝑓 is the encoder activation function (e.g., sigmoid
or hyperbolic tangent). The hidden representation 𝑦 is then decoded back to a reconstruction vector
𝑧 using 𝑧 = 𝑔Θ(𝑦) = 𝑠𝑔(𝑊 ′𝑦 + 𝑏′), where sg is the activation function of the decoder. The aim is
to make the reconstruction( z ) as close to the input( x ) as possible. To simplify training, the weight
matrix 𝑊 ′ is often constrained to be the transpose of 𝑊 (tied weights), reducing the number of free
parameters. This mapping process ensures that each input is transformed into a hidden representation
and then reconstructed, enabling effective learning and data representation.

4. Experimental Result Analysis

4.1. System Specification and Parameter Settings

The proposed model is implemented on a Google Cloud Vertex AI instance, utilizing a NVIDIA V100
Tensor Core GPU. This GPU boasts 5120 CUDA cores, 640 Tensor cores, up to 32 GB of HBM2 memory,
and a memory bandwidth reaching up to 900 GB/s. These specifications allow for highly efficient



processing and accelerated computation, which are essential for handling the complex tasks and large
datasets involved in our model’s execution.

For the BLIP architecture, the parameters used make it better in feature extraction. The input image
size was normalized at 256×256 pixels, followed by data augmentations of random cropping, horizontal
flipping with probability 𝑝 = 0.5, rotation within ±20∘, and color jittering with brightness adjustment
factors [0.75, 1.25]. Feature Extraction used the pre-trained ViT large model as the backbone. The value
chosen for the learning rate 𝜂 was 0.0005 and a batch size 𝐵 of 16 was employed. The AdamW optimizer
where weight decay factor was added was used for loss function minimization 𝐿(𝜃) Normalization
layers were used for scaling the features within the same scale of any particular signal for the dataset.

For Dinov2 architecture, a number of key parameters were defined to maximally optimize their
performance. The model was pre-trained on a large companys own well curated set of images, making
it a great base for later fine-tuning. The size of the input image was kept uniform during training,
224×224 pixels, where several data augmentations like center cropping, random affine transformations,
resizing, and normalizing, were performed. We used a learning rate 𝜂 of 0.001 and batch size (B) of
32. Adam optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.999 was used to minimize the loss function 𝐿(𝜃)
where 𝜃 denotes the model parameters. We applied a dropout with a probability of p = 0.5 and layer
normalization to prevent overfitting and maintain training stability.

For the Dinov2, BLIP we then tried to tune these parameters carefully to get as high performance
as possible to identify generative model fingerprintfs and test image fingerprints. I executed these
procedures while training the item co-occurrence model with data augmentation, learning rates, and
optimization technique and achieved high quality and stable item embeddings.

4.2. Identify Training Data Fingerprints Experiments

For identifying training data fingerprints, we first reduced noise in the CT images through morphological
operations. We then used BLIP and DINOv2 as image signature generators. As shown in Figure 2,
these steps improved the quality of synthetic medical images generated by GANs. We ranked features
individually and after concatenation, performed dimensionality reduction, and used late fusion to refine
our fingerprint identification results.

For submission 1, we implemented the "additive mode thresholding" technique, which considers
local variations in image intensity to enhance image processing. First, we reduced the dimension of
the feature vector using Principal Component Analysis (PCA). We then combined all the features and
weighted them by the total. The mode of this final weighted result was used as the threshold. For the
test images, we applied a similar weighting approach: if the weighted value was less than the mode, the
image was tagged as not used; otherwise, it was tagged as used. This method allowed us to account for
local intensity variations, improving the accuracy of our thresholding.

In submission 2, which we titled "additive average thresholding," we took a different approach. We
calculated the final result for each subject and then averaged these results across all subjects. This
average became the threshold value for classification. By using the average, we aimed to create a more
generalized threshold that could effectively classify the images based on the overall distribution of the
data.

For submission 3, we used an encoder model to handle the extensive feature set generated by the
backbone models. The encoder compressed this concatenated feature set, reducing its dimensionality.
With the reduced feature set, we applied both mode and mean thresholding techniques. This dual
approach allowed us to leverage the strengths of both thresholding methods, providing a robust
classification mechanism.

In submission 5, we employed a late fusion strategy to combine the decisions from the previous four
methods. Late fusion involves aggregating the results at the decision level rather than at the feature
level. We used majority voting to finalize the classification, ensuring that the combined decisions of the
different methods provided a more accurate and reliable result. This ensemble approach helped to miti-
gate the weaknesses of individual methods and improved the overall performance of our classification
system.



For the final submission 6, we performed reranking using the Agglomerative Clustering algorithm.
This algorithm conducts hierarchical clustering with a bottom-up approach, allowing us to specify
parameters such as the number of clusters, distance metric, and linkage criterion. The reranking was
based on decisions from the previous submissions.

4.3. Identify Generative Model Fingerprints Experiemnts

To identify generative models’ fingerprints, we initially reduced noise in the CT images using mor-
phological operations. We then employed the pre-trained BLIP2 and DINOv2 architectures for feature
extraction. As illustrated in Figure 2, our objective was to accurately label each subject with the
corresponding model number, determining which generative or diffusion model produced each image.

For submissions 1 and 2, we utilized a combination of feature sets from BLIP and DINOv2 titled
’multiformer’ architecture with different augmentation techniques. In submission 1, we applied center
cropping and random affine transformations, along with resizing, normalizing, and other standard
setups. In submission 2, we used random cropping, random horizontal flipping, random rotation,
and color jittering. These augmentations introduced variations in size, orientation, and brightness
to the training dataset, enhancing the model’s robustness and accuracy. We then used k-means and
agglomerative clustering to assign labels to each subject.

Submissions 3 and 4 followed a similar feature extraction method, but we applied PCA and autoencoder
was applied for combined feature dimensionality reduction, respectively. The same clustering algorithms
were then used for label assignment.

In submissions 5 and 6, we leveraged solely the BLIP architecture. Submission 5 used a BLIP base
model for feature extraction, while submission 6 utilized the BLIP pre-trained ViT large model. The
normalized feature sets were subsequently fed into clustering algorithms for labeling.

For submissions 7 and 8, we performed ensemble voting and reranking based on the decisions from
previous submissions. Ensemble voting combined results at the decision level rather than the feature
level, employing majority voting to determine the final classification, ensuring a more accurate and
reliable outcome. For reranking, we applied Density-Based Spatial Clustering (DBSCAN). This algorithm
identifies clusters by ensuring each point within a cluster has a neighborhood defined by a specified
radius, containing at least a minimum number of points, thereby separating dense regions from areas
with fewer points.

4.4. Results and Discussions

The results presented in Table 1 show the metrics for datasets 1 and 2, referred to as db1 and db2, for the
task of identifying training data fingerprints. Initially, we applied morphological opening operations,
which first erode the image and then dilate the eroded image using the same structuring element.
After performing these operations, we passed the images to our vision transformer models for further
processing.

Table 1
Submission Results for the Task 1: Identifying Training Data Fingerprints.

Dataset 1 (db1) Dataset 2 (db2)

Submission ID Approach Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

1 Additive Mode Thresholding 0.502 0.502 0.489 0.495 0.491 0.491 0.487 0.489
2 Additive Mean Thresholding 0.504 0.504 0.515 0.509 0.499 0.499 0.483 0.491
3 Autoencoder Mode 0.492 0.492 0.486 0.489 0.5 0.5 0.509 0.504
4 Autoencoder Mean 0.495 0.495 0.512 0.503 0.497 0.497 0.496 0.496
5 Reranking 0.51 0.511 0.449 0.478 0.495 0.494 0.436 0.463
6 Reranking v2 0.495 0.495 0.485 0.49 0.506 0.506 0.45 0.476

Submission 1 utilized the Dinov2 model with additive mode thresholding. This model employs
task-agnostic and cognitive approaches through self-supervised learning and features a multipurpose
backbone derived from a pre-trained, extensive, and well-curated image set, powered by a visual



transformer model. Additive mode thresholding was then used to assign labels to each image. This
method achieved (shown in Table 1) an accuracy and precision of 0.5025 for dataset 1, and an accuracy
and F1 score of 0.491 for dataset 2. As shown in Table 2 the overall accuracy was 0.492.
Submission 2 used the Blip architecture with additive average thresholding. This model employs
an unimodal decoder to extract pattern signatures from images. Subsequently, additive average
thresholding was applied to assign labels to each image. This approach resulted in an accuracy and
precision of 0.50425 for dataset 1, and an accuracy and F1 score of 0.4995 for dataset 2. As shown in
2.As shown in Table 2 the overall accuracy for submission 2 was 0.501875.
Submissions 3 and 4 are based on the concatenated multiformer feature fusion. We subsequently
applied PCA and autoencoder for dimensionality reduction to both feature sets derived by the Dinov2
and Blip models. This approach yielded our best results, with submission 4 achieving an accuracy
and precision of 0.49575 for dataset 1. For dataset 2, the highest accuracy and F1 score of 0.5005 were
attained, making it the best among these submissions. As shown in Table 2 the overall accuracy for
submissions 3 and 4 was 0.496357 and 0.4957 respectively.

Table 2
Overall Submission Results for the Identifying Training Data Fingerprints task

Submission Identify
training data
"fingerprints"-
Accuracy

Identify
training data
"fingerprints"-
Precision

Identify
training data
"fingerprints"-
Recall

Identify
training data
"fingerprints"-
F1-score

1 0.492 0.497 0.497 0.497
2 0.5 0.501875 0.501875 0.501875
3 0.496 0.496375 0.496375 0.496375
4 0.5 0.4957 0.4957 0.4957
5 0.47 0.500875 0.500875 0.500875
6 0.483 0.502625 0.502625 0.502625

In the final two submissions, 5 and 6, we employed a reranking technique. Submission 6 provided the
highest accuracy for dataset 1, reaching 0.51. Meanwhile, for dataset 2, submission 5 achieved the best
accuracy at 0.506. As shown in Table 2 the overall accuracy for submissions 5 and 6 was 0.500875 and
0.502625 respectively.

Moreover for Task 2, we investigated the intriguing notion that generative models might leave distinct
marks on the images they create. Our goal was to determine whether different models have unique
"fingerprints" within the synthetic images they produce. By closely examining these images, we aimed
to uncover the specific characteristics that define each model’s output. This time the author of the
ImageCLEFmed GANs [8] provided results are represented by the Adjusted Rand Index (ARI), which
measures the similarity between two clusters. The ARI improves upon the Rand Index by considering
the likelihood of chance agreements between clusters, thus enhancing its reliability.
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As shown in Eqn (4) we can see that the ARI is calculated with the formula: ARI = Index−Expected Index
Max Index−Expected Index .

Here, the Index represents the raw agreement index, which counts pairs of elements that are either in
the same or different clusters in both the true and predicted clusterings. The Expected Index accounts



for the expected value of the raw index if the cluster assignments were random, while the Max Index
is the maximum value of the raw index, indicating perfect clustering. The ARI ranges from -1 to 1,
where 1 signifies perfect agreement, 0 indicates a random clustering, and -1 suggests no agreement. The
formula leverages a contingency table and binomial coefficients to adjust the Rand Index for change,
providing a more accurate measure of clustering similarity.

Table 3
Overall Submission Results for the Generative Model Fingerprint Detection Task

Submission ARI Score

1 0.8137499357777883
2 0.9000159097044281
3 0.26753081555895303
4 0.36560477207139175
5 0.0013132463035679
6 0.0017768435
7 0.1785452554
8 0.2323909988

Among our total of eight submissions shown in Table 3 Submission 2 stood out with the highest ARI
score of 0.900, demonstrating a strong agreement between the predicted clustering and the ground truth,
and showcasing its exceptional performance in data clustering. In contrast, Sub5 and Sub6 recorded
very low ARI scores of 0.001 and 0.002, respectively, indicating poor alignment between the predicted
clusters and the actual data.

Our analysis of the results revealed a spectrum of scores for each submission, illustrating how well
they matched the real data. While submissions like Sub2 performed exceptionally well, others such as
Sub5 and Sub6 fell short of expectations. Overall, our findings highlight the distinctive marks generative
models leave on the images they produce, which could aid in recognizing and attributing these images
to specific models in the future.

5. Conclusions

In the dynamic field of medical image processing, ImageCLEFmed GANs has launched a pioneering
initiative with the Identifying GAN Fingerprint task, alongside the task of detecting generative model
fingerprints. In this paper, we tackled the first task by proposing six approaches, utilizing additive
thresholding, autoencoder, and reranking techniques to classify images as used or not used for generating
synthetic images. To address the task of detecting generative models’ fingerprints, we implemented
eight approaches involving Dinov2, Blip, and ensemble feature fusion. These findings highlight the
significance of our efforts in advancing medical image analysis techniques. Moving forward, we plan to
apply advanced noise-removing techniques to leverage pixel-level connectivity. Additionally, we aim to
develop a unified framework that integrates classical and transformer-based architectures to enhance
our ability to detect imprint signatures.
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