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Abstract
This article presents the results we obtained during BioASQ Task 12B Phase A on document ranking. Our strategy
is based on a two-stage retrieval approach composed of a retriever and a reranker. The retriever is based on
BM25 scoring and RM3 query expansion. The ranker is a BERT cross-encoder pre-trained on a biomedical corpus
(BioLinkBERT). We study the impact of incorporating domain knowledge (MeSH) into this Pretrained Language
Model and build a voting system to combine the insights from multiple models. Independently from the challenge,
we also investigate a way to reduce the number of input tokens to bypass BERT limitation of 512 tokens for the
input sequence.
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1. Introduction

Passage and document rankings are very important tasks in information retrieval (IR) systems as they
facilitate users’ navigation through different sources. With the recent breakthrough of generative
artificial intelligence (AI), they are also used in Retrieval Augmented Generation (RAG) [1] workflow to
help generative systems produce more precise answers to a given query.

In the academic field, the rise of open science and online information access multiply the amount of
knowledge available. The drawback is that it is becoming harder to find a specific and precise piece of
information. For this reason the BioASQ1 initiative [2] proposes an annual evaluation campaign to solve
several tasks of biomedical IR. Specifically, TaskB-PhaseA [3] of the challenge focuses on document
retrieval and text snippets extraction.

In recent years, pre-trained language models (PLMs) [4, 5] have achieved state-of-the-art results on
various natural language processing (NLP) tasks due to their ability to learn the semantic of various
texts. However, the performance of such models tends to drop when they are applied to corpora from
specific domains like biomedicine. Indeed, biomedical literature contains special features that exacerbate
the semantic gap between general information and biomedical knowledge. One may cite as examples
the polysemy of biomedical terms (tumor, neoplasm, cancer referring to the same concept) and the
complex lexical structures (abbreviations, formulas, proper names, etc). One way to solve this problem
is to use language models (LMs) pre-trained on biomedical corpora [6, 7, 8] but several works show
that it is not enough to capture semantic relationships between terms in a document.

Following our work during last year’s evaluation campaign [9], we investigated the impact of
incorporating biomedical knowledge into PLMs trained on domain specific texts. More precisely, we
propose to modify the input sequence of a BERT-based model [4] by tagging its biomedical terms in
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order to direct the attention mechanism towards them. We combine this approach with a voting system
to take advantage of several models outputs at the same time.

2. Method

2.1. Task Description

We participated in the TaskB-PhaseA on document retrieval. The campaign was divided in 4 batches
of 85 queries each. Participating systems were expected to return, for each query, a ranked list of
at most 10 relevant articles. These articles needed to be retrieved from PubMed Annual Baseline for
2024 (37 million citations). The evaluation metric used to build the leaderboard is the Mean Average
Precision (MAP) due to its capability to take into account the order of the submitted items while being
less restrictive than the traditional Precision score.

2.2. Systems Description

The strategy we used to answer this task is a multi-stage retrieval approach [10] which aims at dividing
the document ranking into different phases. We built a two-stage pipeline with a retriever and a reranker.
Traditionally, a retriever is based on bag of words (BoW) representations [11] and aims at creating
a candidate list of hundreds of documents from the whole corpus (several millions). It is often less
effective but also have lower computational costs. On another hand, the goal of the reranker is to build
the final list of a dozens of documents from the list generated by the retriever. State-of-the-art models
for this task are PLMs based on transformers [12] architecture which greatly enhance results but also
increase the computational cost. Finally, we explore a way of incorporating biomedical knowledge into
PLMs using the Medical Subjects Headings2 (MeSH) thesaurus. This workflow is illustrated in Figure 1.

Figure 1: Pipeline of our retrieve then rerank approach.

In order to generate the candidate lists, we created our own index with PubMed articles and queried
it using BM25 and RM3 [13]. BM25 is a term weighting model for evaluating document relevance,
while RM3 uses pseudo-relevance feedback to improve search performance by incorporating additional
information from relevant documents (query expansion). We used Pyserini [14], a Python toolkit for
reproducing IR tasks, to create the index and the retriever.

Our base model for the reranking part is a BERT cross-encoder pre-trained on biomedical publications.
Following the results of the BLURB3 [15] leaderboard and due to computational limitations, we worked
with the base version of BioLinkBERT [7]. We built a cross-encoder architecture trained with a
pairwise approach. It takes as input the query and candidate document with the following sequence:

2https://www.nlm.nih.gov/mesh/meshhome.html
3https://microsoft.github.io/BLURB/
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[𝐶𝐿𝑆]𝑞1, ..., 𝑞𝑛[𝑆𝐸𝑃 ]𝑑1, ..., 𝑑𝑚[𝑆𝐸𝑃 ]. (𝑞𝑖)𝑖∈[1,𝑛] and (𝑑𝑖)𝑖∈[1,𝑚] being respectively the terms of the
query and the document. The fine-tuning is done by computing a relevance score between the query and
4 documents (2 positive and 2 negative ones). The objective is to predict if each one is relevant or not
using the [𝐶𝐿𝑆] token embedding, which is the pooled output of the model and represents the whole
input. This embedding is passed through a single linear layer that produces the classification scores
(logits). Applying the 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 function on these scores allows to create a probability distribution on
our classes (relevant and non-relevant). During inference, documents from a candidate list are ranked
with their probability of being relevant for a given query.

To enhance the learning of biomedical entities and their semantic relations in the text, we propose
to incorporate biomedical knowledge into the cross-encoder by modifying its input sequence. Our
intuition is that a term referenced in a knowledge base will bring a greater piece of information than
other words in the text. We extracted this knowledge from the MeSH thesaurus which is a controlled
vocabulary maintained by the National Library of Medicine4 (NLM) and used to index every citation in
MEDLINE/PubMed. To incorporate MeSH terms into our PLM, we propose to tag the input sequence with
a unique special token “ # ”. We built a vocabulary with all Main headings, Qualifiers and Suplementary
Records and their corresponding Entry Terms of the MeSH thesaurus. We detected those terms in the
query with an exact match between 1,2,3-grams in the query and the vocabulary. Then, we added the
special token before and after each detected term in the query and their corresponding exact-matches
and synonyms in the document. The idea is to guide the attention mechanism towards biomedical
terms using this soft-matching of biomedical items. An example of the input sequence tagging is given
in Figure 2.

Figure 2: Example of the marking strategy on a query and the first sentences of one of its most relevant
documents.

Finally, we learnt from last year experiments that systems’ performances are inconsistent depending
on the batches. To level them off, we built a voting system to mix the results of all our models along the
batches. For a given query, we assigned a score to each of the 10 articles returned by each model. The
voting system returns a new list of 10 items sorted along the scores obtained.

2.3. Additional Study

One of the main limitation of BERT-based model is the length of the input sequence [16]. Indeed such
systems only take as input up to 512 tokens which represents even less words. This limit is easily
exceeded when computing scientific publications even when considering only their title and abstract.
In our systems described in section 2.2, we chose to simply truncate the input sequence and kept the
first tokens until we reach the limitation. This method still provides competitive results in various tasks
but lead to a loss of information as it deliberately ignores a part of the text. To overcome this problem,
we fine-tuned another BioLinkBERT cross-encoder to compute the similarity between a sentence and a

4https://www.nlm.nih.gov/
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query. This allows us to rank the sentences of a document by order of relevance to a given query. Thus,
we reduced the input length by selecting the most relevant sentences without exceeding 512 tokens.

3. Experimental Settings

3.1. Data

To build our index we used the PubMed Annual Baseline5 for 2024 from which we removed all articles
without available abstracts. We concatenated the title and abstract of each citation to obtain a document.
We also used the datasets released by the BioASQ6 team [17] which contain all queries and their gold
standards (relevant documents) from past editions.

We created a training set for the BERT cross-encoder. For each query we retrieved 4000 articles
using BM25+RM3. The first 20 articles that were not in the gold standard were chosen as hard-negative
samples while all the others were chosen as positive ones. We selected negative samples close to the
query in terms of BoW embeddings as it enhances inference of BERT-based model[18].

In our last year experiments, we only extracted Main Headings and their corresponding Entry Terms
from MeSH thesaurus. This year we also added Qualifiers and Supplementary Records in order to detect
more biomedical and chemical concepts in the text. We used the 2024 release of MeSH7 to apply the
tagging strategy during both training and inference.

For inference, we generated a candidate list of 500 articles to be reranked by 4 PLMs as described in
section 3.2.

3.2. Systems Settings

We used the same retriever, with the same parameters for every submission (𝑘1 = 0.6, 𝑏 = 0.6,
𝑓𝑏𝑡𝑒𝑟𝑚𝑠 = 16, 𝑓𝑏𝑑𝑜𝑐𝑠 = 2, 𝑜𝑞𝑤 = 0.9) [14].

In Table 1, we wrote down the settings of the 4 PLMs we trained and their corresponding submission
name. BioASQ10 and BioASQ11 are 2 datasets provided by BioASQ teams containing all queries and
their gold standards from the first year to respectively the 10th and 11th challenges. Note that for each
batch, we selected two positive and two negative publications as described in 3.1. Fine-tuning was done
using BertForSequenceClassification8 with 2 classes (relevant or irrelevant) and we used the go-to loss
function from the HuggingFace tool.

The voting system is inspired by the slate-vote as each voter (here the reranking systems) has to
rank a list of candidates. We assigned a score for every document in the four generated lists of each
query. Here are the scores assigned to the top 10 articles sorted by decreasing order of relevance:
[25, 19, 15, 12, 10, 8, 6, 5, 4, 4]. A document is assigned a score of 0 for each list it does not appear in.
Then, for every publication, we summed its 4 scores and used it to sort the documents and create a final
list of the 10 most relevant papers. Note that a publication always in the bottom 4 of the ranked lists
has a lower final score than a document ranked 1st by one system and not appearing in the other slates.
This allows to reward a system that notices a strong similarity between the query and a document but
would be left aside by other systems.

The PLM used to reduce the input sequence length has the same settings than “IRIS1” except for the
data. We used as positive samples the “ideal answers” of each query (handwritten answers provided by
BioASQ) and as negative samples sentences from the 50 first documents (except gold standard) retrieved
by BM25+RM3. We used this model in two different ways:

• to reduce input length during inference and before applying “IRIS1”. We will refer to this model
as “IRIS1-R”.

5https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
6http://participants-area.bioasq.org/datasets/
7https://www.nlm.nih.gov/databases/download/mesh.html
8https://huggingface.co/docs/transformers/v4.42.0/en/model_doc/bert#transformers.BertForSequenceClassification/

https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
http://participants-area.bioasq.org/datasets/
https://www.nlm.nih.gov/databases/download/mesh.html
https://huggingface.co/docs/transformers/v4.42.0/en/model_doc/bert#transformers.BertForSequenceClassification/


Table 1
Reranking systems parameters

Submission name Model description Tags Training Corpus Training parameters

IRIS1 BioLinkBERT-base N/A BioASQ10 LR=𝑒−4, Epochs=5, Batch=128× 16
IRIS2 BioLinkBERT-base N/A BioASQ11 LR=𝑒−4, Epochs=5, Batch=128× 16
IRIS3 Voting System # or N/A N/A N/A
IRIS4 BioLinkBERT-base # BioASQ10 LR=𝑒−4, Epochs=5, Batch=128× 16
IRIS5 BioLinkBERT-base N/A BioASQ10 LR=𝑒−5, Epochs=5, Batch=128× 16

• during training and inference with the same settings as “IRIS1”, i.e., we train the same model
with documents having their input modified. We will refer to this model as “IRIS-R”.

4. Results

In this section, we present the results obtained during batches 1, 2, 3, and 4 of the Task 12B Phase A on
document ranking. We officially participated in batches 1, 2, and 3 of this year evaluation campaign
with five models that are reported in Table 2 in which we also include unofficial results on batch 4.
Additional results for systems including input length reduction are written down in Table 3.

Table 2
Results for Task 12B Phase A

Batch Model MAP Recall System Rank Team Rank

1 IRIS1 0.1357 0.2339 13/40 3
- IRIS2 0.1318 *0.2413* 14/40 3
- IRIS3 0.1471 0.2404 11/40 3
- IRIS4 0.1467 0.2389 12/40 3
- IRIS5 0.1132 0.2365 18/40 4

2 IRIS1 0.1429 0.2564 21/51 6
- IRIS2 0.1151 0.2144 26/51 6
- IRIS3 0.1487 *0.2682* 19/51 6
- IRIS4 0.1097 0.2099 27/51 6
- IRIS5 0.1452 0.2562 20/51 6

3 IRIS1 0.1682 *0.3155* 16/57 4
- IRIS2 0.1217 0.2245 31/57 5
- IRIS3 0.1890 0.3059 12/57 4
- IRIS4 0.1777 0.2962 14/57 4
- IRIS5 0.1734 0.2780 15/57 4

4 IRIS1 0.2166 0.3655 N/A N/A
- IRIS2 0.1710 0.3027 N/A N/A
- IRIS3 0.2378 0.3716 N/A N/A
- IRIS4 0.2246 *0.3745* N/A N/A
- IRIS5 0.1982 0.3404 N/A N/A

We observe that, in all 4 batches, the best MAP scores are obtained by the voting system, validating
the value of using insights from several models at the same time. However, this system performs better
in terms of Recall during only one batch, indicating it finds less relevant documents but the one retrieved
are better ranked among the “top 10”.

It is interesting to note that biomedical knowledge incorporation has a positive effect on the MAP
results. Indeed, except during batch 2, “IRIS4” performs better than the other PLMs submitted.

We investigated if reducing the input length by ranking sentences by order of relevance would be
beneficial for a PLM. The results tend to confirm this hypothesis, as in the majority of cases MAP scores



Table 3
Results of Systems with Input Reduction

Batch Model MAP Recall

1 IRIS1-R 0.1344 0.2566
- IRIS-R 0.1480 0.2358

2 IRIS1-R 0.1481 0.2672
- IRIS-R 0.122 0.2596

3 IRIS1-R 0.1746 0.3084
- IRIS-R 0.1812 0.2757

4 IRIS1-R 0.2232 0.3732
- IRIS-R 0.2373 0.3633

increase whether we apply the reduction during training or only during inference. Moreover, applying
the reduction during training leads (in most cases) to better results in terms of MAP while applying it
only for inference seems to mainly enhance the Recall score.

To better understand our results, we conducted additional analyses. Table 4 presents the scores of
3 representative systems for each type of question. There is a huge drop of performance for “IRIS4”
on the factoid questions of Batch 2 which partially explains why this system is globally less effective
during this batch. We also observe that, locally speaking, “IRIS3” (the voting system) is not always
performing better than other systems but still manage to obtain the highest scores overall. This proves
its capability to take advantage and balance the scores of different models.

Table 4
MAP scores per question type

Yes/No List Summary Factoid

Batch IRIS1 IRIS3 IRIS4 IRIS1 IRIS3 IRIS4 IRIS1 IRIS3 IRIS4 IRIS1 IRIS3 IRIS4

1 0.162 0.167 0.155 0.071 0.106 0.123 0.216 0.204 0.2 0.1 0.116 0.114

2 0.215 0.187 0.125 0.149 0.177 0.135 0.091 0.127 0.115 0.097 0.094 0.058

3 0.229 0.232 0.188 0.243 0.332 0.325 0.092 0.093 0.094 0.105 0.104 0.113

4 0.305 0.295 0.262 0.175 0.2 0.22 0.094 0.145 0.129 0.25 0.283 0.268

Table 5 shows that the average query length is increasing along batches as well as the mean number
of MeSH terms appearing among them. Our models performances seem to follow this trend as the
overall results are also increasing along batches. Except for Batch 2, where “IRIS4” has its worst scores,
it seems that detecting more biomedical terms enhances the performance of our tagging model.

Table 5
Queries lengths and MeSH terms detected per query

Batch Mean number of tokens Mean number of MeSH terms

1 10.06 1.56
2 10.61 1.92
3 10.72 2.05
4 12.04 2.31



5. Conclusion and Perspectives

The strategy implemented to incorporate biomedical knowledge into BERT cross-encoders is promising
as it obtains better results than base systems most of the time. This emphasises the importance of
helping such models understand the semantic relations between domain specific terms in a document.

Moreover, we show that taking advantage of several model outputs has a strong and positive effect
on the results. Indeed, the voting system provides our best scores which were consistent as they follow
the trend of other participating systems being better batch after batch.

Finally, we investigated a way to improve publication processing by bypassing the input length
limitation. We trained a simple model to rank important sentences to answer the query. It constrains
BERT cross-encoder to focus on relevant parts of each document and to ignore sentences that carry less
information. This strategy offers better scores in terms of MAP especially when we used it during both
training and inference stages.

Although these results are promising, our models do not perform as well as the strongest systems for
this task. Thus, there are several axes of improvement we would like to explore. First of all, we showed
modifying the input sequence can have a positive effect. We plan to apply a more complex tagging
strategy. One may think about adding new special tokens to tag other biomedical concepts from Unified
Medical Language System metathesaurus9, triplets [19, 20] or other important words in the text [21].
In addition, we only used MeSH as a controlled vocabulary. One way to improve the knowledge we
infuse into PLMs would be to take into account its tree structure. An idea would be to apply knowledge
graph embedding algorithms and combine those representations with the textual embeddings of PLMs
[22, 23, 24]. Moreover, it would be wise to replace the voting system with a method that enables a deep
interaction between the models such as multi-layer perceptron or mutli-head attention.
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