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Abstract

In this study, we describe our participation of SDVAHCS/UCSD team in the second edition of the GANs Task
within the ImageCLEFmedical track, focusing on identifying and analyzing characteristic "fingerprints" left by
training data or generative models in synthetic biomedical images. For Task 1, we prepared the data by extracting
embeddings from synthetic images and a sample of training images, both used and not used in the generative
process. Despite achieving near-perfect validation scores across various models using AutoGluon, the test scores
were considerably lower. This discrepancy highlighted potential overfitting issues, where models memorized the
validation data but failed to generalize to unseen test data. In Task 2, we explored the hypothesis that different
generative models imprint unique "fingerprints" on the images they produce. We applied t-SNE to the Paint-
ers-derived embeddings and achieved perfect separation between images generated by four different methods.
The t-SNE visualization revealed distinct clustering patterns, providing strong evidence that generative models
leave identifiable signatures in their outputs. This capability for model attribution has significant implications for
verifying the authenticity and source of synthetic biomedical images. Overall, our work demonstrates that it is
easier to detect the “fingerprints” left by the generative model than to distinguish images used to train the model
from images not used during training. This finding underscores the importance of robust methodologies in the
identification and analysis of synthetic biomedical image data.
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1. Introduction

Generative Adversarial Networks (GANs) have revolutionized the field of synthetic image generation,
offering promising applications across various domains, including biomedical imaging. However, the
rapid advancements in this technology have raised significant concerns regarding privacy and security,
particularly when synthetic images are derived from sensitive medical data. This paper details our
participation in the second edition of the GANs Task [1] in the ImageCLEFmedical track [2], which aims
to address these critical issues through two specific challenges: identifying training data "fingerprints"
and detecting generative models "fingerprints.”

The first task in this challenge investigates the hypothesis that GANs generate syn-thetic medical
images that retain identifiable features, or "fingerprints,’ from the real images used during their training.
If proven true, this would imply that synthetic im-ages may still be subject to the same privacy constraints
as real medical images, thereby limiting their use in certain applications. This task requires participants
to analyze a dataset of synthetic biomedical images to determine the likelihood that specific real images
were used in the training process, thus assessing the presence of these "fingerprints".

Building on the objectives of the previous edition, the second task expands the scope to examine
whether different generative models imprint unique, discernible "fingerprints" onto the images they
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produce. This task focuses on clustering synthetic images based on the generative models used to create
them, aiming to identify the distinct signatures or patterns that characterize each model’s output. By
providing insights into the unique imprints left by various generative architectures, this task contributes
to the broader understanding of model attribution and the potential for distinguishing between images
generated by different GANs.

2. Methods

2.1. Data

The datasets provided for the GANs Task in the ImageCLEFmedical track comprise axial slices of 3D CT
images from approximately 8000 lung tuberculosis patients. These images exhibit a range of conditions,
from normal lung appearances to severe lung lesions. All images are stored as 8-bit grayscale PNG files
with dimensions of 256x256 pixels, ensuring uniformity in format and size.

2.1.1. Task 1: Identify Training Data "Fingerprints"

For Task 1, the data is organized into two distinct groups to test the hypothesis that GAN-generated
images retain identifiable features from the training images.

+ Group 1:
— Training Images:
+ 100 images used for GAN training.
« 100 images not used for GAN training.
— Test Images
» 10,000 synthetic images to be analyzed for training data fingerprints.
+ Group 2:
— Training Images:
» 3,000 images used for GAN training.
+ 3,000 images not used GAN training.
— Test Images:

+ 10,000 synthetic images to be analyzed for training data fingerprints.

The training images consist of a balanced set of images that were and were not used in the GAN
training process. The goal is to determine the likelihood that specific test images contain features
indicative of the training data.

2.2. Machine Learning

In our approach, Task 2 was performed before Task 1, and the insights gained from Task 2 significantly
influenced the design and implementation of Task 1.

2.2.1. Task 2
We first focused on Task 2 and tested all embedders included with Orange3 [3]:

SqueezeNet: A small and fast model for image recognition trained on ImageNet.
Inception v3: Google’s Inception v3 model trained on ImageNet.

VGG-16: A 16-layer image recognition model trained on ImageNet.

VGG-19: A 19-layer image recognition model trained on ImageNet.

Painters: A model trained to predict painters from artwork images.

AR

DeepLoc: A model trained to analyze yeast cell images.



Table 1
Results of 7 submissions for Task 2

ID # File name Score

545 tSNE.zip 1

550 ensamble.zip 0.885478
590 resenet23_256.zip  0.8777971
548 resnet50.zip 0.8519901
549 runi18.zip 0.8513623
547 resnet34e10.zip 0.5772032
225 resnet34e10.zip  0.5772032
546 kmean.zip 0.0033759

The embeddings were then clustered using the k-Means clustering algorithm and two-dimensional
data projection with t-SNE using the widgets provided by Orange3. In addition to using embeddings and
clustering methods, we attempted to train neural networks using ResNet 18, ResNet 34, and ResNet 50
pretrained models. Image resized to 224x224 and original 256times256 were used. All neural networks
were trained using the Fastai library [4] default setting using fine_tune method with 10 epochs. As this
achieved perfect accuracy on validation data, no additional tweaking of parameters was employed. Since
training data were provided for only three of the four GANs used to generate the test data, after training
the neural network on the available training data, we classified the test data. We used the 200 images
with the weak-est probability of belonging to one of the three models for which training images were
provided, prelabeled them as belonging to the fourth model, and added these pseudo-labeled images as
model 4 to the training set. We then retrained the ResNet neural network for the final submission.

2.2.2. Task 1

Building on the findings from Task 2, as the Painters embedding method within Orange3 provided the
best results among all built-in embedding methods, we exclusively used Painters embedding for Task 1.
After extracting embeddings from synthetic images, they were paired with embeddings of a sample
of the training images, both used and not used in the generative process. Multiple machine learning
models were trained using AutoGluon [5], providing various percentages of the training used and not
used images, ranging from 0.1% to 50%.

3. Results

3.1. Task 2

The results for Task 2 demonstrated varying degrees of success with different ap-proaches and models.
Details of the outcomes of our submissions are illustrated in Table 1. Run 545, based on applying t-SNE
clustering on Painters embeddings, achieved perfect separation (score of 1). Although Inception V3 and
SqueezeNet produced reasonable separation on training data (Figure 1), when the images generated
by model 4 were added, only using Painters embeddings allowed clear separation of images generated
with model 4 from those of the other three models (Figure 2).

Submission 225 and 547 were obtained using a ResNet 34 neural network trained only on the training
data, without incorporating pseudo-labeled images. These models recognized only 3 of the 4 models
used to generate the test images, which explains their lower scores.

Submission 548 and 549 were obtained using ResNet 50 and ResNet 18 models, respectively. These
models were trained on 224x224 images initially on the training data, and subsequently, after pseudo-
labeling the test data, they were trained on a combination of the training data and 200 pseudo-labeled
images identified as model 4.

Submission 590 was achieved using 256x256 images with a ResNet 34 model trained on pseudo-labeled
images. This approach leveraged the larger image size to potentially capture more detailed features.
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Figure 1: Visual representation of clustering of training images obtained using t-SNE on embedding ob-tained
using different architectures. Except DeepLoc, the other 3 embedding techniques show good separation between
images generated with the 3 models used to generated training images.

Table 2

Results of 4 submissions for Task1
ID # File name Score
850 runl.zip 0.511
851 run2.zip 0.501
848 run3.zip 0.624

849  rundincreseTTA.zip  0.606

Submission 550 was an ensemble method combining ResNet 18, ResNet 34, and ResNet 50 models
trained on pseudo-labeled images. This ensemble approach aimed to enhance model robustness and
accuracy by leveraging the strengths of multiple architectures.

Submission 546 used the k-Means clustering algorithm. However, there was an er-ror in renaming
the clusters provided by the algorithm to the model numbers used for the task. If the renaming had
been done correctly, the score would have been signifi-cantly better.

3.2. Task 1

The results for Task 2 demonstrated little success in detecting images used for training the generative
model. Details of the outcomes of our submissions are illustrated in Table 2.

For submission 561, a random number generator was used to assign classification. For submission 562,
each generated image was matched with approximately 5 used and 5 not used images. For submission
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Figure 2: Visual representation of clustering of training and test obtained using t-SNE on embedding ob-tained
using different architectures. Only Painters embedding techniques shows good separation between images
generated with all 4 models. Grey markers represent test images.

Table 3
Examples of results from Autogluon for training different models on Group 2 images
Model score test  score validation
NeuralNetTorch 0.677507  0.9996
NeuralNetFastAl 0.654472 1
Light GBMXT 0.635501 1
LightGBM 0.623306 1
RandomForestEntr 0.617886 1
LightGBMLarge 0.607046 1
ExtraTreesGini 0.605691 1
WeightedEnsemble_L2  0.605691 1
RandomForestGini 0.602981 1
ExtraTreesEntr 0.593496 1
KNeighborsUnif 0.586721  0.9584
KNeighborsDist 0.586721  0.9584
XGBoost 0.562331 1
CatBoost 0.555556 1

629, each generated image was matched with approximately 10 used and 10 not used images. For
submission 649, each generated image was matched with approximately 50 used and 50 not used images.
Although we were able to achieve an almost perfect score on validation data, results on a hold-out
test set were poor suggesting gross overfitting of the data. An example of the results for Group 2 is in
Table 3.



4. Discussion and Conclusion

The outcomes of our participation in the second edition of the GANs Task within the ImageCLEFmedical
track highlight both the potential and the challenges inherent in identifying and analyzing "fingerprints"
in synthetic biomedical images generated by various generative models. Our approach to Task 2, which
focused on clustering em-beddings derived from the Painters model, proved to be particularly successful.
The application of t-SNE clustering on these embeddings achieved perfect separation, demonstrating
that generative models indeed imprint unique, discernible signatures onto the images they produce. This
finding is significant as it underscores the feasibility of model attribution, enabling the identification of
the specific generative model used to create a given synthetic image. Perspectives for Future Work.

However, Task 1 presented greater challenges. Despite employing advanced ma-chine learning
techniques and leveraging the insights from Task 2, our models strug-gled to achieve high test scores.
This discrepancy between validation and test scores suggests potential overfitting, where the models
memorized the validation data but failed to generalize to unseen test data. The results from ImageClef
2023 [6] indicate that better results have been achieved previously, suggesting that our approach might
have been suboptimal

The GANs might be learning from multiple images, creating synthetic images that are composite
representations rather than direct derivatives of individual training images, thus complicating the task
of identifying specific training data "fingerprints."

These works suggest that while model attribution is achievable, tracing synthetic images back to their
original training data is more complex and may require more sophisticated or alternative approaches.

References

[1] A. Andrei, A. Radzhabov, D. Karpenka, Y. Prokopchuk, V. Kovalev, B. Ionescu, H. Miiller, Overview
of 2024 ImageCLEFmedical GANs Task — Investigating Generative Models’ Impact on Biomedical
Synthetic Images, in: CLEF2024 Working Notes, CEUR Workshop Proceedings, CEUR-WS.org,
Grenoble, France, 2024.

[2] B. Ionescu, H. Miiller, A. Dragulinescu, J. Rickert, A. Ben Abacha, A. Garcia Seco de Herrera,
L. Bloch, R. Briingel, A. Idrissi-Yaghir, H. Schéfer, C. S. Schmidt, T. M. Pakull, H. Damm, B. Bracke,
C. M. Friedrich, A. Andrei, Y. Prokopchuk, D. Karpenka, A. Radzhabov, V. Kovalev, C. Macaire,
D. Schwab, B. Lecouteux, E. Esperanca-Rodier, W. Yim, Y. Fu, Z. Sun, M. Yetisgen, F. Xia, S. A. Hicks,
M. A. Riegler, V. Thambawita, A. Storas, P. Halvorsen, M. Heinrich, ]J. Kiesel, M. Potthast, B. Stein,
Overview of ImageCLEF 2024: Multimedia retrieval in medical applications, in: Experimental
IR Meets Multilinguality, Multimodality, and Interaction, Proceedings of the 15th International
Conference of the CLEF Association (CLEF 2024), Springer Lecture Notes in Computer Science
LNCS, Grenoble, France, 2024.

[3] J. Demsar, T. Curk, A. Erjavec, C. Gorup, T. Hoc¢evar, M. Milutinovi¢, M. MoZina, M. Polajnar,
M. Toplak, A. Stari¢, et al., Orange: data mining toolbox in python, the Journal of machine Learning
research 14 (2013) 2349-2353.

[4] J. Howard, S. Gugger, Fastai: a layered api for deep learning, Information 11 (2020) 108.

[5] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, A. Smola, Autogluon-tabular:
Robust and accurate automl for structured data, 2020. URL: https://arxiv.org/abs/2003.06505.
arXiv:2003.06505.

[6] A.-G. Andrei, A. Radzhabov, I. Coman, V. Kovalev, B. Ionescu, H. Miiller, Overview of image-
clefmedical gans 2023 task: identifying training data “fingerprints” in synthetic biomedical images
generated by gans for medical image security, in: Working Notes of the Conference and Labs of the
Evaluation Forum (CLEF 2023), volume 3497, 2023.


https://arxiv.org/abs/2003.06505
http://arxiv.org/abs/2003.06505

	1 Introduction
	2 Methods
	2.1 Data
	2.1.1 Task 1: Identify Training Data "Fingerprints"

	2.2 Machine Learning
	2.2.1 Task 2
	2.2.2 Task 1


	3 Results
	3.1 Task 2
	3.2 Task 1

	4 Discussion and Conclusion

