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Abstract
This paper describes the approach proposed by the UACH-VisionLab team for the ImageCLEFmedical Concept
Detection subtask 2024. The objective of this subtask is to assign medical concepts to images automatically.
In particular, 1,945 distinct Clinical Concepts of Unique Identifiers (CUIs) must be associated with medical
images representing a multi-label classification (MLC) problem. In this context, the ImageCLEFmedical Concept
Detection subtask provides a multi-label dataset in which a medical image may contain multiple descriptive
labels. The class imbalance problem in MLC poses a challenge where the samples and their corresponding labels
are not uniformly distributed over the dataset. To address this challenge, our approach employs an ensemble
of five EfficientNet B0 (ENB0) neural architectures. An initial neural network, ENB0, classifies each image into
all possible labels. Based on the classification results, we create subgroups of multi-label datasets considering
specific CUIs, such as ultrasonography, bone structure of the cranium, angiogram, and lower extremity. A separate
ENB0 architecture is trained for each of these subgroups. Finally, the outputs of these five neural architectures
are combined to generate the final prediction results. Our proposal ranks 5th place in the ImageCLEFmedical
Concept Detection subtask, achieving an F1-score of 0.59. The code to implement our proposal can be found in
https://github.com/axelm11/CLEF-ImageCLEF-2024.
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1. Introduction

ImageCLEF is an ongoing evaluation event launched in 2003 as part of the Cross Language Evaluation
Forum (CLEF) [1]. In 2024, the ImageCLEFmedical Lab presents the 8th edition of the automatic image
captioning task, which consists of two subtasks: concept detection and caption prediction [2]. The
objective of the concept detection subtask is to identify the Unified Medical Language System (UMLS)
concepts of each image. These concepts are unique identifiers assigned to different medical-related terms.
The training, validation, and test datasets for this subtask comprise 70,108, 9,972, and 17,237 images,
respectively. This subtask is considered a multi-label classification problem, where 1,945 different
concepts must be detected and a single medical image can be associated with multiple labels. The
dataset is highly imbalanced, with four of the most prevalent concepts having a frequency of occurrence
in the training set of 24,227, 19,363, 11,296, and 9,870, in contrast to 306 classes that have ten or fewer
images. For these reasons, this dataset is particularly challenging and complex, providing an ideal
setting for the development of new deep learning (DL) approaches where robust solutions must be
capable of identifying the different concepts for each medical image.

In this work, we present our approach, which we submit as part of the UACH-Vision Lab group for
the ImageCLEFmedical Concept Detection subtask. This proposal consists of an ensemble of five deep
learning models based on the EfficientNet B0 (ENB0) architecture [3]. An initial ENB0 associates each
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image with 1,945 possible medical concepts. Given the high imbalance of the dataset, an additional four
ENB0 models were trained to identify specific concepts and improve the performance of our proposal.

The rest of this paper is organized as follows: Section 2 presents a general description of the
ImageCLEFmedical dataset, Section 3 introduces our approach, and Sections 4 and 5 provide results and
conclusions.

2. Dataset

The multimodal data utilized in the ImageCLEFmedical Lab is derived from the Radiology Object in
Context version 2 (ROCOv2) dataset [4]. This dataset consists of radiological images accompanied by
their respective medical concepts and captions. It is comprised of three distinct subsets: the training set,
the validation set, and the test set. The training and validation datasets are accompanied by comma-
separated value (CSV) files, which contain the medical image identifiers and the corresponding Concept
Unique Identifiers (CUIs). The objective of the concept detection task is to automatically assign the
corresponding CUIs to the different images of the dataset. Figure 1 shows a visual representation of the
medical concepts associated with the different CUIs. In this case, the size of each word is related to
its frequency. Among the most frequently occurring concepts are X-Ray Computed Tomography, Plain
x-ray, Ultrasonography, Magnetic Resonance Imaging, and Chest, to mention some.

The task of assigning the 1,945 possible medical concepts to each image in the ImageCLEFmedical
dataset is highly challenging, given the high level of complexity involved. For instance, images obtained
from the same image modality may describe different conditions affecting different parts of the body.
This is exemplified in Figure 2, where images corresponding to the same modality, X-Ray Computed
Tomography, show different parts of the body emphasizing different medical concepts.

Another case is presented in Figure 3, where different image modalities present the same medical
CUI. In this case, an angiogram, plain x-ray, and magnetic resonance imaging are associated with the
CUI heart. Therefore, it is possible that one CUI can be present in different image modalities.

Figure 4 shows an additional challenging scenario where images that appear to be highly similar
may, in fact, have different CUIs.

Figure 1: Word cloud of the medical concepts present on the ImageCLEFmedical dataset.



Figure 2: Images obtained with the same imaging modality yet showing different anatomical regions
of the body emphasizing different medical concepts. CC BY-NC [Nghiem et al. (2014)], CC BY-NC
[Unterstell et al. (2013)], CC BY [Muacevic et al. (2021)].

Figure 3: The CUI associated with the heart concept is present in different image modalities. CC BY
[Lacalzada-Almeida et al. (2018)], CC BY-NC [Biharas Monfared et al. (2015)], CC BY [Bourfiss et al.
(2017)].

Figure 4: Similar images with different CUIs. CC BY [Yuasa et al. (2015)].

3. Methods

Our proposal is based on the baseline model provided by the ImageCLEFmedical 2024 organizers, an
EfficientNet B0 (ENB0) neural architecture. Our team evaluates different neural architecture models, such
as ResNet [5], DenseNet [6], the Vision Transformer (ViT) [7], and Convolutional vision Transformer
(CvT) [8]. However, the one proposed by the organizers yielded the best F1-scores with the validation
set. The results of the ENB0 model indicate that certain CUIs exhibit highly accurate F1 performance
while others exhibit zero performance. This discrepancy is primarily attributed to the multi-label class
imbalance issue inherent in real-world application datasets [9, 10, 11, 12, 13]. Table 1 presents the
top eight best F1-score performances. Based on these results, we select specific CUIs to create four
multi-label subgroups to train and validate separate ENB0 models. The number of support samples and
visual similarities in the images were considered when selecting these CUIs. For example, the categories



Table 1
Canonical name, CUI, F1-score, and support set of the top eight best classification results obtained with an
ENB0 neural architecture.

Canonical name CUI F1-score Support
Ultrasonography C0041618 0.9943 1,606

X-Ray Computed Tomography C0040405 0.9737 3,625
Plain x-ray C1306645 0.9551 2,741

Magnetic Resonance Imaging C0024485 0.9535 1,437
Bone structure of cranium C0037303 0.9296 393

Lower Extremity C0023216 0.8411 463
Angiogram C0002978 0.8366 421

Upper Extremity C1140618 0.8060 178

bone structure of cranium, lower extremity and angiogram exhibit a comparable number of samples. In
contrast, ultrasonography is a particularly interesting image modality, given the homogeneity of the
images within this subgroup.

Figure 5 shows a block diagram of the proposed approach. First, an initial ENB0 model is trained to
classify all the images of the training dataset on all the possible CUIs of the challenge. The output of this
model is a vector of dimensionality 1,945. Then, four subgroups are defined based on the classification
results of the ultrasonography, bone structure of cranium, lower extremity and angiogram CUIs. If an
image is classified within any of the four aforementioned concepts, it is considered to be part of a
specific subgroup. Once the subgroups have been defined, they are trained with a separate ENB0 model
to identify the possible medical concepts they contain. During training, we consider it appropriate to
eliminate those CUIs with a very high or low-frequency appearance to avoid severe class imbalance
issues.

Figure 5: Block diagram of our proposal. An initial ENB0 detects all possible labels. If one of these labels
corresponds to the concepts ultrasonography, bone structure of cranium, lower extremity or angiogram,
the initial prediction will be improved with the output of the corresponding ENB0 model. CC BY-NC
[Yoon et al. (2018)], CC BY [Alwi et al. (2008)], CC BY-NC [Bagewadi et al. (2015)], CC BY [Awad et al.
(2021)].



For example, the concept plain x-ray is a very common concept. Therefore, it is eliminated from all
the subgroups. For low-frequency concepts, we consider those CUIs with a support set of at least 50
samples and a maximum of 20 concepts to predict for each model.

Then, the proposed methodology is as follows. If the initial ENB0 identifies that the input medical
image contains a CUI associated with the concepts of ultrasonography, bone structure of cranium, lower
extremity or angiogram, then the ENB0 model trained with the specific subgroup will also analyze this
input image and will produce an output prediction. All possible predictions identified by the second
ENB0 will be included in the initial prediction. In other words, four ENB0 neural architectures are
employed to enhance the outcome of the initial model. To ensure a precise final prediction, it is essential
to exercise caution in determining the location of the CUI, as the output dimensionality of these models
differs. Figure 6 illustrates this procedure. In this example, the angiogram concept is identified, and the
prediction of the model trained with this specific subgroup is utilized to generate the final prediction
result. In this case, the second ENB0 model detects four new concepts included in the final prediction.

Once we define the four subgroups, we proceed to analyze the relationship between the different CUIs
they contain. Figure 7 shows the chord diagram of the angiogram concept. This figure illustrates the
relationship between the CUIs within this subgroup. The nodes represent the different concepts, and the
width of the edges is proportional to the relationship between the two nodes. Table 2 provides a more
detailed overview of the different concepts within this subgroup and the support set of each of them.
The most frequent concepts are the anterior descending branch of left coronary artery, stent device, right
coronary artery structure and stenosis. As can be observed in Figure 7, the anterior descending branch of

Figure 6: Example prediction of our proposal. The initial ENB0 model generates an output vector with
all possible predictions. In this example, the angiogram concept is detected, then the output of a second
ENB0 model is incorporated into the initial prediction. Special care must be taken with regard to the
dimensions of the output vector of each model.



Figure 7: CUIs and canonical names relationship in the Angiogram subgroup.

Table 2
CUIs, canonical names, and support set of the Angiogram subgroup.

CUI Canonical Name Support
C0226032 Anterior descending branch of left coronary artery 448
C0038257 Stent, device 355
C1261316 Right coronary artery structure 302
C1261287 Stenosis 300
C0034052 Pulmonary artery structure 258
C0085590 Catheter device 231
C1947917 Occluded 229
C0001168 Complete obstruction 200
C0002940 Aneurysm 194
C1510412 Pseudoaneurysm 185
C0226037 Structure of circumflex branch of left coronary artery 156
C0018787 Heart 145
C0042591 Vessel Positions 134
C1261082 Left coronary artery structure 129
C0016169 Pathologic fistula 126
C0205097 Caudal 111
C1275670 Collateral branch of vessel 104

left coronary artery has a strong relationship with stenosis, pulmonary artery structure, and structure of
circumflex branch of left coronary artery. Furthermore, it is noteworthy that the right coronary artery
structure is a frequent medical concept in this subgroup that exhibits a constant relationship with the
majority of other concepts, with the exception of pseudoaneurysm.

Figure 8 shows the chord diagram of the medical concept bone structure of cranium. Table 3 shows
the specific canonical names of this subgroup and their support set. As can be observed, mandible is the
more common medical concept. It has a strong relationship with permanent premolar tooth, and maxilla



Figure 8: CUIs and canonical names relationship in the Bone Structure of Cranium subgroup.

Table 3
CUIs, canonical names, and support set of the Bone Structure of Cranium subgroup.

CUI Canonical Name Support
C0024687 Mandible 472
C0040426 Tooth structure 273
C0024947 Maxilla 265
C1266909 – 174
C0040452 Tooth root structure 172
C0021102 Implants 171
C1704302 Permanent premolar tooth 140
C0026369 Structure of wisdom tooth 81
C1947917 Occluded 67
C0447274 Entire maxillary right lateral incisor tooth 61
C0040405 X-Ray Computed Tomography 61

but also, the concepts tooth structure, tooth root structure and structure of wisdom tooth are related to it.
On the contrary, X-Ray Computed Tomography is only slightly related to maxilla and the CUI C1266909
(this CUI does not present a canonical name associated with it).

Figure 9 and Table 4 show the chord diagram and CUIs, canonical names, and support set of the lower
extremity subgroup. Femur is the most frequent concept with a strong relationship with cerebral cortex,
axis vertebra, and head of femur. We would like to point out that we are not sure if the cerebral cortex
should be the correct canonical name of C0007776. Furthermore, it can be observed that the medical
concepts of bone plates and screw are closely related.

Ultrasonography is our last subgroup. Figure 10 shows its relationship chord diagram, and Table
5 presents the canonical names and support set of this subgroup. Left ventricular structure and right



Figure 9: CUIs and canonical names relationship in the Lower Extremity subgroup.

Table 4
CUIs, canonical names, and support set of the Lower Extremity subgroup.

CUI Canonical Name Support
C0015811 Femur 318
C0301559 Screw 119
C0030797 Pelvis 116
C0206207 Joint Capsule 103
C1266909 – 102
C0015813 Head of femur 93
C4281598 Structure of right knee region 91
C0524470 Right hip region structure 83
C0007776 Cerebral cortex 78
C1261192 Ankle region 77
C0005971 Bone plates 75
C0524471 Structure of left hip 74
C0004457 Axis vertebra 72
C0021102 Implants 69
C4281599 Structure of left knee region 64
C0025584 Metatarsal bone structure 50

ventricular structure are the more common concepts and present a high relationship between them.
Right atrial structure is another common concept, and it can be observed that it is associated with the
concepts left ventricular structure, right ventricular structure and left atrial structure.



Figure 10: CUIs and canonical names relationship in the Ultrasonography subgroup.

Table 5
CUIs, canonical names, and support set of the Ultrasonography subgroup.

CUI Canonical Name Support
C0225897 Left ventricular structure 671
C0225883 Right ventricular structure 538
C0225860 Left atrial structure 380
C0205207 Cystic 340
C0018827 Heart Ventricle 332
C0225844 Right atrial structure 319
C0003483 Aorta 294
C0018792 Heart Atrium 278
C0031039 Pericardial effusion 253
C0026264 Mitral Valve 247
C0444611 Fluid behavior 241
C0023884 Liver 237
C0087086 Thrombus 235
C1269894 Entire left atrium 233
C0018787 Heart 214
C0003501 Aortic valve structure 207
C0016976 Gallbladder 206
C0027551 Needle device 193
C0042149 Uterus 190
C0028259 Nodule 190



4. Results

All the neural models were trained on an NVIDIA GeForce RTX 3080 Ti 12GB GPU using the PyTorch
framework and the Adam Optimizer, with an initial learning rate of 1e-3 using a batch size of 64.

Table 6 shows the results of our team, UACH-VisionLab, with the test partition dataset. These results
were provided by the ImageCLEFmedical Lab 2024 organizers. The F1-score is a measure of the harmonic
mean of precision and recall. A secondary F1-score was calculated using a subset of concepts that was
manually curated. Two runs were submitted by our team. The first run use a drop path rate of 0.2 while
the second a drop path rate of 0.3, with a weight decay factor of 1e-5.

The results presented in Table 6 demonstrate that the first run achieves a superior performance. The
increase in the drop path rate and the use of the L2 regularization method affect the performance of the
model, reducing its generalization ability with test data.

In order to gain a deeper understanding of the manner in which the incorporation of the four ENB0
models enhances the performance of our approach, Table 7 presents the results of the precision, recall,
and F1-score metrics on randomly selected CUIs. The first three columns show the results obtained
when only one ENB0 model is employed, defined as the “Base" model. Subsequently, the approach
was further enhanced by incorporating the training of the lower extremity (LE) subgroup defining
the “Base+LE" approach. The “Base+LE+Angio" approach was created by additionally including the
angiogram subgroup. The “Base+LE+Angio+Ultrasono" approach was constructed by combining the LE
and angiogram subgroups with ultrasonography. Finally, the “Base+LE+Angio+Ultrasono+Cranium"
approach integrates the bone structure of cranium subgroup.

A green highlight in Table 7 indicates a metric improvement, whereas a yellow highlight indicates a
metric decrease. It is important to note that the improvements in the F1-score are mainly related to an
increase in the recall score. The recall metric measures how often a true positive image is identified,
whereas the precision metric considers how many positive predictions are true positive samples.
Consequently, if the model detects only one true positive sample with a specific CUI, the precision
metric will be high. In contrast, the recall metric will exhibit a low performance (as observed, for example,
in the third row of Table 7 where many false negative samples are detected). Consequently, with fewer
false negative detections but more false positives, the precision metric will decrease (highlighted in
yellow), while the recall metric will increase, resulting in an improved F1-score metric (highlighted in
green).

The improvements in the F1-score metric resulting from the incorporation of the lower extremity
subgroup (Base+LE apporach) are structure of left hip, femur, joint capsule, screw, and head of femur. All
of these medical concepts are considered in the training of this subgroup.

The improvement in the concepts detection resulting from the incorporation of the angiogram
subgroup (Base+LE+Angio approach) includes the stent device, caudal, structure of circumflex branch of
left coronary artery, collateral branch of vessel, pseudoaneurysm and vessel positions. It should be noted
that all the aforementioned improvements, which had been reported in the previous approach (Base+LE),
are maintained in this one, but only those that are new are highlighted in these three columns. This
same reporting strategy is used in the remaining approaches.

The training and incorporation of the ultrasonography subgroup results in the
Base+LE+Angio+Ultrasono approach. The concepts that demonstrate an improvement in the
F1-score metric are liver, heart atrium, right atrial structure, aorta, mitral valve, right ventricular structure,
uterus, heart ventricle, thrombus, and pericardial effusion. The medical concept heart atrium was also
slightly modified with the training and incorporation of the bone structure of cranium subgroup.
However, this is the only concept that was modified. No additional improvements could be identified
with the Base+LE+Angio+Ultrasono+Cranium approach.



Table 6
Test results of the Concept Detection subtask on the ImageCLEFmedical Concept Lab 2024. Two runs were submitted by our team. The first run use a drop path rate of 0.2
while the second a drop path rate of 0.3, with a weight decay factor of 1e-5.

Team F1-score Secondary F1-score
1st run - UACH-VisionLab 0.59876 0.93631
2nd run - UACH-VisionLab 0.52921 0.84224

Table 7
Comparison of precision, recall, and F1-score across the different approaches with the validation dataset. The Base model corresponds to employing only one ENB0 model,
Base+LE incorporates the training of the lower extremity (LE) subgroup, Base+LE+Angio includes the training of the angiogram subgroup, Base+LE+Angio+Ultrasono combines
the LE and angiogram subgroups with the ultrasonography, and Base+LE+Angio+Ultrasono+Cranium integrates the bone structure of cranium subgroup. A green highlighting is
related to a metric improvement, whereas a yellow highlight indicates a metric decrease.

Base Base+LE Base+LE+Angio Base+LE+Angio+Ultrasono Base+LE+Angio+Ultrasono+Cranium

precision recall f1-score precision recall f1-score precision recall f1-score precision recall f1-score precision recall f1-score CUI Canonical Name

0.4583 0.0873 0.1467 0.4583 0.0873 0.1467 0.4583 0.0873 0.1467 0.2268 0.1746 0.1973 0.2268 0.1746 0.1973 C0023884 Liver
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1591 0.1148 0.1333 0.1167 0.1148 0.1157 C0018792 Heart Atrium
1.0000 0.0130 0.0256 1.0000 0.0130 0.0256 1.0000 0.0130 0.0256 0.2857 0.1299 0.1786 0.2857 0.1299 0.1786 C0225844 Right atrial structure
0.0000 0.0000 0.0000 0.0909 0.0435 0.0588 0.0909 0.0435 0.0588 0.0909 0.0435 0.0588 0.0909 0.0435 0.0588 C0524471 Structure of left hip
0.0000 0.0000 0.0000 0.1264 0.1392 0.1325 0.1264 0.1392 0.1325 0.1264 0.1392 0.1325 0.1264 0.1392 0.1325 C0015811 Femur
0.2174 0.0500 0.0813 0.2174 0.0500 0.0813 0.2174 0.0500 0.0813 0.1739 0.1200 0.1420 0.1739 0.1200 0.1420 C0003483 Aorta
0.4286 0.0361 0.0667 0.4286 0.0361 0.0667 0.2400 0.1446 0.1805 0.2400 0.1446 0.1805 0.2400 0.1446 0.1805 C0038257 Stent, device
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3571 0.1087 0.1667 0.3571 0.1087 0.1667 0.3571 0.1087 0.1667 C0205097 Caudal
0.0000 0.0000 0.0000 0.0455 0.0179 0.0256 0.0455 0.0179 0.0256 0.0455 0.0179 0.0256 0.0455 0.0179 0.0256 C0206207 Joint Capsule
0.5000 0.0154 0.0299 0.1667 0.0462 0.0723 0.1667 0.0462 0.0723 0.1667 0.0462 0.0723 0.1667 0.0462 0.0723 C0301559 Screw
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500 0.1351 0.1754 0.2500 0.1351 0.1754 C0026264 Mitral Valve
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6000 0.1111 0.1875 0.6000 0.1111 0.1875 0.6000 0.1111 0.1875 C0226037 Structure of circumflex

branch of left coronary artery
1.0000 0.0500 0.0952 1.0000 0.0500 0.0952 0.3333 0.1000 0.1538 0.3333 0.1000 0.1538 0.3333 0.1000 0.1538 C1275670 Collateral branch of vessel
0.5769 0.1282 0.2098 0.5769 0.1282 0.2098 0.5769 0.1282 0.2098 0.3095 0.3333 0.3210 0.3047 0.3333 0.3184 C0225883 Right ventricular structure
0.2500 0.0156 0.0294 0.2500 0.0156 0.0294 0.2500 0.0156 0.0294 0.1648 0.2344 0.1935 0.1042 0.2344 0.1442 C0042149 Uterus
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1609 0.1359 0.1474 0.1609 0.1359 0.1474 C0018827 Heart Ventricle
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1364 0.1034 0.1176 0.1364 0.1034 0.1176 0.1364 0.1034 0.1176 C1510412 Pseudoaneurysm
0.2308 0.1429 0.1765 0.2000 0.1667 0.1818 0.2000 0.1667 0.1818 0.2000 0.1667 0.1818 0.2000 0.1667 0.1818 C0015813 Head of femur
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0667 0.0288 0.0403 0.0694 0.0481 0.0568 C0087086 Thrombus
0.7143 0.2353 0.3540 0.7143 0.2353 0.3540 0.7143 0.2353 0.3540 0.4359 0.4000 0.4172 0.1545 0.4235 0.2264 C0031039 Pericardial effusion
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 0.0208 0.0345 0.1000 0.0208 0.0345 0.1000 0.0208 0.0345 C0042591 Vessel Positions



5. Conclusion

This working note paper presents the approach and results of the UACH-VisionLab team on the
ImageCLEFmedical 2024 Concept Detection subtask. An analysis of the results yielded by the baseline
code provided by the organizers reveals a significant imbalance issue in the context of multi-label
classification. Therefore, we consider it appropriate to define subgroups with the aim of reducing this
class imbalance problem. The medical concepts of ultrasonography, bone structure of the cranium, lower
extremity and angiogram are identified as appropriate for use in the construction of these subgroups.
Each subgroup is trained separately, and their results are merged with those produced by an initial
ENB0 neural model.

Upon examination of the validation results obtained in the various iterations of our experiments, we
observe an increase in the recall metric. This indicates that our approach has reduced the number of
false negative detections, which is the behavior we are looking for in class imbalance datasets. However,
it has also resulted in an increase in the number of false positives, decreasing the precision metric.
The only subgroup that does not produce an improvement in the metric results is the bone structure of
cranium. Further investigation is required in order to gain an understanding of this behavior.

A chord diagram of the formed subgroups provides a more comprehensive understanding of the
diverse concepts within them and their interconnections. Unfortunately, due to time constraints, we
were unable to incorporate this crucial knowledge into the training of the models. However, we consider
it to be of paramount importance, and we intend to incorporate this information into future approaches.
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