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Abstract
In this paper, we describe the MiBi team’s participation in the BioASQ 2024 Task 12b on biomedical semantic

question answering. Our RAG-based systems (retrieval-augmented generation) use GPT-3.5, GPT-4, or Mixtral

to generate an answer from some retrieved context. For the retrieval, we use PubMed’s search API or a local

BM25 index of PubMed abstracts and potentially re-rank the initially retrieved abstracts / snippets with different

neural bi-encoder and cross-encoder re-rankers. We test five different retrieval-augmented generation schemes

with different orders of generation and retrieval stages.

The evaluation results for our submitted systems—although partially inconsistent over different test batches—

show three general trends. First, combining BM25-based lexical retrieval with neural re-rankers seems to be a

good retrieval setup. Second, answers generated from retrieved snippets as context seem more accurate than

answers generated from complete abstracts. Third, GPT-4 generates more accurate answers than GPT-3.5, but

Mixtral is on par with GPT-4 when employing a generation-then-retrieve-then-generation scheme.
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1. Introduction

Due to the access to large language models (LLMs) becoming easier, the way people search for answers

to all kinds of questions has been changing. Now, it might seem easier to ask ChatGPT and get an instant

answer than to use a web search engine and read through the returned search results. While newer and

larger LLMs are becoming more accurate, they still can confabulate incorrect facts in their responses.

One of the ways to reduce confabulation is a retrieval-augmented generation (RAG) approach [1].

To investigate the RAG effectiveness in the scenario of biomedical question answering, our team

MiBi participated in all the phases of the BioASQ 2024 Task 12b on biomedical semantic question

answering [2, 3, 4, 5] that includes an abstract retrieval task, a snippet extraction task, and an an-

swer generation task. Particularly for answer generation, we use LLMs (GPT-3.5 [6], GPT-4 [7], and

Mixtral-8x7B [8]) and provide them with the context information that contains either retrieved top-3

complete PubMed abstracts or top-10 snippets extracted from the abstracts. The latter approach aims to

condense potentially useful, relevant facts and reduce possible context “noise”. For retrieving abstracts,

we experiment with PubMed’s search API and Elasticsearch. Methodically, besides the more conven-

tional retrieval-then-generation paradigm, we also test the generation-then-retrieval paradigm that

expands the query before retrieval and re-ranking and more advanced RAG paradigms. Furthermore,

for snippet extraction, we either use a chain-of-thought few-shot LLM prompting [9] or heuristically

re-rank the PubMed article’s titles and chunks of up to three consecutive sentences from the abstracts.
1
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2. Approach

Our BioASQ submissions follow the retrieval-augmented generation paradigm [1], where existing

state-of-the-art large language models are given context based on retrieved documents and/or snippets

to improve the reliability and factual accuracy of the generated answers. Following the BioASQ’s

evaluation scheme, we structure our retrieval and generation systems as a modular pipeline consisting

of (1) document retrieval and re-ranking, (2) snippet extraction and re-ranking, and (3) answer generation.

We explore several implementation options for the three pipeline stages, ranging from simpler heuristic

or statistical approaches to complex neural approaches. We also experiment with different paradigms

of retrieval-augmented generation, ranging from standard retrieval-then-generate pipelines to more

complex RAG pipelines intertwining retrieval and generation.

2.1. Document Retrieval

The first subtask of the BioASQ Task 12b is to retrieve relevant abstracts from the PubMed corpus,
2

an

open collection of 37 million medical abstracts.

PubMed API and Neural Re-Ranking Our first document retrieval approach queries the PubMed’s

search API
3

to retrieve up to 200 abstracts (term matching to achieve higher recall) for further re-ranking

(to increase precision at top ranks) using the lower-cased test questions as queries (after removing

stop words from NLTK [10] and punctuation). If no document is found for the query, it is iteratively

shortened by one word at a time until at least one abstract is found for the shortened query. The

resulting abstract(s) are then re-ranked with BM25 [11] (𝑘1=1.5, 𝑏=0.75, concatenated title and abstract,

tokenizer and stop words from NLTK). Afterward, the top-50 abstracts are re-ranked again with a

MiniLM [12] cross-encoder model
4

trained on the MS MARCO Passage Ranking task [13], and finally

the top-25 are again re-ranked with a MPNet [14] bi-encoder model.
5

Elasticsearch and PyTerrier To avoid issues with the PubMed API (which often returns no results),

we index the full PubMed annual baseline
6

of 2024 in Elasticsearch, including the abstracts’ metadata

(e.g., publication type and MeSH terms
7
). Abstracts (and metadata) are then retrieved by (1) matching the

question to the article’s title and abstract (Elasticsearch’s BM25, 𝑘1=1.2, 𝑏=0.75, Unicode tokenization
8
)

and (2) matching the medical entities extracted from the question (using ScispaCy [15]) to the abstract’s

MeSH terms annotated by NLM (same Elasticsearch’s BM25). The two queries are combined with an

OR operator. Articles without an abstract (or with an empty abstract) are not considered for retrieval.

Further, we disallow abstracts from 27 manually selected non-peer-reviewed publication types. The

Elasticsearch retrieval using the combined query and filtering is implemented as a PyTerrier [16] module.

2.2. Snippet Extraction and Re-Ranking

After document retrieval, the second subtask is to extract short passages (snippets) from the retrieved

abstracts containing a direct answer to the given question or key information required to answer it.

LLM-based Snippet Extraction Our first strategy is to extract snippets with GPT-3.5-turbo (temper-

ature: 0, max tokens: 1000, OpenAI API
9
) chain-of-thought few-shot prompting (the prompt contains
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3 examples; refer to Appendix A.3 for the LLM instructions and prompt template). We do not do further

re-ranking and simply rely on the ordering returned by the LLM.

Rule-based Snippet Extraction and Neural Re-Ranking As an alternative approach, we develop a

rule-based snippet extraction. The document is split into sentences (using NLTK [10]); then, the full title

and all combinations of up to 3 consecutive sentences from the abstract are used as candidate snippets.

The snippets inherit the retrieval score of the abstract from which they were extracted. Subsequently,

we re-rank the top-100 with a TAS-B bi-encoder,
10

then re-rank the top-5 with a duoT5 cross-encoder
11

(we use the PyTerrier implementations of the cross- and bi-encoders).

2.3. Answer Generation

In 2024, the BioASQ phases A+ and B feature two answer generation subtasks evaluated in two settings.

Answers should either be given in an ‘exact’ format based on the question type (e.g., just “yes” or “no”

for a yes-no question) or in an ‘ideal’ format as a short explanatory summary. For both answer types,

answers can be generated based on either our self-retrieved/-extracted abstracts and snippets (phase A+)

or the ground-truth abstracts and snippets provided by the task organizers (phase B).

Few-Shot Prompting with Function Calling Our first approach for answer generation facilitates

function calling with the Instructor library
12

to generate structured LLM responses with GPT-3.5-turbo

and GPT-4 (for both temperature: 0, max tokens: 1750, accessed via the OpenAI API). Different zero-shot

prompting instructions are used for each answer type (i.e., exact or ideal) and question type (i.e., yes-no,

list, factoid, or summary). As the context for generating the answer, we include the concatenated

top-3 abstracts or all (top-10) snippets in the prompt. When using the ground-truth abstracts and

snippets from the task organizers, the cross-encoder- and bi-encoder-based re-ranking from Section 2.1

is employed before selecting the top-3 abstracts.

Modular LLM Programming with DSPy The second answer generation approach is based on

the DSPy LLM programming framework [17]. With DSPy, prompts for the LLM are not manually

constructed; instead, the expected signature of inputs and outputs are given as Python classes. Our

prediction signature defines the input as the question text, a list of snippets, and (only when generating

the ‘ideal’ answer) the previously generated ‘exact’ answer. The output signature again varies depending

on the answer type (exact, ideal) and question type (yes-no, list, factoid, summary). Based on the declared

signature, we generate the answer with DSPy’s typed predictions (using the Mixtral-8x7B-Instruct-v0.1

model [8] accessed via the Blablador API
13

). We do not use DSPy’s built-in prompt optimization.

2.4. Changing the Order of Retrieval and Answer Generation

So far, our approaches have been based on the typical retrieval-augmented generation paradigm: first,

retrieve relevant documents (or snippets) and then generate an answer using the retrieved documents

as context. This retrieval-then-generation (RtG) paradigm [18] intuitively assumes that context is often

needed to answer complex questions such as medical questions. We challenge this assumption and argue

that other paradigms are also valid. For instance, Gienapp et al. [18] also consider the generation-then-

retrieval (GtR) paradigm, where an answer is generated first and subsequently grounded by retrieval.

Our modular retrieval and answer generation pipeline allows for the evaluation of both RAG patterns.

Additionally, we explore two new variations: retrieval-then-generation-then-retrieval (RtGtR) and

generation-then-retrieval-then-generation (GtRtG) that resemble feedback loops [19]. For example, the

generated answer can be used to refine the initial retrieval results, similar to how a researcher would
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Table 1
Overview of the LLM, retrieval, and answer generation used in our systems for each batch and phase. Full system

names are given in Table 3. Parts of the systems implemented but not used in a phase are greyed out. CoT:

chain-of-thought; FS: few-shot; 0S: zero-shot; FC: function calling; GT: ground truth; TP: typed prediction. Our

most effective configurations per subtask across batches are in bold (cf. Table 2 for results): In phase A, mibi_a
batch 2 for abstract retrieval, mibi_4 batch 3 for snippet extraction; in phase A+, mibi_s batch 3 for “exact”,

mibi_a batch 3 for “ideal” answers; in phase B, mibi_s batch 3 for “exact”, mibi_4 batch 3 for “ideal” answers.

Ph
as
e System LLM Retrieval Answer Order

Model Tool Abstracts Snippets Gener. Context

Test batch 1

A mibi_s GPT-3.5 Instruct. API, MiniLM, MPNet LLMCoT,FS,FC LLM0S,FC snippets RtG

mibi_a GPT-3.5 Instruct. API, MiniLM, MPNet LLMCoT,FS,FC LLM0S,FC abs. RtG

A+ mibi_s GPT-3.5 Instruct. API, MiniLM, MPNet LLMCoT,FS,FC LLM0S,FC snippets RtG

mibi_a GPT-3.5 Instruct. API, MiniLM, MPNet LLMCoT,FS,FC LLM0S,FC abs. RtG

B mibi_s GPT-3.5 Instruct. GT, MiniLM, MPNet GT LLM0S,FC snippets RtG

mibi_a GPT-3.5 Instruct. GT, MiniLM, MPNet GT LLM0S,FC abs. RtG

Test batch 2

A mibi_s GPT-3.5 Instruct. Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets RtG

mibi_a GPT-3.5 Instruct. Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP abs. RtG

A+ mibi_s GPT-3.5 Instruct. Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets RtG

mibi_a GPT-3.5 Instruct. Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP abs. RtG

B mibi_s GPT-3.5 Instruct. GT, MiniLM, MPNet GT LLM0S,FC snippets RtG

mibi_a GPT-3.5 Instruct. GT, MiniLM, MPNet GT LLM0S,FC abs. RtG

Test batch 3

A mibi_s Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets RtG

mibi_a Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets GtR

mibi_3 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets RtGtR

mibi_4 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets GtRtG

mibi_5 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets LLM0S,TP

A+ mibi_s Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets RtG

mibi_a Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets GtR

mibi_3 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets RtGtR

mibi_4 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets GtRtG

mibi_5 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets LLM0S,TP

B mibi_s GPT-4 Instruct. GT, MiniLM, MPNet GT LLM0S,FC snippets RtG

mibi_a GPT-4 Instruct. GT, MiniLM, MPNet GT LLM0S,FC abs. RtG

mibi_3 Mixtral DSPy GT, Elasticsearch GT, Rule, TAS-B, duoT5 LLM0S,TP snippets RtG

mibi_4 Mixtral DSPy GT, Elasticsearch GT, Rule, TAS-B, duoT5 LLM0S,TP snippets GtRtG

mibi_5 Mixtral DSPy GT, Elasticsearch GT, Rule, TAS-B, duoT5 LLM0S,TP snippets RtGtR

Test batch 4

A mibi_s Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets RtG

mibi_a Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets GtR

mibi_3 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets RtGtR

mibi_4 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets GtRtG

mibi_5 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets LLM0S,TP

A+ mibi_s Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets RtG

mibi_a Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets GtR

mibi_3 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets RtGtR

mibi_4 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets GtRtG

mibi_5 Mixtral DSPy Elasticsearch Rule, TAS-B, duoT5 LLM0S,TP snippets LLM0S,TP

B mibi_s Mixtral DSPy GT, Elasticsearch GT, Rule, TAS-B, duoT5 LLM0S,TP snippets RtG

mibi_a Mixtral DSPy GT, Elasticsearch GT, Rule, TAS-B, duoT5 LLM0S,TP snippets GtR

mibi_3 Mixtral DSPy GT, Elasticsearch GT, Rule, TAS-B, duoT5 LLM0S,TP snippets RtGtR

mibi_4 Mixtral DSPy GT, Elasticsearch GT, Rule, TAS-B, duoT5 LLM0S,TP snippets GtRtG

mibi_5 Mixtral DSPy GT, Elasticsearch GT, Rule, TAS-B, duoT5 LLM0S,TP snippets LLM0S,TP



refine their references based on new findings. In the latter, an answer generated without context is

refined after retrieving supporting documents. This resembles roughly a literature review, where an

initial hypothesis is checked and refined based on relevant literature.

To facilitate the knowledge aggregation in our approach, we use previously retrieved or generated

abstracts, snippets, or answers as follows: For retrieval, the ‘exact’ and ‘ideal’ answers are appended to

the query. If snippets are given, we use the snippets’ origin abstracts for abstract re-ranking (using the

same Elasticsearch document scoring as in Section 2.1). Also, previous ‘exact’ or ‘ideal’ answers are

added to the context according to the DSPy prompt signature (Section 2.3).

Finally, we delegate the decision of which ‘task’ to execute next to the LLM, using DSPy’s typed

prediction (Mixtral-8x7B, Blablador API). The LLM is given the question, question type (e.g., yes-no), a

history of previously executed “modules”, and a readiness flag indicating whether the question is fully

answered. Based on this information, the model decides whether to (1) retrieve or re-rank documents,

(2) extract and re-rank snippets, (3) generate an ‘exact’ answer, or (4) generate an ‘ideal’ answer. Custom

DSPy suggestions to the LLM [20] are used to enforce that each module is executed at least once and

that the same module cannot execute consecutively (e.g., a retrieval step cannot directly follow another

retrieval step to avoid infinite loops). No prompt optimization is used.

2.5. Submitted Systems

We combine the techniques described above in our submitted systems to evaluate the impact of different

choices of LLMs and prompting frameworks on the effectiveness of answering biomedical questions.

Further systems are submitted to investigate the LLM’s reliance on effectively retrieved documents and

snippets. Finally, we explore the effect of different retrieval-augmented generation paradigms, with or

without feedback loops. An overview of all submitted systems is given in Table 1.

3. Results

We report the evaluation results of our submitted systems in Table 2 using the values for a subset of

official BioASQ evaluation metrics published on the task website
14

(recall and MAP for the retrieval

phase, macro F1, strict accuracy, mean precision, and ROUGE-2 F1 [21] for answer generation). For

completeness, we include the ‘best’, ‘worst’, and median of the task participants’ results. While our

results often lie around the median values, two times, we achieved the overall highest results: ‘exact’

answers for yes-no and factoid questions in phase B of the batch 3, and three times, we scored the worst

results: ‘exact’ answers for factoid questions in phases A+ and B of the batch 2 and ‘exact’ answers for

factoid questions in phase B of the batch 4. In the following, we compare some interesting differences

between groups of our systems with respect to the evaluation metrics.

3.1. PubMed API vs. Elasticsearch for Abstract Retrieval

Two different approaches are employed for abstract retrieval: the PubMed search API and our own

Elasticsearch index. Comparing our phase A systems mibi_s and mibi_a from test batch 1 and 2,
15

Table 2 shows a substantial difference in the achieved recall and a noticeable difference in MAP for

abstract retrieval. The API-based retrieval used in test batch 1 (cf. Table 1) struggles to find relevant

abstracts and consequentially yields a recall below median. We notice that for many queries, the official

search API returns too few or no documents at all. Seemingly, it cannot handle the question-like queries

well. Although the documents are re-ranked with both cross-encoders and bi-encoders, the MAP scores

are only marginally above the median of all submissions. The metadata-enhanced Elasticsearch retrieval,

on the other hand, yields above-median recall and MAP even without any re-ranking stage. However,

more detailed ablation studies are required to determine what part of the Elasticsearch-based retrieval

contributes most to the increase in retrieval effectiveness.
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Table 2
Effectiveness of our retrieval and answer generation approaches according to the shared task’s official leaderboard.

We report recall (Rec.) and mean average precision (MAP) for the retrieval phase (Phase A). For the answer

generation phases (Phases A+ and B), we report macro-averaged F1 of yes-no answers (Ma. F1), strict accuracy of

factual answers (St. A.), mean precision of list answers (M. P.), and ROUGE-2 F1 of “ideal” answers (R-2 F1). The

“best”, “worst”, and median of all submissions are given in grey; above-median results are marked in bold. Full

system names are given in Table 3. Note that we used different systems in different phases (see Table 1).

System Phase A Phase A+ Phase B

Abstracts Snippets Exact Answer Ideal Exact Answer Ideal

Yes-no Fact. List Sum. Yes-no Fact. List Sum.

Rec. MAP Rec. MAP Ma. F1 St. A. M. P. R-2 F1 Ma. F1 St. A. M. P. R-2 F1

Test batch 1

best 0.337 0.201 0.165 0.106 0.917 0.238 0.525 0.235 0.959 0.429 0.665 0.326
mibi_s 0.156 0.105 0.027 0.041 0.750 0.048 0.218 0.145 0.877 – 0.519 0.209
mibi_a 0.156 0.105 0.027 0.041 0.703 0.048 0.271 0.159 0.795 – 0.505 0.176

worst 0.034 0.030 0.002 0.000 0.359 0.048 0.173 0.066 0.039 0.048 0.114 0.033

median 0.160 0.107 0.053 0.041 0.737 0.095 0.327 0.114 0.795 0.238 0.505 0.197

Test batch 2

best 0.367 0.229 0.201 0.154 0.960 0.368 0.447 0.190 0.960 0.684 0.617 0.401
mibi_s 0.258 0.158 0.095 0.051 0.756 0.158 0.331 0.120 0.915 0.158 0.544 0.244
mibi_a 0.258 0.158 0.095 0.051 0.675 0.105 0.277 0.110 0.876 0.105 0.369 0.179

worst 0.006 0.006 0.000 0.002 0.278 0.105 0.077 0.017 0.278 0.105 0.156 0.023

median 0.210 0.115 0.074 0.036 0.756 0.211 0.234 0.105 0.880 0.316 0.500 0.179

Test batch 3

best 0.385 0.255 0.257 0.222 0.914 0.308 0.375 0.243 1.000 0.500 0.647 0.381
mibi_s 0.235 0.139 0.086 0.052 0.869 0.154 0.256 0.190 1.000 0.231 0.498 0.306
mibi_a 0.228 0.125 0.101 0.055 0.434 0.308 0.267 0.201 0.956 0.231 0.533 0.269
mibi_3 0.235 0.142 0.114 0.046 0.869 0.154 0.256 0.186 0.869 0.154 0.260 0.199

mibi_4 0.228 0.125 0.099 0.059 0.534 0.269 0.301 0.196 0.914 0.500 0.602 0.315
mibi_5 0.235 0.139 0.088 0.046 0.829 0.154 0.249 0.189 0.869 0.154 0.249 0.215

worst 0.004 0.001 0.000 0.014 0.294 0.077 0.102 0.075 0.294 0.039 0.074 0.025

median 0.219 0.125 0.087 0.054 0.765 0.154 0.221 0.160 0.875 0.269 0.421 0.247

Test batch 4

best 0.557 0.393 0.416 0.344 0.871 0.368 0.314 0.246 0.957 0.632 0.768 0.389
mibi_s 0.230 0.138 0.099 0.045 0.432 0.105 0.148 0.182 0.432 0.105 0.148 0.185

mibi_a 0.228 0.134 0.095 0.037 0.338 0.211 0.232 0.172 0.871 0.474 0.629 0.298
mibi_3 0.230 0.140 0.100 0.041 0.432 0.105 0.148 0.181 0.432 0.105 0.148 0.185

mibi_4 0.228 0.134 0.095 0.037 0.338 0.158 0.239 0.163 0.871 0.579 0.667 0.277
mibi_5 0.230 0.138 0.100 0.047 0.475 0.105 0.148 0.167 0.475 0.105 0.148 0.198

worst 0.018 0.004 0.016 0.003 0.229 0.053 0.081 0.065 0.229 0.105 0.118 0.024

median 0.269 0.138 0.130 0.055 0.682 0.158 0.148 0.123 0.797 0.421 0.454 0.226

3.2. GPT-3.5 vs. Rules and Re-Ranking for Snippet Extraction

Further, we change the snippet extraction approach from test batch 1 to test batch 2. In batch 1,

snippets are extracted with GPT-3.5 chain-of-thought few-shot-prompting, while in batch 2, we extract

consecutive sentences from each article’s title and abstract (chunks) and then re-rank the chunks with a

bi-encoder and cross-encoder. In Table 2, the systems using GPT-3.5 for snippet extraction (mibi_s
and mibi_a from batch 1) struggle, especially with respect to the recall of snippets (phase A). Our rule-

and re-ranking-based snippet extraction (cf. mibi_s and mibi_a from batch 2) achieves a higher recall

and MAP. Yet, neither of the approaches yields competitive effectiveness with the ‘best’ of the task’s



leaderboard. An important limitation of our comparison of snippet extractions is that the abstract

retrieval approach has changed simultaneously. So, the snippet extraction effectiveness could also be

influenced by the changed abstract retrieval step on which the snippet extraction relies.

3.3. Snippets vs. Abstracts as Context for Answer Generation

In the first three test batches of Phase B, we submitted systems that use either the top-10 snippets or

the top-3 (re-ranked) abstracts as context for the LLM to generate an answer (see Table 1). Due to the

large length of abstracts (which can even be structured in multiple sections), we assume that shorter

snippets would “confuse” an LLM less than full abstracts. Indeed, we can observe that this assumption

holds for all submitted systems. The effectiveness benefit of using snippets instead of abstracts is most

pronounced in the generation of yes-no answers and ‘ideal’ long-form answers, while for factoid and

list answers, the LLM-generated answers are not consistently better with either abstracts or snippets.

3.4. GPT-3.5 vs. GPT-4 vs. Mixtral-8x7B for Answer Generation

A clear effect is also observed when comparing GPT-3.5 with GPT-4 for answer generation (cf. mibi_s
and mibi_a in batch 1/2 and 3 of phase B respectively). Answers generated with GPT-4 are more

accurate than the GPT-3.5 answers for all question types except for list questions. Moreover, GPT-4

works (nearly) perfectly for answering yes-no questions when provided with ground-truth relevant

context, yielding the highest macro F1 score of all submissions to phase B in batch 3. A direct comparison

of GPT-4 to Mixtral is possible with the systems mibi_s and mibi_3 of test batch 3. Here, Mixtral is

outperformed by GPT-4 with respect to effectiveness on all question types. However, Mixtral achieves

comparable effectiveness for answering biomedical questions when following the generation-then-

retrieval-then-generation paradigm (compare mibi_s to mibi_4; see Section 3.5). Because we have

used Mixtral with another LLM framework (i.e., DSPy programming instead of Instructor prompting)

and prompt design (i.e., automatically generated prompts from DSPy instead of manually designed

prompts), the comparability of our GPT-based systems to the Mixtral-based systems is rather limited.

3.5. Retrieval-then-Generation vs. Generation-then-Retrieval RAG Paradigms

As our final evaluation, we compare the impact of different RAG paradigms on the retrieval and answer

generation effectiveness. This impact is best observed in phases A and A+ of test batch 3 and 4, where we

use the same approaches for the retrieval step and the generation step of our RAG pipeline, but perform

retrieval and generation in different orders. We either follow the conventional retrieval-then-generation

paradigm (RtG), the generation-then-retrieval paradigm (GtR), the new retrieval-then-generation-then-

retrieval paradigm (RtGtR, i.e., re-ranking abstracts and snippets based on the LLM’s answer), the

new generation-then-retrieval-then-generation paradigm (GtRtG, i.e., refining the LLM’s answer with

documents retrieved based on the LLM’s initial answer), or a completely flexible approach where the

LLM itself decides in which order to run the retrieval and generation for a given question (LLM0S,TP).

Overall, all the paradigms work equally effectively for abstract and snippet retrieval. With respect to

answer generation, in phase A+ (no ground-truth context), the best paradigms for yes-no answers were

RtG, GtRtG, and LLM0S,TP while for the remaining answer types, GtR and GtRtG work best. When

ground-truth abstracts and snippets are given (phase B), also for yes-no answers GtR and GtRtG work

best. Note that our GtR systems do not use retrieved context for answer generation (i.e., an LLM is

simply prompted to directly answer the question). Our evaluation results show that the no-context

answer generation is often more accurate for ‘ideal’ answers in phase A+ but is less accurate when

ground-truth snippets are used as context in phase B. The effectiveness differences between the two

system types are, however, marginal. In conclusion, while directly asking an LLM a biomedical question

can result in accurate answers, RAG-based approaches provide the possibility to ground the answers

in high-quality sources (e.g., PubMed articles), for instance, by providing citations (cf. GtR). Our

implementation of the GtRtG paradigm that then refines LLM-generated answers based on these

citations is a first step towards a more conclusive evaluation of grounded RAG paradigms.



3.6. Limited Comparability Across Test Batches

We used the same systems in batch 3 and batch 4 (except mibi_s and mibi_a for phase B). Hence,

with comparable test collections, we would expect similar effectiveness for the same systems when

comparing batch 3 to batch 4. Somewhat surprisingly, this is not true for answer generation (phases A+

and B) but only for the retrieval in phase A. Looking at the questions from both batches, we find that

questions from batch 4 are longer (avg. words: 12.0, non-stopwords: 7.5) and contain more medical

entities (avg. entities: 3.7) on average than the questions from batch 3 (words: 10.7, non-stopwords: 6.6,

entities: 3.1). More in-depth analyses are hence required, e.g., to check whether the questions from test

batch 4 were indeed more difficult than the questions from batch 3. Consequently, our findings that

partially rely on the comparability of the different batches would need to be re-evaluated.

4. Conclusion

In this paper, we described the MiBi team’s participation in all the subtasks (phases) of the BioASQ 2024

Task 12b on biomedical semantic question answering. In our submitted systems, we used a retrieval-

augmented generation approach to enhance the accuracy of LLM-generated answers by providing

relevant contextual information retrieved from PubMed, a large collection of 37 million medical abstracts.

For abstract retrieval, we either used PubMed’s search API followed by re-ranking with cross- and

bi-encoders or a local Elasticsearch index using BM25 as a retrieval model with further filtering based

on metadata. We found that the former retrieval strategy was less effective due to a lower recall of the

retrieved document candidates. Additionally, our most effective snippet extraction approach was to

split the article titles and abstracts into chunks of up to three sentences and rank them using cross- and

bi-encoders. This approach was more accurate than prompting an LLM to extract snippets.

Furthermore, for answer generation, we tested several LLMs by providing them with retrieved context.

We found that GPT-4 and Mixtral were on par and were more accurate than GPT-3.5. The highest answer

accuracy was achieved using only snippets as context, indicating that removing potentially distracting

information from abstracts may be beneficial for RAG-based approaches. Comparing different orderings

of the retrieval and generation stages, we found the generation-then-retrieval-then-generation paradigm

to be the most effective and that retrieved context given upfront tends to “confuse” LLMs. We also

found that RAG and no-RAG approaches for answer generation in the BioASQ task settings were almost

equally accurate. However, RAG can provide a possibility to reference sources in practical applications.

An interesting future research direction is to explore the effectiveness of using knowledge graphs to

steer the LLM-based answer generation. Last, a more systematic evaluation of using different orderings

of the retrieval and generation stages in RAG pipelines is worthwhile.
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A. Appendix

A.1. System Name Mapping

Table 3 maps the shortened system names used in this paper to the full system names used for the

submissions to the task.

Table 3
System name shorthands used in this paper and their corresponding full names.

Short name Full name

mibi_s mibi_rag_snippet
mibi_a mibi_rag_abstract
mibi_3 mibi_rag_3
mibi_4 mibi_rag_4
mibi_5 mibi_rag_5

A.2. Publication Types

The publication types listed below (sorted by number of occurrences) were excluded from first-stage

retrieval from PubMed:
16

Letter, Comment, Editorial, News, Biography, Congress, Video-Audio Media, Interview, Overall,

Retraction of Publication, Retracted Publication, Newspaper Article, Bibliography, Legal Case, Directory,

Personal Narrative, Address, Randomized Controlled Trial (Veterinary), Autobiography, Dataset, Clinical

Trial (Veterinary), Festschrift, Webcast, Observational Study (Veterinary), Dictionary, Periodical Index,

Interactive Tutorial.

A.3. Snippet Extraction Prompt

The below instructions and few-shot template were used for extracting snippets using GPT-3.5.
17

LLM instructions

"role": "system",
"content ": "You are a world class system to extract relevant sentences from titles

and abstracts answering questions",
"role": "user",

16

Filtering code available at https://github.com/webis-de/clef24-mibi-bioasq/

17

Full code and prompts available at https://github.com/webis-de/clef24-mibi-bioasq/
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"content ": "Extract from the title and abstract ONLY sentences of phrases that
directly answer the question",

"role": "user",
"content ": <few -shot prompt >,

Few-shot prompt template with three examples

Here are 3 examples:

[Title]: Rethinking ramoplanin: the role of substrate binding in inhibition of
peptidoglycan biosynthesis

[Abstract ]: Ramoplanin is a cyclicdepsipeptide antibiotic that inhibits
peptidoglycan biosynthesis. It was proposed in 1990 to block the MurG step of
peptidoglycan synthesis by binding to the substrate of MurG , Lipid I. The
proposed mechanism of MurG inhibition has become widely accepted even though it
was never directly tested. In this paper , we disprove the accepted mechanism for
how ramoplanin functions , and we present an alternative mechanism. This work

has implications for the design of ramoplanin derivatives and may influence how
other proposed substrate binding antibiotics are studied.

[Question ]: Which was the first adeno -associated virus vector gene therapy product
approved

in the United States?

[Extracted ]:

Title sentences: [empty list] (no sentences or phrases that directly answer the
question)

Abstract sentences: [empty list] (no sentences or phrases that directly answer the
question)

******************

[Title]: Rethinking ramoplanin: the role of substrate binding in inhibition of
peptidoglycan biosynthesis

[Abstract ]: Ramoplanin is a cyclicdepsipeptide antibiotic that inhibits
peptidoglycan biosynthesis. It was proposed in 1990 to block the MurG step of
peptidoglycan synthesis by binding to the substrate of MurG , Lipid I. The
proposed mechanism of MurG inhibition has become widely accepted even though it
was never directly tested. In this paper , we disprove the accepted mechanism for
how ramoplanin functions , and we present an alternative mechanism. This work

has implications for the design of ramoplanin derivatives and may influence how
other proposed substrate binding antibiotics are studied.

[Question ]: Which antibiotics target peptidoglycan biosynthesis?

[Extracted ]:

Title sentences: [" Rethinking ramoplanin: the role of substrate binding in
inhibition of peptidoglycan biosynthesis ."]

Abstract sentences: [" Ramoplanin is a cyclicdepsipeptide antibiotic that inhibits
peptidoglycan biosynthesis ."]

******************

[Title]: Mycobacterium Avium Complex (MAC) Lung Disease in Two Inner City Community
Hospitals: Recognition , Prevalence , Co-Infection with Mycobacterium

Tuberculosis (MTB) and Pulmonary Function (PF) Improvements After Treatment.



[Abstract ]: Over 4 years , we evaluated patients who had positive MAC cultures , MAC
infection and coinfection with MTB. Lung disease was related/likely related to
MAC in 21 patients (50\%) and not related in 21 (50\%). In patients with MAC -
related lung disease , the primary physician did not consider the diagnosis
except when that physician was a pulmonologist. Half of those with MAC -related
lung disease were smokers , white and US-born. There were 12 immunocompetent
patients with MTB and NTM cultures. Eleven were non -white and all were foreign -
born. Presentation and clinical course were consistent with MTB. All 8 patients
with abnormal PF improved. The prevalence of MAC lung infection in two inner
city hospitals was four times higher than that of TB. The indication for
treatment of MAC infection should also rely heavily on clinical and radiological
evidence when there is only one positive sputum culture. The diagnosis was

considered only when the admitting physician was a pulmonologist. Most patients
with combined infection were clinically consistent with MTB and responded to
anti MTB treatment alone. Treatment with anti -MAC therapy improved PF in those
patients whose PF was abnormal to begin with.

[Question ]: Is Mycobacterium avium less susceptible to antibiotics than
Mycobacterium tuberculosis?

[Extracted ]:

Title sentences: [empty list] (no sentences or phrases that directly answer the
question)

Abstract sentences: ["The prevalence of MAC lung infection in two inner city
hospitals was four times higher than that of TB.", "Most patients with combined
infection were clinically consistent with MTB and responded to anti MTB
treatment alone ."]

******************

Here is the data:

[Title]: {title}

[Abstract ]: {abstract}

[Question ]: {question}

[Extracted ]:
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