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Abstract
In this study, we employed three deep learning models ResNet50, MobileNetV2, and DenseNet-121 to perform
concept detection, which involves identifying and locating relevant concepts in medical images. This provides the
foundation for generating coherent captions in the subsequent caption prediction. In medical imaging, concept
detection plays a pivotal role. It enables accurate disease diagnosis and monitoring by identifying specific features,
such as tumors, fractures, or anomalies. These concepts guide treatment planning, ensuring timely interventions.
Among the models, ResNet50 achieved the highest performance, followed by MobileNetV2 and DenseNet-121.
These results indicate that ResNet50 is the most effective model for identifying relevant concepts within medical
images. This study provides insights into the applicability of different convolutional neural networks for medical
image analysis, contributing to advancements in automated medical image captioning. Our team secured 8th
place on the overall challenge leaderboard in the Concept Detection Task of the 8th edition of Caption Challenge
in ImageCLEFmedical 2024.
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1. Introduction

The 8th edition of the Caption Challenge in the ImageCLEFmedical 2024 [1] focuses on two tasks:
Concept Detection and Caption Prediction [2]. This study examines the results derived from pre-trained
convolutional models—ResNet50, MobileNetV2 and DenseNet-121—utilized specifically for the Concept
Detection task. Concept Detection involves multilabel classification, where each radiology image
may contain one or more labels. These labels, represented as CUIs (Controlled User Information), are
mapped to specific concepts. Identifying these concepts helps in isolating individual components
within the image and can be further applied to information retrieval. The motivation for this task stems
from the growing availability of images without accompanying metadata. Acquiring metadata is crucial
for making the content usable and accessible for further analysis and application [3].

Previous studies have underscored the challenges and potential of various approaches in med-
ical image analysis. Rahman [4] demonstrated commendable precision in lesion detection using a
bespoke CNN architecture, highlighting the effectiveness of tailored models in specific tasks. Dimitris
and Ergina [5] explored the efficacy of transfer learning in medical imaging, showing that pretrained
models can be effectively adapted for diverse imaging modalities. Rossetto et al. [6] extended visual
concept detection to video retrieval, showcasing the versatility of these techniques across different
formats. Ohri and Kumar [7] presented a comprehensive framework for medical image classification,
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suggesting that integrating diverse methodologies can enhance the accuracy and applicability of
concept detection.

2. Methodology

The dataset for the concept detection task is derived from the Radiology Objects in COntext Version 2
(ROCOv2) dataset [8], an enhanced version of the original Radiology Objects in COntext (ROCO) dataset
[9]. This dataset is specifically curated for radiology images and is sourced from biomedical articles in
the PMC OpenAccess subset. The training set comprises 70,108 radiology images, the validation set
includes 9,972 images, and the test set contains 17,237 images.

2.1. Dataset Processing and Environmental Setup

We began by loading the train_concepts.csv file to extract UMLS (Unified Medical Language System)
[10] concept IDs from the CUIs column. Images were resized to 224x224 pixels, normalized, and
converted to the appropriate format. Generators were created for the training and validation datasets
to handle multilabel classification, yielding batches of images and corresponding CUIs.

The implementation was configured with Python 3.6 or higher, and the necessary libraries, in-
cluding TensorFlow(v2.15.0), Keras(v2.15.0), and NumPy(v1.24.3), were installed as shown in the
listing below. We also ensured compatibility with CUDA and cuDNN to leverage GPU acceleration for
model training, significantly improving computational efficiency. In addition, the default learning rate
scheduler used in our experiments is the ReduceLROnPlateau method from TensorFlow/Keras, which
reduces the learning rate when a monitored metric, such as validation loss, has stopped improving. We
also implemented the EarlyStopping callback to stop training when the validation loss metric shows no
improvement for a specified number of epochs. These methods help optimize the training process and
prevent overfitting.

1 # Python version
2 Python 3.6 or higher
3

4 # Required libraries and versions
5 TensorFlow v2.15.0
6 Keras v2.15.0
7 NumPy v1.24.3

Listing 1: Environment Setup

2.2. DenseNet-121

In this study, we employ the DenseNet-121 architecture for image classification tasks. DenseNet-121 is a
densely connected convolutional network that enhances information flow between layers by connecting
each layer to every other layer in a feed-forward fashion shown in Fig. 1 [11]. The model begins with an
input layer for images of size 224× 224× 3, followed by an initial convolutional layer with 64 filters of
size 7× 7 and a stride of 2. This is followed by a batch normalization layer, a ReLU activation function,
and a max pooling layer with a filter size of 3 × 3 and a stride of 2. The network consists of four
dense blocks with increasing complexity. The first dense block contains 6 layers, each comprising two
convolutions repeated 6 times. This is followed by a transition layer, which includes a 1× 1 convolution
and a 2× 2 average pooling layer. The second dense block contains 12 layers with two convolutions
repeated 12 times, followed by another transition layer. The third dense block consists of 24 layers
with two convolutions repeated 24 times, followed by a transition layer. The final dense block has 16
layers with two convolutions repeated 16 times. After dense blocks, the model includes a final batch



normalization layer, a ReLU activation function, an average pooling layer of size 7 × 7, and a fully
connected layer with 1945 output units. This comprehensive design facilitates efficient feature reuse,
leading to improved performance and reduced parameter count compared to traditional convolutional
networks.

Figure 1: DenseNet-121 Architecture Diagram [12].

2.3. MobileNetV2

In this study, we employ the MobileNetV2 architecture for image classification tasks. MobileNetV2 is
a lightweight and efficient convolutional neural network designed for mobile and embedded vision
applications shown in Fig. 2. The model begins with an input layer designed for images sized at
224× 224× 3 pixels. This is followed by a 3× 3 convolutional layer employing 32 filters and a stride
of 2, complemented by batch normalization and ReLU activation.
The core of MobileNetV2 consists of inverted residual blocks with linear bottlenecks. Each block
includes depthwise convolutions, expansion layers with 1×1 convolutions, and pointwise convolutions
to adjust channel dimensions, accompanied by batch normalization and ReLU activation. These blocks
are repeated to enhance feature extraction efficiently [13].

After multiple inverted residual blocks, the network uses a global average pooling layer to
consolidate spatial information, followed by a flattening layer. The final layers are a fully connected
layer and a softmax activation function, which output class probabilities. MobileNetV2’s design ensures
effective feature extraction with fewer parameters, making it suitable for resource-limited environments.



Figure 2: MobileNetV2 Architecture Diagram [13].

2.4. ResNet50

ResNet50 is a deep convolutional neural network architecture consisting of 50 layers, designed to
address the vanishing gradient problem through the use of residual blocks shown in Fig. 3. Each
block includes skip connections that allow the network to effectively propagate gradients, enabling the
training of very deep networks [14]. ResNet50 features a bottleneck design with layers organized into
five stages, combining convolutional operations and identity mappings, followed by a global average
pooling and a fully connected layer for classification. This architecture achieves high performance on
image recognition tasks, making it a cornerstone in modern deep learning.

2.5. Training and Evaluation

In this study, we explore three distinct convolutional neural network architectures—DenseNet-121,
MobileNetV2, and ResNet50—for image classification tasks (Figures 1, 2, and 3). For DenseNet-
121, initialized with pre-trained weights from ImageNet and customized with additional dense and
classification layers, we conducted initial training with base layers frozen over 20 epochs, using a batch
size of 32 and employing data augmentation techniques such as rescaling, horizontal flipping, and
zooming. Subsequently, we unfroze the base layers for fine-tuning to adapt the model specifically to our
dataset. The model was evaluated on a separate test dataset to assess performance metrics including
loss and accuracy, ensuring robustness and reproducibility of results.
MobileNetV2, optimized for efficiency in mobile and embedded applications, was initialized with

pre-trained weights and customized with additional dense layers for multi-label classification, aligning
with the number of UMLS concepts. The model was compiled using binary cross-entropy loss and the
Adam optimizer, with accuracy as the primary evaluation metric. Training commenced with the dataset
split into training and validation sets. Over 20 epochs and a batch size of 32, the model underwent
initial training with frozen layers, accompanied by rescaling, horizontal flipping, and zooming data
augmentation techniques applied solely to the training data for improved generalization. Subsequent



Figure 3: ResNet50 Architecture Diagram [14].

fine-tuning unfroze layers to adapt the model specifically to the dataset. Evaluation on independent
validation and test sets verified MobileNetV2’s robust performance in classifying images, affirming
its suitability for resource-efficient environments and underscoring its effectiveness in medical image
analysis tasks.
ResNet50, leveraging pre-trained weights from ImageNet without the top classification layer, was

initialized to maintain the integrity of learned features. The base model’s layers were frozen to pre-
serve these weights during training. For model compilation, binary cross-entropy served as the loss
function for its effectiveness in multilabel classification tasks. The Adam optimizer was chosen to
efficiently navigate the model’s training process. Accuracy, a critical metric, was employed to evaluate
model performance. Training spanned 15 epochs using a batch size of 32, with data augmentation
techniques—including rescaling, horizontal flipping, and zooming—applied to enhance generalization
capabilities. The model demonstrated robustness and reliability when evaluated on separate validation
and test datasets, underscoring its efficacy in complex image recognition scenarios.



3. Experimental Results and Analysis

The results of our analysis are as follows:

Table 1
Comparison of F1 Scores and Secondary F1 Scores for Deep Learning Models.

Model F1 Score Secondary F1 Score

ResNet50 0.181 0.264
MobileNetV2 0.178 0.253
DenseNet-121 0.114 0.23

Table 2
Performance Metrics of Different Deep Learning Models

Model Precision Recall F1 Score

ResNet50 0.41 0.36 0.38
MobileNetV2 0.61 0.37 0.46
DenseNet-121 0.35 0.42 0.38

The better F1 score of ResNet50 compared to MobileNetV2 and DenseNet-121 shown in Table (1) can
be attributed to its superior performance in reducing loss through the training epochs as observed.
The graphs provided display the training and validation accuracy and loss over several epochs for
three different models: DenseNet-121 (Fig. 6), MobileNetV2 (Fig. 5), and ResNet-50 (Fig. 4). These
visualizations highlight distinct performance characteristics and potential issues like overfitting.

DenseNet-121 (Fig. 6) shows a steady increase in training accuracy, but its validation accuracy
fluctuates significantly, indicating instability. The training loss decreases consistently, reflecting
effective learning on the training data. However, the validation loss initially decreases and then starts
to increase, a clear sign of overfitting. This suggests the model is too complex, capturing noise and
nuances that don’t generalize well.

In contrast, MobileNetV2 (Fig. 5) demonstrates both training and validation accuracies that increase
and converge closely, indicating consistent improvement without significant divergence. The training
and validation loss curves also decrease and stabilize, suggesting that the model generalizes well to
the validation data. This implies that MobileNetV2, designed for efficiency, maintains a good balance
between complexity and generalization, effectively preventing overfitting.

ResNet-50 (Fig. 4) exhibits mild overfitting, with small gaps between training and validation accuracy
and slight fluctuations in validation loss, indicating it captures some noise but still generalizes relatively
well. With some hyperparameter tuning and regularization, its performance could improve.

In addition, Table 2 presents the precision, recall, and F1 scores for three models: ResNet50,
MobileNetV2, and DenseNet-121. ResNet50 has a precision of 0.41, recall of 0.36, and an F1 score of 0.38,
indicating moderate performance with a tendency to miss actual positives. MobileNetV2 shows the
highest precision at 0.61 and an F1 score of 0.46, suggesting it balances precision and recall better than
the other models, despite a recall of 0.37. DenseNet-121 has the highest recall at 0.42 but the lowest
precision at 0.35, resulting in an F1 score of 0.38, similar to ResNet50. This indicates that DenseNet-121
identifies more actual positives but also has a higher rate of false positives. Consequently, MobileNetV2
demonstrates the most balanced performance, making it potentially the most reliable model when



considering both precision and recall.

The results achieved by our models, compared to EfficientNet-B0, EfficientNet-v2-s models, and
other challenge participants, are notably inferior due to several factors. DenseNet-121 exhibits
unstable validation accuracy and increasing validation loss, indicating overfitting and inability to
generalize effectively. MobileNetV2, in contrast, demonstrates consistent improvement in both
training and validation metrics, indicating better generalization capabilities. ResNet-50 shows mild
overfitting with small accuracy gaps and fluctuating validation loss. Additionally, while MobileNetV2
achieves the highest precision and balanced F1 score (0.46), DenseNet-121’s high recall comes at
the cost of lower precision and similar overall F1 score (0.38) to ResNet-50, indicating challenges
in correctly identifying positives and minimizing false positives(Table 2). These performance
differences might also stem from the models’ regularization techniques, the quality and quantity
of the training data, and the tuning of hyperparameters such as learning rates and batch sizes.
Enhancing regularization, tuning hyperparameters, or augmenting the dataset could help improve
DenseNet-121 and ResNet-50’s performance to reduce overfitting and enhance generalization. To
ensure reproducibility, the code and model weights for our experiments are accessible on GitHub at
https://github.com/Sriram0703/ImageCLEFmedical-2024-Concept-Detection.

Figure 4: ResNet50 accuracy and loss graph.

Figure 5: MobileNetV2 accuracy and loss graph.



Figure 6: DenseNet121 accuracy and loss graph.

4. Conclusion

In this study, we addressed the Concept Detection Task of the ImageCLEFmedical Caption 2024 challenge,
aiming to enhance automatic captioning and scene understanding of radiology images. We evaluated
three deep learning models—ResNet50, MobileNetV2, and DenseNet-121—based on their ability to
identify and locate relevant concepts within a large corpus of medical images. Among these models,
ResNet50 demonstrated superior performance with an F1 score of 0.181, followed by MobileNetV2 with
an F1 score of 0.178, and DenseNet-121 with an F1 score of 0.114. These results indicate that ResNet50 is
the most effective model for concept detection in this context, providing the most accurate identification
of individual components that form the basis for generating coherent captions. This work underscores
the potential of using advanced convolutional neural networks in medical image analysis, contributing
to the development of more efficient and reliable automated medical image captioning systems.
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