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Abstract
Automatically generating captions and reports for medical images has become increasingly important due to
the growing workload of radiologists in hospitals. To tackle this challenging task with limited annotation data,
there is a rising interest in developing medical vision-language foundation models (Med-VLFMs). These models
leverage the capabilities of vision foundation models and large language models (LLMs) and often utilize the
parameter-efficient fine-tuning (PEFT) technique. However, current Med-VLFMs face two critical issues: (1)
relying on a single vision model to represent the semantics of medical images, and (2) adapting LLMs with
PEFT without considering the interference between vision and text modalities. This work presents a novel
Med-VLFM with vision encoder ensembling (VEE) and modality-aware adaptation (MAA) to address these
limitations. VEE combines the strengths of general and medical specialist vision foundation models to produce
a more holistic representation of medical images. MAA introduces two small sets of trainable parameters
into LLMs to calibrate vision and text features, respectively. Our proposed Med-VLFM ranked 1𝑠𝑡 on most of
the automatic evaluation metrics, including BERTScore, ROUGE-1, BLEU-1, BLEURT, METEOR, CIDEr and
RefCLIPScore, in the ImageCLEFmedical 2024 caption prediction challenge. Our code and models are available at
https://openi.pcl.ac.cn/OpenMedIA/PCLmed24.
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1. Introduction

Medical report generation (MRG), the main application of image captioning [1] in the medical domain,
stands as a pivotal task in healthcare, aiming to automatically produce precise and coherent reports
delineating the impressions and observations derived from medical images [2, 3, 4]. High-quality
cross-modal annotations, comprising meticulously paired medical image-report datasets, are essential
for the success of MRG. Despite the emergence of a few open-source datasets fostering research in
this domain [5, 6, 7], their limited scale poses significant challenges for the development of deep and
expansive neural architectures.

Recent advancements in vision and language applications have led to the rise of large-scale pre-
trained models, termed foundation models (FMs), designed for general applicability, and demonstrate
versatility across various tasks, owing to prompt engineering or parameter-efficient fine-tuning (PEFT).
The scalability of both model and data enables FMs to acquire emergent capabilities, empowering them
to tackle tasks previously deemed challenging for smaller models [8, 9, 10]. In the pursuit of effective
MRG, researchers have explored methodologies to harness the capabilities of FMs while addressing the
scarcity of labelled medical image-report pairs. One notable approach is the BLIP-2 architecture [11],
a state-of-the-art vision-language pre-training methodology that facilitates knowledge transfer from
single-modality vision and language foundation models.
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In this study, we present a novel approach to address the challenges in medical image captioning and
report generation using medical vision-language foundation models (Med-VLFMs). Drawing inspiration
from the BLIP-2 and its adaptations in the medical domain [11, 12, 13], our Med-VLFM incorporates a
lightweight query Transformer (Q-Former) to connect three foundation models (FMs): an ensemble of
EVA ViT-g [8] and BiomedCLIP [14] serving as the vision encoder, and Pangu-𝛼 [15] as the language
decoder. Our proposed Med-VLFM introduces two innovative techniques: vision encoder ensembling
(VEE) and modality-aware adaptation (MAA). VEE combines general and medical specialist vision
foundation models to create a more comprehensive representation of medical images. MAA calibrates
vision and text features using small sets of trainable parameters in LLMs. Through experimentation
on the ImageCLEFmedical 2024 caption prediction challenge [16, 17], our Med-VLFM ranked 1𝑠𝑡 on
most of the automatic evaluation metrics, including BERTScore, ROUGE-1, BLEU-1, BLEURT, METEOR,
CIDEr and RefCLIPScore, demonstrating the effectiveness of VEE and MAA in enhancing medical image
captioning and report generation.

2. Related Works

Medical/Radiology Report Generation Motivated by the rapid development of image captioning [1,
18, 19, 20, 21], the field of medical report generation has seen significant research interest in recent years.
Different from pure-text scenarios like chatting with patients [22, 23, 24] and discharge instruction
generation [25], medical report generation needs to “translate” medical images into detailed reports.
As such, one line of research focus on improving the cross-modal alignment between medical images
and reports, which is usually achieved by reinforcement learning [3, 26], contrastive learning [27, 28],
well-designed modules like hierarchical attention [29] and memory [30]. Given that generating accurate
reports requires domain expertise, another line of research opts to provide models with effective priors
through retrieval [3, 31, 32] or augment models with knowledge [28, 31, 33]. However, the language
models used in these medical report generation work are typically shallow and may lack the capacity
to capture the nuances of context and execute complex reasoning.

Medical Vision-Language Foundation Models Recent advancements in conversational AI have
shown promise in aiding biomedical practitioners. LLaVA-Med [34] proposes an efficient approach to
training a vision-language conversational assistant for answering biomedical image research questions.
Med-PaLM [35] provides high-quality answers to medical inquiries, while R2GenGPT [36] enhances
Radiology Report Generation by aligning visual features with language model embeddings. Addition-
ally, XrayGPT [37] introduces a conversational medical vision-language model for analyzing chest
radiographs. While these models signify significant progress in multimodal conversational AI for the
medical domain, their efficacy relies heavily on the quality and quantity of paired training samples. As
such, Med-MLLM [38] learns radiology representations from unlabelled data to quickly deploy tools
for rapid response to rare diseases. Despite the above efforts, the potential benefits of incorporating
multiple vision models have yet to be explored.

Parameter-Efficient Fine-Tuning With the proliferation of foundation models (FMs) [9, 10], effi-
ciently adapting FMs to a specific task becomes a research hotspot. One effective technique is prompt
engineering [39], which aims to affect the behaviors of language FMs by providing them with a textual
template filled with task-related priors [40, 41], demonstrations of several examples [42, 43], or a chain
of thoughts [44, 45, 46]. Alongside prompt engineering, parameter-efficient fine-tuning (PEFT) has
also emerged as a popular technique to influence the intermediate hidden states and final responses of
FMs. In implementation, PEFT either introduces lightweight components, e.g., Adapter [47], continuous
prompts [41, 48], and LoRA [49], vectors that scale the inner activations [50], into FMs, or adapts a
small portion of inherent weights of FMs [51]. Recent practices utilizing these two techniques have
demonstrated the effectiveness of adapting general-purpose FMs to the medical domain [52, 53, 54].
Distinct from these practices, our work focuses on medical report generation.
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Figure 1: Overview of our proposed Med-VLFM for medical/radiology report generation.

3. Approach

Overview As shown in Figure 1, our proposed Med-VLFM for medical/radiology report genera-
tion comprises four major components: vision encoders parameterized by Θ𝑣 = {𝜃1𝑣 , 𝜃2𝑣}, a query
Transformer (Q-Former) parameterized by 𝜃𝑞 , a LLM parameterized by 𝜃𝑡, and modality-aware adap-
tation parameterized by ∆ = {𝛿𝑣, 𝛿𝑡}. Given the medical image 𝐼 and the target caption/report
y = {𝑦1, 𝑦2, . . . , 𝑦𝑁}, our model minimizes the following negative log-likelihood:

ℒ = −
𝑁∑︁

𝑛=1

log 𝑝(𝑦𝑛|y<n, 𝐼; {Θ𝑣, 𝜃𝑞, 𝜃𝑡,∆}). (1)

Next, we elaborate on each component of our model.

Vision Encoder Ensembling We consider general-purpose and specialist vision encoders to produce
comprehensive visual representations and thus adopt EVA-ViT-g [8] pre-trained on 29.6 million natural
images and BioMedCLIP [14] pre-trained on 15 million medical images crawled from the scientific
publications in PubMed Central1. We use the fine-tuned weights from our previous work [12] for
EVA-ViT-g and the official weights for BioMedCLIP. Following BLIP-2 [11], we remove the last layer of
these encoders and use the second last layer’s output features. To stabilize training, a layer normalization
layer [55] is added to the end of each vision encoder. As different vision encoders may have their distinct
image processing pipelines, we adhere to their original settings and feed images of resolution 364× 364
and 224× 224 into EVA-ViT-g and BioMedCLIP, resulting in features 𝑅1 ∈ R𝐾1×𝑑1 and 𝑅2 ∈ R𝐾2×𝑑2 ,
respectively. For fusion, we apply the non-parametric bicubic interpolation operation on 𝑅2 to obtain
𝑅′

2 ∈ R𝐾1×𝑑2 first and then concatenate 𝑅1 and 𝑅′
2 along the channel dimension to attain the final

visual features 𝑅 ∈ R𝐾1×(𝑑1+𝑑2). In our case, 𝐾1 = 676,𝐾2 = 196, 𝑑1 = 1408, 𝑑2 = 768.

Query Transformer (Q-Former) Directly feeding 𝑅 into the subsequent language modeling process
will introduce redundancy and lead to high memory and computational costs due to the quadratic
nature of the standard self-attention mechanism [56]. Thus, we adopt a Q-former with 𝐿 (𝐿 ≪ 𝐾1)
learnable query tokens to aggregate 𝑅 into visual tokens 𝑉 ∈ R𝐿×𝑑llm . In practice, we follow the
setting of [13]: Q-Former is a randomly initialized BERT-like encoder [57] and has 𝐿 = 32 query tokens,
6 Transformer blocks with hidden size 𝑑𝑞 = 768 and cross-attention layers inserted at a frequency of 2,
and a linear projection layer that maps 𝑑𝑞 to 𝑑llm.

1https://www.ncbi.nlm.nih.gov/pmc/
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Figure 2: Word clouds of ground-truth reports from the training set (a) and the validation set (b). In (c), we
show the word cloud of captions generated by our best-performed model on the testing set.

Large Language Model (LLM) We use Pangu-𝛼 [58] for language modeling according to our
computation budget. In particular, we replace its vocabulary with that of OPT-2.7B [59], since Pangu-
𝛼 was trained mainly with Chinese words. To ensure the alignment between randomly initialized
token embeddings and the other weights of Pangu-𝛼, we train token embeddings while keeping
the rest of the LLM parameters frozen. As Pangu-𝛼 is a decoder-only Transformer, we prefix its
original input sequence, i.e., text tokens 𝑇 ∈ R𝑁×𝑑llm , with 𝑉 following common practices [36, 60] to
achieve vision-grounded medical report generation. The resulting LLM’s input sequence is denoted as
𝐻 = [𝑉 ;𝑇 ] ∈ R(𝐿+𝑁)×𝑑llm . We note that using more advanced or medical-related LLMs [61, 62, 63]
may yield better performance. We leave this exploration to our future study.

Modality-Aware Adaptation Let’s assume the LLM has 𝐽 blocks, each of which is parameterized
by 𝜃

(𝑗)
𝑡 (𝑗 ∈ [1, 𝐽 ]), and denote 𝐻(𝑗) = [𝑉 (𝑗);𝑇 (𝑗)] as the original output of the 𝑗-th block, we can

compute 𝐻(𝑗) as follows:
𝐻(𝑗) = LLMBlock(𝐻(𝑗−1); 𝜃

(𝑗)
𝑡 ), (2)

where 𝐻(0) = 𝐻 . There are two incoming problems: (1) 𝜃(𝑗)𝑡 is optimized for the text-only modality,
which can be unsuitable for the mixed-modal input due to the modality gap [64] and (2) using the
same set of parameters to learn multimodal representations may limit the collaboration of vision and
text modalities [65]. Therefore, we propose modality-aware adaptation (MAA) to mitigate the above
two problems. In particular, MAA introduces light-weight adaptation modules independent of blocks
and modalities, i.e., the newly added parameters can be defined as ∆(𝑗) = {𝛿(𝑗)𝑣 , 𝛿

(𝑗)
𝑡 }. In this work,

we consider a simple implementation of MAA: putting adaptation modules right after each block to
calibrate 𝐻(𝑗). So Eq. (2) is modified as follows:

𝐻(𝑗) = LLMBlock(𝐻
(𝑗−1)

; 𝜃
(𝑗)
𝑡 ),

𝐻
(𝑗)

= Adaptation(𝐻(𝑗); ∆(𝑗))

= [𝑉 (𝑖) + Adapter(𝑉 (𝑖); 𝛿(𝑗)𝑣 );𝑇 (𝑖) + Adapter(𝑇 (𝑖); 𝛿
(𝑗)
𝑡 )],

(3)

where𝐻
(0)

= 𝐻 , pre-trained weights 𝜃(𝑗)𝑡 are kept frozen, [; ] denotes concatenation along the sequence
dimension, and Adapter(·) is a bottle-neck MLP as in [47], i.e., Adapter(𝑥) = 𝑊 up(𝜎𝑊 down(𝑥)). In
the implementation, we set the non-linearity activation function 𝜎 as GELU [66] and the bottleneck size
of adapters to 64. Moreover, inspired by the zero-initialization technique [49], we randomly initialize
𝑊 up but initialize 𝑊 down with all zeros, so that the intermediate and output features of LLM can be
adapted smoothly.



Figure 3: Histograms of the number of tokens per caption. We use GPT-2’s tokenizer [67] to split captions into
tokens. Roughly 99% captions contain less than 128 tokens.

4. Experiments

4.1. Experimental Setups

Dataset The development dataset of the ImageCLEFmedical 2024 caption prediction challenge [17] is
ROCOv2 [7], which is an updated and extended version of the Radiology Objects in COntext (ROCO)
dataset [68]. ROCOv2 provides 70,108, 9,972, and 17,237 radiology images for training, validation, and
testing respectively. Images originating from biomedical articles are annotated with one medical caption
each. In Figure 2 (a) and (b), we visualize the word clouds of ground-truth reports from the training and
validation sets. As we can observe, there are many computed tomography (CT) and X-ray images in the
dataset. Besides, some common expressions like “black arrow” indicate that humans have marked a
large portion of images.

Metrics As noted in the guidelines of the competition2, the major and secondary metrics used
for the challenge are BERTScore [69] and ROUGE-1 [70]. Specifically, BERTScore is a model-based
metric that calculates the semantic similarity of two sentences. ROUGE-1 measures the number of
matching unigrams between a model-generated text and a reference. Besides, we also report BLEU [71],
METEOR [72], CIDEr [73], BLEURT [74], CLIPScore and RefCLIPScore [75] to comprehensively evaluate
the effectiveness of our proposals. For all metrics, higher is better.

Comparing Model We treat our last year’s solution [12] (abbreviated as PCLmed-23) as a baseline.
It adopts EVA-ViT-g [8] as the vision encoder, v1.0 ChatGLM-6B3 [76] as the decoder, and adapts
ChatGLM-6B with P-Tuning [48] (please see the original paper for more details). We use PCLmed-23’s
original hyper-parameters and directly evaluate PCLmed-23 on the validation set of ROCOv2. Note
that although we do not train PCLmed-23 on ROCOv2 (this year’s data), there is a significant overlap
between last year’s and this year’s training data.

Image and Text Processing During training, we process images with random resized cropping with
ratios falling into [0.9, 1.0]. The cropped images are resized to the maximum resolution required by
vision encoders, i.e., 364× 364 in this work. We apply bilinear downsampling on the same cropped
images for vision encoders with lower-resolution images as inputs. Unlike PCLmed-23, we keep all
symbols in texts this year and truncate them into a maximum length of 128 based on the histograms
shown in Fig. 3.

Model Settings Most model details have been introduced in Section 3. Unlike PCLmed-23, we
instruct the LLM with an empty text prompt since we found it is slightly better than the text prompt

2https://www.imageclef.org/2024/medical/caption
3https://github.com/THUDM/ChatGLM-6B

https://github.com/THUDM/ChatGLM-6B


Table 1
BERTScore (main metric) in the ImageCLEFmedical 2024 caption prediction challenge. †: EVA-ViT-G has
been fine-tuned on the training data of the last year’s challenge. *: We do not train PCLmed-23 on data
from this year, but there is a significant overlap between last year’s and this year’s training data.

Model Vision
Encoder

LLM
Type

LLM
Adaptation

#Parameters BERTScore

Total Trainable Validation Test

PCLmed-23 EVA-ViT-G† ChatGLM-6B
Modality-Agnostic
(P-Tuning)

7.3B N/A* 0.610308 -

#1 BioMedCLIP Pangu-𝛼 None 2.8B 180.3M 0.629966 -
#2 EVA-ViT-G† Pangu-𝛼 None 3.8B 183.3M 0.632418 0.622711
#3 #1 + #2 Pangu-𝛼 None 3.8B 186.8M 0.633252 0.623535
#4 #1 + #2 Pangu-𝛼 Modality-Agnostic 3.8B 192.1M 0.637506 -
#5 (Ours) #1 + #2 Pangu-𝛼 Modality-Aware 3.8B 197.4M 0.638812 0.629913

Table 2
Full validation performance in the ImageCLEFmedical 2024 caption prediction challenge.

Model
Main Metrics Other Metrics

BERTScore ROUGE-1 BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr BLEURT CLIPScore RefCLIPScore

PCLmed-23 0.610308 0.257961 0.231894 0.127473 0.068828 0.039036 0.101455 0.196403 0.330486 0.813100 0.809721

#1 0.629966 0.299996 0.283482 0.167054 0.100009 0.062129 0.117641 0.249127 0.347528 0.826615 0.817631
#2 0.632418 0.303293 0.284882 0.168868 0.102936 0.064572 0.118730 0.267878 0.346301 0.824120 0.819503
#3 0.633252 0.305291 0.287658 0.171318 0.104373 0.065453 0.120168 0.269210 0.348228 0.825405 0.820024
#4 0.637506 0.302669 0.286492 0.171013 0.104543 0.066096 0.120499 0.276311 0.347248 0.825275 0.819929
#5 (Ours) 0.638812 0.304166 0.289269 0.172753 0.105881 0.066715 0.121668 0.278013 0.348230 0.825773 0.820519

like "generate a medical report for the input image" in our preliminary experiments. Besides, we insert
the adaptation modules (i.e., Adapter) into the LLM at a frequency of 2.

Hyper-Parameters During training, we use AdamW [77] and L2 weight decay of 0.05 to train models
with 32 samples per batch for 10 epochs. The learning rate (𝑙𝑟) is increased to 1e-4 in 1,000 warm-up
steps and follows a cosine annealing scheduler. We train token embeddings with 0.1× 𝑙𝑟 to stabilize
training. During evaluation, we use the beam search decoding algorithm with a beam size of 3 to
generate medical captions and force the model to generate at least 8 tokens and up to 64 tokens. We set
the repetition penalty to 2.5 to avoid duplication and the length penalty to 2.0 to encourage generating
longer captions.

4.2. Quantitative Results

We submit three runs to the ImageCLEFmedical 2024 caption prediction challenge, which correspond to
#{2, 3, 5} in Tables 1 and 2. In addition, we also run some ablations locally to highlight the effectiveness
of our proposals. Based on quantitative results in Tables 1 and 2, We have the following observations.

• Comparing #{1, 2, 3}, we can see that ensembling BioMedCLIP and EVA-ViT-G boosts performance
on all metrics except CLIPScore. This is because CLIPScore is a reference-free metric, meaning that
the metric score could be biased by the pre-trained knowledge of CLIP [78]. Instead, RefCLIPScore
considers the semantic similarity between references and predictions and #3 outperforms #{1,
2}. From another perspective, the overall performance improvements suggest that different
pre-trained vision models may have learned complementary visual features and our adopted
ensembling/fusion strategy, i.e., concatenating visual features along the channel dimension, helps
produce the holistic representations of medical images.

• Comparing #{3, 4}, we can observe that fine-tuning LLM with adapters regardless of vision and
text modalities may suffer from performance degradation. For example, #4 performs worse than



#3 on 6 out of 11 metrics listed in Table 2.
• Comparing #{4, 5}, we can see consistent improvements for all metrics if we adapt vision and

text features in LLM independently. This suggests that we should allocate modality-specific
parameters within LLM to alleviate modality interference and boost modality collaboration.

In short, the above observations verify the effectiveness of our proposed vision encoder ensembling
and modality-aware adaptation. Our final model (#5) surpasses PCLmed-23 and generally boosts
performance by a large margin compared with #{1, 2}. Nonetheless, there still exist many potential
improvement directions of our proposals, e.g., (1) designing a more advanced ensembling/fusion strategy
to unify the intelligence of different vision foundation models for medical tasks and (2) exploring a
more reasonable way to insert/allocate modality-specific parameters within LLM.

Ground Truth: ct of chest showing a large pericardial effusion (red arrows), a large right-sided pleural 
effusion, and a small left-sided pleural effusion (blue arrows)

PCLmed-23: ct scan of the chest showing pericardial effusion blue arrow and pleural effusion red arrow

#1: computed tomography scan of the chest showing bilateral pleural effusion (red arrow) and 
pericardial effusion (blue arrow)ct: computed tomography

#3: computed tomography (ct) of the chest showing large pericardial effusions (blue arrows) 
and moderate right-sided pleural effusion (red arrow).

(Ours) #5: computed tomography of the chest showing large pericardial effusion (red arrows) and 
bilateral pleural effusion (blue arrows).

Ground Truth: chest x-ray showing bilateral hilar lymphadenopathy.

PCLmed-23: chest x-ray of a 60-year-old man who presented with shortness of breath

#1: chest x-ray showing the tip of the catheter in the right atrium (black arrow).

#3: chest x-ray showing bilateral pleural effusions (arrows).

(Ours) #5: chest x-ray showing bilateral hilar lymphadenopathy (black arrows).

ImageCLEFmedical_Caption
_2024_valid_006570

ImageCLEFmedical_Caption
_2024_valid_003522

(b)

(a)

Ground Truth: ultrasound image of left internal jugular vein thrombosis.

PCLmed-23: ultrasound scan of the right internal jugular vein showing a 2.5 × 1.8 cm hypoechoic 
mass in the right internal jugular vein

#1: ultrasonography of the neck showing a heterogeneous cystic lesion with 
echogenicity and hypoechoic areas.

#3: ultrasound image of the left internal jugular vein showing a thrombus in the distal 
part of the vein.

(Ours) #5: ultrasound image of the right internal jugular vein thrombosis.
ImageCLEFmedical_Caption

_2024_valid_009583 (c)

Figure 4: Qualitative examples on the validation set. We mark accurate keywords in green, wrong details in red,
and underline repeated content. Image sources from top to bottom: CC BY-NC [Chauhan et al. (2021)], CC BY
[Muacevic et al. (2022)], and CC BY [Laaribi et al. (2021)].

4.3. Qualitative Analysis

In Figure 4, we visualize three qualitative examples, where ground-truth captions and captions generated
by different models are presented. We have the following observations.

• All models can precisely identify different imaging modalities, i.e., X-Ray in (a), Computed
Tomography in (b), and Ultrasonography in (c).

• In Figure 4 (b), we can see that all models can predict the existence of “pericardial effusion”,
“pleural effusion”, and blue and red arrows. However, PCLmed-23 and #{1, 3} fail to ground the
abnormalities to the images, i.e., they mistakenly relate “pericardial effusion” to blue arrows
and “pleural effusion” to red arrows. This suggests the importance of improving Med-VLFMs’
grounding abilities.



• Benefited from the proposed vision encoder ensembling and modality-aware adaptation, our
model (#5) captures the abnormality in medical images more accurately, e.g., “bilateral hilar
lymphadenopathy” in (a) and “internal jugular vein thrombosis” in (c).

• Although our model (#5) generally performs the best, it still makes simple mistakes, i.e., “right”
in (c). There are several possible solutions for this problem, e.g., (1) enlarging the image res-
olution [79] and (2) incorporating positional embeddings into the Q-Former-like connection
module [62].

5. Conclusion

In this study, we propose a parameter-efficient training pipeline for medical image captioning and
report generation with single-modality pre-trained vision FMs and LLMs. By introducing vision encoder
ensembling and modality-aware adaptation, our method leverages the merits of both general and
medical vision models and calibrates vision and text features in the LLM. Our Med-VLFM achieved 1st
place in the ImageCLEFmedical 2024 caption prediction challenge, excelling across multiple evaluation
metrics, including BERTScore, ROUGE-1, BLEU-1, BLEURT, METEOR, CIDEr, and RefCLIPScore. This
success highlights the potential of our approach to significantly enhance medical AI solutions and
support radiologists in their work. Source codes with model weights are available at OpenMedIA4 [80].
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