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Abstract
The CLEF 2024 JOKER track focuses on the automatic processing of wordplay through three tasks: humour-aware
information retrieval, humour classification by genre and technique, and translation of puns from English to
French. Recent advancements in Large Language Models (LLMs) have enhanced their conversational abilities,
yet they struggle with humour detection and generation. Addressing this gap can significantly improve human-
computer interactions.

For Task 1, we implemented a TF-IDF vectorizer and logistic regression model to identify and rank humorous
sentences. The model achieved an F1 score of 0.93 for non-puns and 0.73 for puns, indicating robust performance
in humour detection. In Task 2, we classified jokes into five categories using logistic regression, Naive Bayes, and
support vector machines. The SVM model performed best, with F1 scores ranging from 0.14 to 0.61, showing
particular efficacy in classifying wit. Task 3 involved translating puns using the MarianMT model from the
Hugging Face library. Although successful, the process was time-intensive, suggesting the need for more efficient
methods.

Overall, our approaches demonstrated effective humour identification and translation capabilities but faced
challenges in genre-specific classification. This research underscores the importance of improving LLMs’ humour
processing abilities for better human-computer interaction.
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1. Introduction

In recent years, Large Language Models (LLMs) have increased in their capabilities exponentially.
Since the release of ChatGPT-4 in 2023, the world has quickly become accustomed to interacting with
LLMs via a chatbot API that made users feel like they were truly chatting with the machine. A 2024
study applied the Turing Test to participants using ChatGPT-4, finding that humans incorrectly judged
ChatGPT-4 to be human 54 percent of the time, showing just how convincingly LLMs can now emulate
human conversation. [1]

As impressive as this is, LLMs are still found to be lacking in several areas, humour being one of
them. Large language models struggle to reliably detect and explain humour[2][3][4], and generate
novel jokes [5]. For humans, humour plays a central role in forming relationships and can enhance
performance and motivation.[6] Therefore, giving LLMs a good grasp of humour has the potential to
massively boost the success of human-computer interactions.

Puns are a form of humour based on wordplay. Usually puns exploit double meanings of words or
similarity of sounds between different words to create a humorous or witty effect, with frequent use of
double entendré, homophones, or similar-sounding words. Words which could be used to form puns
are words like “profit” and “prophet”, for example, or “check” and “Czech”.

CLEF 2024: Conference and Labs of the Evaluation Forum, September 09–12, 2024, Grenoble, France
⋆

CLEF 2024 JOKER Tasks 1-3: Humour identification and classification
*Corresponding author.
†
These authors contributed equally.
$ rowanmann93@gmail.com (R. Mann); tomislav.mikulandric@gmail.com (T. Mikulandric)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:rowanmann93@gmail.com
mailto:tomislav.mikulandric@gmail.com
https://creativecommons.org/licenses/by/4.0


Perhaps what makes humour analysis such a challenge for LLMs is the many different subtle forms
of it that exist. Humour can be “on-the-nose”, physical, awkward, subtle, obvious, visual, childish, or
intelligent; it’s especially hard to define, which presents problems for LLMs.

Wordplay, by its very nature, exploits the intrinsic structure of the source language used and certain
characteristics used that may be impossible or difficult to find replacements or analogues of in the
target language.[7] Therefore, translating jokes from language to language requires more than simply
replacing one word with the corresponding word in the target language. The deeper understanding of
context required is an area where LLMs could excel, if methods are developed.

The JOKER track of CLEF 2024 aims to develop interdisciplinary approaches to the automatic
processing of wordplay. [8] This year, the JOKER track is split into three tasks:

• Task 1: Humour-aware information retrieval.
• Task 2: Humour classification according to genre and technique.
• Task 3: Translation of puns from EN to FR.

Can LLMs succeed in identifying, classifying, and translating humour? In this paper we will explore
this question, ahead we detail our workflow and results for tackling the three tasks of the JOKER track.

2. Task 1: Experimental Setup

2.1. Data Description

The data provided consisted of four JSON files. There was a “corpus” file containing a list of 61,268
pun and non-pun sentences, “queries test” and “queries train” files that list the corresponding keyword
linked to the sentences, and a “qrels train” file that if the sentence was a pun (“1”) or not (“0”).

2.2. Method

Our first step was to merge the data, creating a table with five columns: “qid”, “docid”, “qrel”, “text, and
“query”. We then used a TF IDF vectorizer to train the model on all our text and the corresponding
“qrel” values.

# query t e x t and j o k e t e x t i n t o a s i n g l e column − TF−IDF V e c t o r i z e r
d a t a merged [ ’ t e x t a l l ’ ] = d a t a merged [ ’ query ’ ] + " " + d a t a merged

[ ’ t e x t ’ ]

# F i t and t r a n s f o r m the combined t e x t
t f i d f m a t r i x = t f i d f v e c t o r i z e r . f i t t r a n s f o r m ( d a t a merged [ ’ t e x t a l l

’ ] )

Then we created a logistic regression model based off of our training data and used the model to
make predictions based off of our “queries test” data.

from s k l e a r n . l i n e a r model impor t L o g i s t i c R e g r e s s i o n

# L o g i s t i c R e g r e s s i o n model
model = L o g i s t i c R e g r e s s i o n ( )

# T r a i n e d model
t r a i n e d model = model . f i t (X t r a i n , y t r a i n )



The model returned relevance scores for each joke in the corpus for each query. (Appendix A)
Based on these results we produced a JSON file listing the “best” or rather, most relevant, jokes.

(Appendix B)

3. Task 1: Experimental Results

The results obtained from our model were very positive. Calculation of an F1 score for our model
produced results of 0.93 for the “0” (no pun) class, and 0.73 for the “1” class. This indicates that it
performed extremely well, with high precision and recall, for identifying sentences without puns and
moderately well for identifying those with puns.

4. Task 2: Experimental Setup

4.1. Data Description

The data provided consisted of 3 JSON files. “classification test data” and “classification train input data”
each contained “text” column containing thousands of jokes. The classification data was contained in
the file “classification train qrels data”, which provided the labels for our training data, categorising
each joke into one of five classes, IR (irony), SC (sarcasm), EX (exaggeration), AID (incongruity), SD
(self-deprecating), WS (wit).

4.2. Method

We merged the training data JSONs to create a dataframe with the text and classes side by side.
We preprocessed our text by removing contractions, making all letters lowercase, removing special
characters and URLs, then replaced the original text with our cleaned text in our data frame containing
the training labels. (Appendix C)

prompt terms = " " "
You a r e a r o b o t t h a t ONLY o u t p u t s JSON .
You r e p l y i n JSON format with the f i e l d ’ terms ’ .
You p r o v i d e ONLY semico lon − s e p a r a t e d l i s t o f MAXIMUM 3

s c i e n t i f i c terms o f a s o u r c e s e n t e n c e ONLY .
You DO NOT add ’ Sure , Here a r e the s c i e n t i f i c terms o f your

s e n t e n c e : ’ .
Example s o u r c e s e n t e n c e : In the modern e r a o f au tomat ion and

r o b o t i c s , \
autonomous v e h i c l e s a r e c u r r e n t l y the f o c u s o f academic and

i n d u s t r i a l r e s e a r c h . ? \
Example answer : { ’ terms ’ : ’ r o b o t i c s ; autonomous v e h i c l e s ’ }
Now here i s my s e n t e n c e :

" " "

We encoded our classifications to numbers and used TF-IDF to vectorise the text. The data was then
used to train a logistic regression model, a naive bayes model and a support vector machines model.

# T r a i n L o g i s t i c R e g r e s s i o n model
l o g i s t i c r e g r e s s i o n model = L o g i s t i c R e g r e s s i o n ( max i t e r = 1 0 0 0 )
l o g i s t i c r e g r e s s i o n model . f i t (X t r a i n t f i d f , y t r a i n )

# T r a i n Naive Bayes model
n a i v e bayes model = Mult inomialNB ( )
n a i v e bayes model . f i t (X t r a i n t f i d f , y t r a i n )



# T r a i n SVM model
svm model = SVM( k e r n e l = ’ l i n e a r ’ ) # You can s p e c i f y d i f f e r e n t

k e r n e l s l i k e ’ l i n e a r ’ , ’ poly ’ , ’ r b f ’ , e t c .
svm model . f i t (X t r a i n t f i d f , y t r a i n )

With our models trained, we were able to make predictions based off of our test data, which we
preprocessed in the same way as we did our training data. We then had to convert our classes back to
their original names, from numbers. (Appendix D)

5. Task 2: Experimental Results

The results of our F1 testing reveals big differences in the performance of each model. The logistic
regression model achieved F1 results of between 0.05-0.54 for all the 5 categories. The SVM model
achieved better results, with F1 results between 0.14 and 0.61. Interestingly, for both models, the “WS”
(wit) class achieved the highest F1 score, indicating this was the easiest to classify. In both models, “IR”
(irony) and “EX” (exaggeration) achieved lowest scores, indicating difficulty in classifying those types
of jokes.

6. Task 3: Experimental Setup

6.1. Data Preparation

The data provided consisted of 3 JSON files: “translation EN FR train input”, consisting of 1406 jokes
in English, “translation EN FR train qrels”, containing 5839 jokes in french, and “task3 2024 test”,
consisting of 4502 rows of jokes in English. There were also two .tsv files, “joker translation EN-FR
train input.tsv, and “joker translation EN-FR train qrels.tsv”. In the parent folder, there was also a JSON,
“joker translation test”, and “joker translation test.tsv”.

6.2. Method

First we merged our data to create a unified data frame around the English and French jokes, joined using
the “id en” variable. We loaded the hugging face “transformer” library and used the MarianMTModel and
MarianTokenizer then used a pre-trained model, “Helsinki-NLP Opus”, after trying first with EasyNMT
and finding better results from the Helsinki model. (Appendix E)

We iterated through the whole list of English jokes, translating to French, then decoded the vectors
back to letters, before saving in a new column alongside the originals. (Appendix F)

7. Task 3: Experimental Results

The translations seemed to be successful however, one drawback of using our method was that the
process was highly time intensive, suggesting there may be more practical methods available.

8. Conclusion

We can conclude that our techniques are effective at identifying the presence of a joke, but rather less
effective at classifying them into one of our five classes. Thanks to the existence of pre-trained models
which are tailored to the task, we can conclude that the translation of our jokes from English to French
was successful.
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.1. Appendix A

r e s u l t s = [ ]
# I t e r a t e over each t e s t query
f o r index , t e s t query i n d a t a t e s t q u e r i e s . i t e r r o w s ( ) :

query i d = t e s t query [ ’ q id ’ ]
query t e x t = t e s t query [ ’ query ’ ]
# C a l c u l a t e r e l e v a n c e f o r each j o k e i n the corpus with t h i s

query
s c o r e s = [ ]
f o r , j o k e i n d a t a corpus . i t e r r o w s ( ) :

i f j o k e [ ’ t e x t ’ ] i s None :
c o n t i n u e

e l s e :
t e x t a l l = query t e x t + " " + j o k e [ ’ t e x t ’ ]
v e c t o r i z e d t e x t = t f i d f v e c t o r i z e r . t r a n s f o r m ( [ t e x t a l l ] )
r e l e v a n c e s c o r e = model . p r e d i c t proba ( v e c t o r i z e d t e x t ) [ 0 ,

1 ]
s c o r e s . append ( {

’ doc id ’ : j o k e [ ’ doc id ’ ] ,
’ s co re ’ : r e l e v a n c e s c o r e

} )

https://arxiv.org/abs/2405.08007


.2. Appendix B

# S o r t j o k e s by r e l e v a n c e s c o r e i n d e s c e n d i n g o r d e r
s c o r e s . s o r t ( key=lambda x : x [ ’ s core ’ ] , r e v e r s e =True )

# P r e p a r e o u t p u t JSON format
f o r rank , s c o r e i n f o i n enumerate ( s c o r e s , s t a r t =1 ) :

r e s u l t s . append ( {
’ run id ’ : " Tomis lav&Rowan t a s k 1 TFIDF " ,
’ manual ’ : 0 ,
’ rank ’ : rank ,
’ s co re ’ : s c o r e i n f o [ ’ s core ’ ] ,
’ doc id ’ : s c o r e i n f o [ ’ doc id ’ ] ,
’ q id ’ : query i d

} )

with open ( ’ r e s u l t j o k e r t a s k 1 . j son ’ , ’w’ ) as o u t f i l e :
j s o n . dump ( r e s u l t s , o u t f i l e , i n d e n t =4 )

.3. Appendix C

# P r e p r o c e s s i n g f u n c t i o n
from n l t k . stem impor t WordNetLemmatizer
impor t c o n t r a c t i o n s
impor t r e
impor t n l t k
n l t k . download ( ’ s topwords ’ )
n l t k . download ( ’ wordnet ’ )
from n l t k . corpus impor t s topwords

lem = WordNetLemmatizer ( )
d e f p r e p r o c e s s t e x t ( t e x t ) :

sms = c o n t r a c t i o n s . f i x ( s t r ( t e x t ) ) # c o n v e r t i n g s h o r t e n e d words
t o o r i g i n a l ( Eg : " I ’m" t o " I am " )

sms = sms . lower ( ) # lower c a s i n g the message
sms = r e . sub ( r ’ h t t p s ? : / / S + |www. S + ’ , " " , sms ) . s t r i p ( ) # removing

u r l
sms = r e . sub ( " [ ^ a−z ] " , " " , sms ) # removing symbols and

numbers ( keep ing only c h a r a c h t e r s from a−z )
sms = sms . s p l i t ( ) # s p l i t t i n g
# l e m m a t i z a t i o n and stopword removal
sms = [ lem . l emmat i ze ( word ) f o r word i n sms i f not word i n s e t (

s topwords . words ( " e n g l i s h " ) ) ]
sms = " " . j o i n ( sms )
r e t u r n sms

X = d f t r a i n [ " t e x t " ] . app ly ( p r e p r o c e s s t e x t )

.4. Appendix D



d f bayes t e s t = pd . DataFrame ( t e s t d a t a )
# Apply t e x t p r e p r o c e s s i n g
d f bayes t e s t [ ’ c l e a n t e x t ’ ] = d f bayes t e s t [ ’ t e x t ’ ] . app ly ( p r e p r o c e s s

t e x t )

# TF−IDF V e c t o r i z a t i o n f o r t e s t d a t a
X t e s t t f i d f = t f i d f v e c t o r i z e r . t r a n s f o r m ( d f bayes t e s t [ ’ c l e a n t e x t

’ ] )

# P r e d i c t
bayes p r e d i c t i o n s = n a i v e bayes model . p r e d i c t (X t e s t t f i d f )

# Convert back t o o r i g i n a l names
bayes p r e d i c t e d c l a s s e s = l a b e l encoder . i n v e r s e t r a n s f o r m ( bayes

p r e d i c t i o n s )

.5. Appendix E

from t r a n s f o r m e r s impor t MarianMTModel , Mar ianToken ize r

# Load pre − t r a i n e d MarianMT model and t o k e n i z e r f o r E n g l i s h t o
French t r a n s l a t i o n

model name = " H e l s i n k i −NLP / opus −mt−en− f r "
model = MarianMTModel . from p r e t r a i n e d ( model name )
t o k e n i z e r = Mar ianToken ize r . from p r e t r a i n e d ( model name )

# D e f i n e i n p u t t e x t
i n p u t t e x t = " T r a n s l a t e t h i s t e x t t o French . "

# Token ize i n p u t t e x t
i n p u t s = t o k e n i z e r ( i n p u t t e x t , r e t u r n t e n s o r s =" p t " )

# Perform t r a n s l a t i o n
o u t p u t s = model . g e n e r a t e ( ∗ ∗ i n p u t s )

# Decode t r a n s l a t e d o u t p u t
t r a n s l a t e d t e x t = t o k e n i z e r . decode ( o u t p u t s [ 0 ] , s k i p s p e c i a l t o k e n s =

True )

# P r i n t t r a n s l a t e d t e x t
p r i n t ( " T r a n s l a t e d t e x t : " , t r a n s l a t e d t e x t )



.6. Appendix F

# Assuming you have a l r e a d y l o a d e d the t e s t d a t a i n t o a DataFrame d f
t e s t d a t a

r e s u l t s = [ ]

# T r a n s l a t e j o k e s
f o r , row i n d f t e s t d a t a . i t e r r o w s ( ) :

# T r a n s l a t e each row ’ s E n g l i s h t e x t t o French
t r a n s l a t i o n = model . g e n e r a t e ( ∗ ∗ t o k e n i z e r ( row [ ’ t e x t en ’ ] , r e t u r n

t e n s o r s =" p t " , padding =True ) )
t r a n s l a t e d t e x t = t o k e n i z e r . decode ( t r a n s l a t i o n [ 0 ] , s k i p s p e c i a l

t o k e n s =True )

# Append the t r a n s l a t i o n r e s u l t t o the r e s u l t s l i s t
r e s u l t s . append ( {

’ run id ’ : " Tomis lav&Rowan t a s k 3 MarianMTModel " ,
’ manual ’ : 0 ,
’ i d en ’ : row [ ’ i d en ’ ] ,
’ t e x t f r ’ : t r a n s l a t e d t e x t

} )

# Convert r e s u l t s l i s t t o DataFrame
t r a n s l a t e d d f = pd . DataFrame ( r e s u l t s )

# P r i n t or use the t r a n s l a t e d DataFrame as needed
p r i n t ( t r a n s l a t e d d f )
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