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Abstract
Accurate identification of species in fine-grained, long-tailed datasets poses significant challenges due to im-
balanced class distributions and the necessity for precise classification while minimizing confusion between
dangerous and harmless species. This paper introduces a generalized training and inference methodology de-
signed to tackle these challenges, demonstrated through competitive performance in both the SnakeCLEF and
FungiCLEF 2024 challenges. While results for FungiCLEF 2024 are detailed in an accompanying paper, this work
primarily explores the application and performance of the same techniques to the SnakeCLEF 2024 challenge.
The proposed approach integrates a combination of augmentation techniques, specialized loss functions, and
robust model architectures to enhance classification accuracy while jointly minimizing the asymmetric penalty
for misclassification of venomous species. For both the public and private leaderboards, my approach achieved
second place in all metrics. On the public leaderboard, it scored 81.2 for Track 1, 945 for Track 2, and 33.35
for the F1 score. On the private leaderboard, it scored 79.58 for Track 1, 2557 for Track 2, and 30.29 for the
F1 score. These experimental results validate the effectiveness of this methodology, showcasing its robustness
across diverse datasets and evaluation metrics. The versatility of this approach indicates its potential appli-
cability to a wide range of similar image recognition tasks. Code and implementation details are available at
https://github.com/Jack-Etheredge/snakeclef2024.
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1. Introduction

Venomous snake bites cause over half a million deaths and disabilities annually, highlighting the need
for an effective image-based snake identification system [1]. Such a system could enhance global health
efforts, improve ecological and epidemiological data, and optimize antivenom distribution [2]. To this
end, the SnakeCLEF 2024 challenge [3] is organized with metrics for both general misclassification rate
as well as distinct penalties for the confusion of venomous snakes with other venomous snake species
and the confusion of venomous snakes with harmless snakes.

Fine-grained long-tailed image recognition is a challenging task due to the need for high granularity
in distinguishing between visually similar classes compounded by significant class imbalance. Competi-
tions like SnakeCLEF and FungiCLEF, both part of the LifeCLEF 2024 [4] lab 1, provide platforms for
developing and benchmarking methodologies to tackle these issues. SnakeCLEF 2024 focuses on snake
species classification, while FungiCLEF 2024 [5] targets fungi species, including the identification of
unknown species and minimizing misclassification between edible and poisonous varieties. Despite dif-
ferences in datasets and evaluation metrics, both competitions share challenges inherent to fine-grained
long-tailed classification, making them ideal for testing the generalizability of my proposed method.
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2. Related Work

Many different techniques have been explored for the classification of fine-grained images of snakes
[6] and fungi [7]. Recent work for both tasks have shown the important role that the inclusion of
metadata can play in the final classification performance of different techniques [8, 9, 10, 11, 12]. This
year, however, metadata was excluded from the test set for SnakeCLEF. One effect of this is that
the geographic regions that the snakes belong to cannot be directly utilized by the models nor can
challengers focus efforts on training the classes that belong to the geographic regions present in the test
set. Various loss functions and architectures have been successfully applied to SnakeCLEF to deal with
the long-tailed fine-grained nature of the data. Seesaw loss [13] and real-world weighted cross-entropy
[14] were used by [10]. Focal loss [15] and ArcFace loss [16] were both utilized by [12]. Interestingly,
this solution also utilized a training dataset preprocessing step of cropping the images to the region
of interest containing the snake. ArcFace and SimCLR [17] were used by [9]. ConvNeXt [18] and
Metaformer [19] were top performing model architectures in last year’s challenge [6].

3. Methodology

3.1. Dataset

The SnakeCLEF dataset consists of 182,261 images across 1,784 snake species. The training data includes
geographical location metadata. FungiCLEF’s dataset comprises 295,938 training images of 1,604 species
with extensive metadata, including habitat and location. While the metadata was present in the test
data for FungiCLEF 2024, it was absent from the test data for SnakeCLEF 2024.

3.2. Competition Objectives and Metrics

Both competitions aim to enhance species recognition accuracy, albeit with differing focuses. SnakeCLEF
2024 evaluates class-balanced metrics, emphasizing the importance of correctly classifying venomous
vs. non-venomous species without leveraging metadata at inference time to blind the models to the
geographic region. FungiCLEF 2024 includes an open-set component for identifying unknown species
and penalizes misclassifications between edible and poisonous fungi. The venomous confusion loss for
SnakeCLEF is more complex than the poisonous confusion loss for FungiCLEF, with different costs for
misclassification between two venomous classes (2), between two nonvenomous classes (1), venomous
→ nonvenomous confusion (5), and nonvenomous → venomous confusion (2). Both competitions
report the macro-F1 score, but SnakeCLEF additionally incorporates it into the Track 1 score. Track 1 is
a weighted average of the accuracies for the four different confusion categories and the macro-averaged
F1. Accuracy is also reported for both competitions, but is largely ignored for the results shown in this
paper, as it is not reported for the granular results in the overview of either competition last year [6, 7].

3.3. Training Techniques

To address the long-tailed distribution and fine-grained nature of the datasets, I employed a combination
of training techniques and test-time augmentations detailed below.

3.3.1. Data Augmentation

Training was performed with a resize to 768 with bicubic interpolation, square random crop of size 384,
TrivialAugment [20], horizontal flip with 50% probability, and random erasing [21] with a probability of
25%, applied in that order. MixUp augmentation [22] and augmentations inspired by it were intentionally
excluded due to the fine-grained nature of the dataset, which represents higher intra-class variability
and lower inter-class variability than standard classification tasks. However, mixing augmentations in
the form of CutMix [23] and RandoMix [24] were previously employed successfully by [10]. Future



work could explore the use of different data augmentations including MixUp and similar techniques
during training.

3.3.2. Loss Functions

Multiple loss functions were evaluated for the classification loss. Seesaw loss [13] and a custom venom
loss were used to train the models in the final ensemble. Seesaw loss was chosen since it is designed for
long-tailed classification. Further, it achieves this without the need for class rebalancing through data
sampling by adding additional terms to the standard cross-entropy loss. It employs a mitigation factor
to reduce penalties for tail categories based on the ratio of training instances as well as a compensation
factor to increase penalties for misclassified instances, thereby reducing the otherwise overwhelming
effect of false positives in the tail classes.

A custom venom loss was added to seesaw loss to create the total loss during training. This cost
function was formulated by creating a pairwise cost for the confusion for every combination of the
target and predicted class. The vector corresponding to the target class was indexed from this cost
matrix and the softmax probabilities were multiplied elementwise with the cost vector. The sum of
these costs was used as the venom loss. This loss is similar to the real-world weighted cross entropy loss
[14], but uses the costs directly instead of utilizing a weighted log loss. Future work could investigate
the relative performance of these two loss functions. Since the venom confusion metric is calculated
based on the percentage of misclassifications, it is a class-balanced metric. As such, I also experimented
with the application of an inverse class weight to the venom loss to account for class imbalance (results
shown in Table 5).

Balanced sampling is a simpler alternative to seesaw loss for mitigating the effect of class imbalance.
For each epoch, samples were drawn with replacement from the training data with a probability
inversely proportional to the number of samples belonging to that class. Focal loss [15] penalizes
misclassifications for difficult to classify samples by reducing the loss for well-classified examples (high
predicted probability for the correct class) relative to standard cross entropy loss. This is done in an
attempt to put more focus on difficult examples dynamically during training. Since the tail classes
will likely be more difficult to classify, focal loss should in theory work in conjunction with balanced
sampling to improve tail class classification.

Another loss that was evaluated was sub-center ArcFace loss [25]. Sub-center ArcFace loss is a
refinement to ArcFace that allows multiple cluster centers per class, which seemed better suited to snake
classification than the original ArcFace loss since snakes of the same species can vary widely in their
appearance due to age and other factors. Losses that operate directly on the embedding of the model
rather than a dense classification are typically used in conjunction with clustering or a distance-based
classification relative to ground truth embeddings per class. Instead, I tested the addition of sub-center
ArcFace loss to the seesaw and custom venom losses.

LogitNorm [26] was applied to the logits during training before seesaw loss or venom loss were applied.
This was done for parity with the models used for the FungiCLEF 2024 challenge [27]. LogitNorm
increases class separation in the embedding space of the classifier as well as calibrating the model
probabilities. Since the class with the highest predicted probability was selected as the classification
in every case, probability calibration was assumed to be of no consequence for individual model
classifications. However, since the probabilities are averaged in the model ensembles, it is possible that
probability calibration could have an impact on the performance of ensembles.

3.3.3. Optimization and Training Details

The training paradigm used for the SnakeCLEF competition involved several key techniques and
methodologies. The dataset was augmented using Trivial Augment and Random Erasing to improve the
models’ robustness. The AdamW optimizer [28] was used with a weight decay of 0.05. The learning rate
was initially set to 1e-3 for the classification output dense layer with the pretrained model frozen for the
first 5 epochs, then reduced to 5e-5. Training was conducted with a batch size of 40 for CAFormer-S18, 32



for Metaformer-0, and 24 for CAFormer-S36. CAFormer models were were used with weights pretrained
on ImageNet-21K [29] while Metaformer-0 was used with weights pretrained on iNaturalist2021 [30]. A
dropout rate of 0.2 was implemented between the dense output classification layer and the penultimate
layer to prevent overfitting in all cases unless otherwise stated. Learning rate scheduling was employed,
reducing the rate by a factor of 0.1 if the model did not improve the validation loss for 5 consecutive
epochs. Early stopping was implemented to prevent overfitting and conserve computational resources.
The models were fine-tuned using CAFormer-S18, and a 4x ensemble approach was adopted, utilizing
different data splits to improve generalization.

3.4. Inference Techniques

During inference, several techniques were applied to maximize performance. Test-time augmentations
were used, including horizontal flips and multi-instance averaging, to increase the robustness of
predictions. The resolution of CAFormer-S18 and CAFormer-S36 models was adjusted by resizing from
384x384 to 576x576 for higher resolution inference. Additionally, ensemble averaging was employed,
combining predictions from multiple models to improve overall accuracy. Models were ensembled by
simple averaging of the prediction probabilities before selecting the class with the highest predicted
probability as the prediction. These strategies collectively enhanced the model’s performance during
the inference phase as shown in Section 4.

Multi-crop refers to the generation and use of three overlapping crops that collectively ensure
complete coverage of the entire image. The predicted class probabilities for each of these crops are
then averaged to generate the final maximum probability classification. Horizontal flipping (hflip)
augmentation involves taking the average predicted class probabilities from both the original and
horizontally flipped version of each image in the same manner as multi-crop. Multi-instance refers
to averaging the probabilities for each instance in cases where an observation has more than a single
instance. In cases where multi-instance is not used, only the first instance for each observation is used
to make each prediction. Image size refers to the inference image size that the image was resized to
before a square center crop (or multiple square crops in the case of multi-crop) of the same resolution
are taken.

Taken collectively, if multi-instance and hflip test time augmentations are both used with an ensemble
of CAFormer models, the inference procedure would be as follows: Every image (instance) belonging
to each observation would be 1) resized and center cropped to 576x576, and 2) horizontally flipped to
keep both the original and mirrored image. Then, probabilities would be generated for each model for
both flips of every instance. Finally, the simple average of all of these probabilities would be calculated
to determine the class prediction based on the maximum class probability after averaging.

3.5. Model Architectures

An ensemble of CAFormer models [19] were used in the best-performing solution for this competition.
These models balance computational efficiency and classification accuracy, making them suitable for
both competitions. Notably, the CAFormer models performed consistently well across diverse datasets.
A dropout rate of 0.2 was used between the dense output classification layer and the penultimate layer
of the network.

3.6. Ensemble of Data Splits

Models were trained on four different training-validation data splits to increase diversity and decrease
correlation between the errors of the models comprising the ensemble. The dataset is originally provided
as three collections of observations: training, validation, and additional training observations for rare
classes. In all cases, the additional training observations are considered part of the original training set.
As such, the original dataset can be considered as being provided as a single training and validation split.
The A, B, and C data splits were constructed by first combining the original training and validation
data for the competition. The A split used the first 90% of the observations per class as the training



Table 1
FixRes fine-tuning. All models were trained with seesaw loss and venom loss and all inference was
performed using horizontal flipping, multi-instance averaging, image size 576.

Models (data split) FixRes
Public
Track1↑

Public
Track2↓

Public
F1↑

Private
Track1↑

Private
Track2↓

Private
F1↑

CAFormer-S18 (A) - 79.41 1052 29.74 78.32 2729 26.18
CAFormer-S18 (A) 3 78.08 1140 28.11 76.01 3155 24.24

Table 2
Inclusion of sub-center ArcFace loss. All models were trained with seesaw loss and venom loss and all
inference was performed using horizontal flipping, multi-instance averaging, image size 576. * indicates
that the model was trained with random erasing. CAFormer-S18 (A, B*, C*, D) was duplicated from the
ensemble performance table to simplify comparisons. In cases where multiple data splits are denoted,
this refers to an ensemble of multiple models, one per data split (e.g. CAFormer-S18 (A, B*, C*, D) refers
to an ensemble of four CAFormer-S18 models, one trained on data split A, another on split B with
random erasing, a third on split C with random erasing, and a final with split D).

Models (data split) ArcFace
Public
Track1↑

Public
Track2↓

Public
F1↑

Private
Track1↑

Private
Track2↓

Private
F1↑

CAFormer-S18 (A, B*, C*, D) - 81.2 945 33.35 79.58 2557 30.29
CAFormer-S18 (B*, C*, D) +
CAFormer-S18 (A w/ ArcFace) 3 81.09 952 33.22 79.18 2636 29.73

samples and the remaining 10% of the observations per class as the validation samples. In cases where
there were fewer than 4 observations per class, all observations were used for training. The B split used
the last 90% of samples for training and the C split used the middle 90% of samples for training, both
with the same exception regarding tail classes with very few observations. Since the original training
observations come before the original validation observations in this combined dataset, the A split is
most similar of these 3 splits to the original training and validation split. The D split is the original
training and validation split provided by the competition.

3.7. Computational Resources

All experiments were conducted on a single NVIDIA RTX 4090 graphics card, emphasizing the efficiency
of our methodology given limited computational resources.

4. Results

My methodology demonstrated competitive performance in both SnakeCLEF and FungiCLEF 2024.
For SnakeCLEF, my model achieved second place in all competition metrics on the public and private
leaderboards, successfully differentiating between venomous and non-venomous species without the
ability to overfit to geographic regions utilizing the metadata. For FungiCLEF, my approach excelled
in recognizing unknown species while minimizing edible-poisonous misclassifications. My models
achieved 1st place for Track1 classification score, macro F1, and Accuracy, while achieving competitive
performance in the other two metrics [27].

FixRes involves not only inference at a higher resolution relative to training, but also fine-tuning the
final layers of the model at the desired inference resolution without training augmentations. FixRes
fine-tuning did not improve performance on any metric when inference was performed on a resolution
of 576, as can be seen in Table 1.

Multiple loss functions were evaluated in addition to seesaw loss and the custom venom loss. One of
the losses that was evaluated in addition to seesaw loss was sub-center ArcFace loss. Table 2 shows the
addition of sub-center ArcFace loss to the training of one of the models in the ensemble. CAFormer-S18



Table 3
Balanced focal loss with higher dropout rate. In all cases, the models are CAFormer-S18 trained with
venom loss using data split D. Inference was performed at a resolution of 768. Private leaderboard
results omitted where unavailable. Track1, Track2, Public, and Private are abbreviated Trk1, Trk2, Pub,
and Priv respectively.

Models (data split) loss dropout
Pub
Trk1↑

Pub
Trk2↓

Pub
F1↑

Priv
Trk1↑

Priv
Trk2↓

Priv
F1↑

CAFormer-S18 (D) seesaw 0.2 78.24 1125 27.50 76.95 2977 25.68
CAFormer-S18 (D) balanced focal 0.2 74.45 1361 20.91 - - -
CAFormer-S18 (D) balanced focal 0.4 74.66 1353 21.92 73.4 3486 18.87

Table 4
Metaformer-0 vs CAFormer-S18. Both models were trained with seesaw loss and venom loss on data
split D. Both models used an inference image resolution of 384. No test time augmentations were used
by either model. CAFormer-S18 outperforms Metaformer-0 in every metric except private leaderboard
Track 2.

Models (data split)
Public
Track1↑

Public
Track2↓

Public
F1↑

Private
Track1↑

Private
Track2↓

Private
F1↑

CAFormer-S18 (D) 76.16 1251 23.29 73.73 3558 20.26
Metaformer-0 (D) 74.53 1358 21.38 73.15 3554 18.51

Table 5
Addition of class weight to venom loss. All models were trained with seesaw loss and venom loss and
used multi-instance averaging at inference. Two different combinations of data split, horizontal flipping
(“hflip”), and image size are shown with different row colors denoting each. The best results for each
combination of data split, image size, and hflip are shown in bold. In both the case of image size 768
without horizontal flipping and image size 576 with hflip, the addition of class weight to venom loss
is harmful to all metrics. Track1, Track2, Public, and Private are abbreviated Trk1, Trk2, Pub, and Priv
respectively.

Models (data split)
weighted
venom loss hflip image size

Pub
Trk1↑

Pub
Trk2↓

Pub
F1↑

Priv
Trk1↑

Priv
Trk2↓

Priv
F1↑

CAFormer-S18 (A) - 3 576 79.41 1052 29.74 78.32 2729 26.18
CAFormer-S18 (A) 3 3 576 77.91 1149 27.51 75.67 3191 23.08
CAFormer-S18 (D) - - 768 78.24 1125 27.50 76.95 2977 25.68
CAFormer-S18 (D) 3 - 768 76.28 1248 24.21 74.89 3273 20.60

with data split A was trained both with and without the sub-center ArcFace loss. In both cases, the
classifications from the dense layer were used for predictions rather than utilizing the embeddings
directly. The ensemble that contained a model with sub-center ArcFace loss had poorer performance
across all metrics. This suggests that the addition of sub-center ArcFace loss to the seesaw and custom
venom losses did not further mitigate the impact of the tail classes with very few observations despite
the loss optimizing the separation of classes in the pre-classification model embedding.

Another loss that was evaluated for the multiclass classification was focal loss, which was paired
with balanced sampling to directly address class imbalance. Focal loss with balanced sampling did not
perform as well as seesaw loss, as can be seen in Table 3. Increasing the dropout rate for the penultimate
layer may be slightly beneficial, with the greatest percent improvement in metrics being the F1 score
(which increased 0.99), but this difference is trivial compared to the difference across all metrics for
seesaw loss vs focal loss with balanced sampling. F1 increases nearly 7 points when focal loss with
balanced sampling is replaced with seesaw loss.

Initial experiments with Metaformer-0 [19] showed that CAFormer-S18 gave better performance
across all metrics. While Metaformer shows remarkable performance on fine-grained datasets, partic-



Table 6
Ensemble performance. CAFormer-S36 is also included in the comparison as a strong single model
baseline. * indicates that the model was trained with random erasing. All models were trained with
seesaw loss and venom loss and used horizontal flipping, multi-instance averaging, and an image size of
576 at inference. In cases where multiple data splits are denoted, this refers to an ensemble of multiple
models, one per data split (e.g. CAFormer-S18 (A*, C*) refers to an ensemble of two CAFormer-S18
models, one trained on data split A and one trained on data split C, both with random erasing).

Models (data split)
Public
Track1↑

Public
Track2↓

Public
F1↑

Private
Track1↑

Private
Track2↓

Private
F1↑

CAFormer-S18 (A*, C*) 79.17 1073 30.19 77.55 2901 26.74
CAFormer-S18 (B*, C*) 80.2 1000 30.62 78.11 2798 27.64

CAFormer-S18 (A*, B*, C*) 80.78 965 31.76 78.42 2743 27.87
CAFormer-S18 (A, B*, C*, D) 81.2 945 33.35 79.58 2557 30.29
CAFormer-S18 (B*, C*, D)

+ CAFormer-S36 (D) 81.07 954 33.28 79.96 2481 30.2

CAFormer-S36 (D) 79.95 1013 29.69 79.18 2607 28.23

Table 7
Averaging test-time augmentations. All models were trained with seesaw loss and venom loss. An
image resolution of 576 is used for inference in all cases. Row color is used to differentiate data split and
random erasing combinations. Best performance for each metric is in bold per data split and random
erasing combination. * indicates that the model was trained with random erasing. Track1, Track2,
Public, and Private are abbreviated Trk1, Trk2, Pub, and Priv respectively.

Models (data split) hflip
multi-
crop

multi-
instance

Pub
Trk1↑

Pub
Trk2↓

Pub
F1↑

Priv
Trk1↑

Priv
Trk2↓

Priv
F1↑

CAFormer-S18 (D) - - - 78.39 1109 26.75 77.43 2857 25.02
CAFormer-S18 (D) - 3 3 79.94 1024 31.23 78.05 2782 27.08
CAFormer-S18 (D) - - 3 79.87 1025 30.57 77.71 2825 26.26
CAFormer-S18 (D) 3 - 3 79.92 1023 30.89 77.88 2798 26.60
CAFormer-S18 (A) - - 3 79.19 1065 29.22 77.90 2807 26.07
CAFormer-S18 (A) 3 - 3 79.41 1052 29.74 78.32 2729 26.18
CAFormer-S18 (C*) - - 3 78.06 1133 26.80 76.26 3088 24.34
CAFormer-S18 (C*) 3 - 3 78.28 1118 27.09 76.19 3101 24.32

Table 8
Inference resolution. The same model is used with different inference image resolutions (image size).
The model was trained with seesaw loss and venom loss. No additional test time augmentations were
performed (horizontal flip averaging, multiple crop averaging, multi-instance averaging). An image
resolution of 576 dramatically outperforms 384, whereas it only slightly outperforms 768 on Track 1 and
Track 2 metrics. An image resolution of 768 achieves the best F1 score of the three resolutions.

Models (data split)
image
size

Public
Track1↑

Public
Track2↓

Public
F1↑

Private
Track1↑

Private
Track2↓

Private
F1↑

CAFormer-S18 (D) 384 76.16 1251 23.29 73.73 3558 20.26
CAFormer-S18 (D) 576 78.39 1109 26.75 77.43 2857 25.02
CAFormer-S18 (D) 768 78.24 1125 27.50 76.95 2977 25.68

ularly when metadata is available, it appears that CAFormer models may be more performant when
metadata is unavailable.

Class weighted venom loss was evaluated as an alternative to the venom loss, since the custom venom
loss did not account for class imbalance. In the case of two different data splits, the addition of this
weight term to the venom loss negatively impacted all metrics. Results are shown in Table 5. Weighted
venom loss did not improve the generalizability of the Track 2 score.



Table 9
Random erasing. All models were trained with seesaw loss and venom loss and utilized multi-instance
averaging and image size 576 at inference. Despite slight performance improvements on a local validation
set, random erasing appears to harm performance on the public and private leaderboards. * indicates
that the model was trained with random erasing (RE).

Models (data split) *RE
Public
Track1↑

Public
Track2↓

Public
F1↑

Private
Track1↑

Private
Track2↓

Private
F1↑

CAFormer-S18 (A) - 79.19 1065 29.22 77.9 2807 26.07
CAFormer-S18 (A*) 3 78.32 1121 27.99 75.59 3239 24.31

Several different model ensembles were evaluated based on different splits of the dataset, the inclusion
of random erasing, and the CAFormer-S18 vs CAFormer-S36 architecture. Results are shown in Table 6.
The best performing ensemble of models included on the private leaderboard comprised a CAFormer-S36
model trained on split D without random erasing, and three CAFormer-S18 models trained on splits B
and C with random erasing and on split D without random erasing. The private leaderboard Track1
score of 79.96, Track 2 score of 2481, and F1 score of 30.2 achieved second place for all three metrics. An
ensemble of all CAFormer-S18 models slightly outperformed this ensemble for private leaderboard F1
score (30.29 vs 30.2). Interestingly, this ensemble comprisingly solely CAFormer-S18 models performed
best across all public leaderboard metrics. The all CAFormer-S18 ensemble has the same composition
as the ensemble mentioned above with the exception of replacing the CAFormer-S36 model with a
CAFormer-S18 model trained on data split A without random erasing. In all cases, there was a large
disparity between the public and private leaderboard performance, particularly with respect to the
Track 2 venomous → harmless confusion loss. In all cases, the private Track 2 loss was over two fold
higher than the public Track 2 loss.

Several test-time augmentations were evaluated including horizontal flipping (hflip), averaging
multiple crops (multi-crop), multi-instance averaging, and inference at a higher resolution than the
training resolution. The results for all of these augmentations are summarized in Table 7 with the
exception of increasing the inference image resolution, the results of which are shown in Table 8. Each
of the averaging-based test-time augmentations improve performance, in isolation or in combination.
Multi-instance is the most computationally demanding, but also provides the greatest lift in performance
of hflip, multi-crop, and multi-instance. Hflip provides a similar lift to multi-crop, but involves doubling
rather than tripling the number of images that must pass through the models. The most impactful
augmentation for is inference at 576 image resolution instead of inference at the training resolution of
384, as shown in Table 8.

Random erasing was included in many of the models in an effort to increase the generalizability of
the models. It appears that too much of the class-specific information was obscured by the erasure
leading to a slight degradation in performance. As shown in Table 9, the public Track 1 score is worse
by 0.87 while the private Track 1 score is worse by 2.31 when random erasing is included in the training
augmentations.

Since the learning rate reduction and early stopping was decided based on validation loss, it was
necessary to perform all training with a training-validation split. In order to utilize all the available
data and to increase the diversity of the models in the final ensemble, different training-validation
splits of the data were used to train otherwise identical models. Table 10 shows the impact of these
different splits on the performance of the models. The difference between the best and worst performing
splits is greater than the differences between the inclusion of LogitNorm (Table 12), random erasing
(Table 9), horizontal flipping (Table 7), or multiple crops (Table 7). The difference was also greater
than the difference between a larger ensemble and averaging multiple image resolutions (Table 11).
This suggests that different splits of the data can have a significant impact on final performance of the
models, particularly if individual models are used instead of being combined into an ensemble.

Averaging the predicted probabilities from multiple image (multi-res) resolutions was investigated as
a test-time augmentation. However, since this requires performing inference through the same model



Table 10
Different data splits. All models were trained with seesaw loss and venom loss and utilized multi-instance
averaging and image size 576. All the models were trained with random erasing.

Models (data split)
Public
Track1↑

Public
Track2↓

Public
F1↑

Private
Track1↑

Private
Track2↓

Private
F1↑

CAFormer-S18 (A*) 78.32 1121 27.99 75.59 3239 24.31
CAFormer-S18 (B*) 79.47 1049 29.86 77.25 2928 26.43
CAFormer-S18 (C*) 78.06 1133 26.80 76.26 3088 24.34

Table 11
Multi-res vs larger ensemble. The 4-model ensemble is duplicated from the ensemble performance table
to facilitate a simpler comparison. All models were trained with seesaw loss and venom loss. Horizontal
flipping, multi-instance averaging test-time augmentations were applied. At a similar compute budget,
a larger ensemble outperforms multi-res. Track1, Track2, Public, and Private are abbreviated Trk1,
Trk2, Pub, and Priv respectively. Multiple data splits are indicated per experiment. Each case refers to
an ensemble of models. For example, “CAFormer-S18 (C*, D)” denotes an ensemble comprising two
CAFormer-S18 models: one trained on data split C with random erasing and another trained on data
split D without random erasing. * indicates that the model was trained with random erasing.

Models (data split) image size
Pub
Trk1↑

Pub
Trk2↓

Pub
F1↑

Priv
Trk1↑

Priv
Trk2↓

Priv
F1↑

CAFormer-S18 (A, B*, C*, D) 576 81.2 945 33.35 79.58 2557 30.29
CAFormer-S18 (C*, D) 576, 652 80.41 998 32.65 78.56 2712 28.06

Table 12
LogitNorm ablation. The addition of LogitNorm does not appear to improve the performance on any
metric. Both models have image resolution 576 but no other test-time augmentations. Both models
were trained with random erasing. Private leaderboard results unavailable.

Models (data split) LogitNorm
Public
Track1↑

Public
Track2↓

Public
F1↑

CAFormer-S18 (A*) 3 77.14 1190 25.14
CAFormer-S18 (A*) - 77.67 1155 25.71

Table 13
Venom loss ablation. The addition of venom loss significantly improves the performance of the models
across all metrics. Both models have image resolution 576 but no other test-time augmentations. Both
models were trained with random erasing. The same baseline model results are shown in Table 12 for
ease of comparison. Private leaderboard results unavailable.

Models (data split) Venom loss
Public
Track1↑

Public
Track2↓

Public
F1↑

CAFormer-S18 (A*) 3 77.14 1190 25.14
CAFormer-S18 (A*) - 74.46 1375 23.17

for n resolutions, the increased performance must be weighted against this increase in compute cost.
Since multi-res requires inference through the same model n resolutions number of times, the compute
cost should be comparable between an ensemble that is twice as large vs averaging two resolutions.
Better performance is achieved across all metrics using a larger ensemble, as shown in Table 11.

All final models were trained with LogitNorm. To determine whether its inclusion was beneficial, an
identical model was trained without LogitNorm and evaluated using the same settings. The inclusion of
LogitNorm may slightly degrade performance of the models as shown in Table 12. Since it significantly
improves performance on FungiCLEF [27], it may be of greater benefit to open-set classification, and



Table 14
Public leaderboard performance for teams with selected models. My models (bold) achieve 2nd place in
all metrics.

Rank Team Name Track1↑ Track2↓ F1↑

1 upupup 85.63 687 43.66
2 jack-etheredge 81.2 945 33.35
3 ZCU-KKY 69.92 1660 15.44
4 Autohome AI 59.11 2431 11.59

Table 15
Private leaderboard performance for teams with selected models. My models (bold) achieve 2nd place
in all metrics.

Rank Team Name Track1↑ Track2↓ F1↑

1 upupup 83.57 1840 34.58
2 jack-etheredge 79.58 2557 30.29
3 ZCU-KKY 67 4611 13.29
4 Autohome AI 54.15 7063 9.22

thus if the task will never be open-set, it seems that LogitNorm can be safely excluded from the training.
All final models were trained with venom loss. To determine whether its inclusion was beneficial,

an identical model was trained without venom loss and evaluated using the same settings. As shown
in Table 13, the custom venom loss improves performance on the Track2 metric as expected. Since
the Track1 metric is also influenced by the venomous → harmless confusion, it is unsurprising that
Track1 would improve with the inclusion of venom loss. What is more surprising is that the F1 score
was improved by the venom loss. This shows that a real-world cost matrix for pairwise class confusion
can be utilized without sacrificing overall classification performance. Future work could investigate
how broadly applicable this is beyond this specific dataset.

4.1. Final model ensemble and leaderboard performance

The best performing ensembles both utilized horizontal flipping, multi-instance averaging, and a higher
resolution image of 576x576 relative to the training resolution of 384x384. An ensemble of CAFormer-
S18 models trained on data splits A and D without random erasing and data splits B and C with random
erasing performed best for all public leaderboard metrics as well as F1 on the private leaderboard.
However, this ensemble was outperformed for Track 1 and Track 2 on the private leaderboard by
swapping the CAFormer-S18 model trained on data split A for a CAFormer-S36 model trained on data
split D as shown in Table 6 and described previously in Section 4.

Table 14 shows the public leaderboard performance of each team and Table 15 shows the private
leaderboard performance. In both cases, my method achieves 2nd place across all metrics. Notably, there
is a larger gap between the performance of mymodels and 3rd place than the difference in performance of
my models relative to 1st place for all metrics. Interestingly, there is a large disparity in the performance
of Track2 between the public leaderboard and the private leaderboard for all participants. This suggests
that either the public and private leaderboard have different data distributions or all competitors overfit
their solutions to the public leaderboard. Since the other metrics do not show such a large disparity, this
suggests that the ratio of difficult to classify venomous species may be greater in the private leaderboard
test set.



5. Conclusions

I presented in this work a robust training and inference methodology that generalizes well across
different fine-grained long-tailed image recognition tasks. The similarities between SnakeCLEF and
FungiCLEF, such as asymmetric penalties for misclassification, highlight the effectiveness and gener-
alizability of my approach. Differences, such as the lack of metadata in SnakeCLEF and the presence
of unknowns in FungiCLEF, necessitated specific adjustments. Future work could explore few-shot
learning techniques to further enhance performance for classes with few examples. Additional future
work could investigate the potential for geographic metadata to increase model bias against the suc-
cessful identification of invasive snake species in comparison to models not using that metadata. My
approach’s competitive performance on both SnakeCLEF and FungiCLEF 2024 suggests its potential
applicability to other similar challenges.
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