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Abstract
We present a transfer learning approach using a self-supervised Vision Transformer (DINOv2) for the PlantCLEF
2024 competition, focusing on the multi-label plant species classification. Our method leverages both base and
fine-tuned DINOv2 models to extract generalized feature embeddings. We train classifiers to predict multiple
plant species within a single image using these rich embeddings. To address the computational challenges of the
large-scale dataset, we employ Spark for distributed data processing, ensuring efficient memory management
and processing across a cluster of workers. Our data processing pipeline transforms images into grids of tiles,
classifying each tile, and aggregating these predictions into a consolidated set of probabilities. Our results
demonstrate the efficacy of combining transfer learning with advanced data processing techniques for multi-label
image classification tasks. Our code is available at github.com/dsgt-kaggle-clef/plantclef-2024.
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1. Introduction

The PlantCLEF 2024 challenge [1], part of the LifeCLEF lab [2] under the Conference and Labs of
the Evaluation Forum (CLEF), aims to address the multi-label classification of plant species in high-
resolution plot images. This task presents unique challenges due to the shift between single-label
training data (images of individual plants) and multi-label test data (images of vegetation plots) between
the 2023 and 2024 editions. The training dataset comprises approximately 7,800 species and 1.4 million
images, totaling 281GiB, posing substantial computational challenges.

To address these challenges, we propose a transfer learning approach utilizing a Vision Transformer
(ViT) model, specifically DINOv2 [3] for feature extraction, and a linear classifier trained on the resulting
embeddings. We hypothesize that leveraging the rich ViT embedding space learned through pretrained
self-supervised learning of massive datasets, combined with the appropriate post-processing steps, will
be sufficient to achieve domain-expert performance on the multi-label classification task without the
need to train models from scratch.

2. Overview

Our approach leverages the embedding space learned by DINOv2 as a generalized feature representation
of images, which are used to train models with higher bias (i.e., linear classifiers), as illustrated in Figure
1. DINOv2 learns robust feature representations by processing images as sequences of fixed-size patch
tokens with an additional [CLS] token for classification tasks [4]. These tokens serve as low-dimensional
representations of the image patches, similar to words in a phrase for language models. We train a
linear classifier using the negative log-likelihood (NLL) loss on the single-label DCT coefficient and
[CLS] token embeddings. To address the multi-label classification problem, we perform inference using
full-image and grid-based methods.
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Figure 1: Overview of our proposed transfer learning method. In the modeling pipeline, we extract the DCT
coefficient and [CLS] token embeddings from the single-label cropped and resized images using the base or
fine-tuned DINOv2 model, and train a classifier on the embeddings. In the inference pipeline, DINOv2 extracts
the [CLS] token embedding from each tile or full-image accordingly, followed by the trained classifier performing
inference to obtain output species labels.

2.1. DINOv2 Model Review

DINOv2 is a state-of-the-art vision transformer encoder model, similar to BERT [5], pretrained without
supervision on the LVD-142M dataset, a large collection of 142 million images. Images are presented to
the model as a sequence of fixed-size patches, which are linearly embedded. A [CLS] token is added to
the beginning of the sequence to facilitate classification tasks, and absolute position embeddings are
included before feeding the sequence into the Transformer encoder layers.

The DINOv2 architecture comes in different sizes, each with its respective embedding dimensions:
small (S) with 382, base (B) with 768, large (L) with 1024, and giant (g) with 1536. We chose the ViT-B/14
(distilled) base model as it provides a balance of computational efficiency, performance, and feature
representation suited for our use case, ensuring the model is powerful enough to extract meaningful
features while remaining computationally feasible. The base model produces embeddings with a fixed
size of R257×768, regardless of the input image dimensions. This fixed size is due to the base model’s
architecture: each image is divided into 256 fixed-size patches, and each patch is embedded into a
768-dimensional vector. Additionally, a [CLS] token, also with a 768-dimensional embedding, is added
to the sequence, resulting in a total of 257 vector embeddings per image [6]. This base model does not
include any fine-tuned heads and learns robust inner representations of images through pretraining,
which can be utilized for downstream tasks.

The organizers provided two DINOv2 models based on the ViT-B/14 (distilled) architecture, each
using a self-supervised learning method [7], trained with the timm library and hosted on Hugging Face.
The first model has its backbone frozen, fine-tuning only the classification head on new data, leveraging
the robust feature extraction capabilities learned during pretraining. The second model continues the
first training but includes updates to both the backbone and the classification head, refining the feature
representations throughout the network. We utilize the second fine-tuned model to extract [CLS] token
embeddings from the images, benefiting from its enhanced feature extraction capabilities.



3. Methodology

Figure 2: End-to-end pipeline of our proposed solution. The downloading module retrieves the training and
test images, along with metadata, and stores them on Google Cloud Storage (GCS). The preprocessing module
converts the images to binary data, crops and resizes them to ℛ128×128 dimensions, and writes them as parquet
files to GCS. The modeling module extracts embeddings using base and fine-tuned DINOv2 models and trains a
linear classifier on the training embeddings. During inference, the trained classifier makes predictions on the
test embeddings, formatting the results for leaderboard submission.

We conducted experiments on the embedding datasets to maximize our performance on the public
leaderboard. Initially, we establish a baseline with minimal modifications, performing multi-class
classification on the multi-label test dataset. Subsequently, we introduced more complex inference
approaches, such as grid-based image prediction for multi-label classification.

Our two main approaches were as follows: (1) Extract embeddings using both base and fine-
tuned DINOv2 models from the cropped and resized single-label image dataset and the multi-label test
dataset, train classifiers on the training embeddings, and perform classification on the test embeddings.
(2) Perform inference using the fine-tuned ViT model with both full-image and grid-based image
prediction approaches. We measure model performance using the metrics referenced in Section 3.3.
The results of our derived datasets and models are summarized in Table 3 and 4, respectively.

To address the computing and memory constraints of the large-scale training data, our solution
leverages several technologies. We use Google Cloud Platform (GCP) for computing and storage, Apache
Spark for distributed data processing, Petastorm for distributed data loading, PyTorch Lightning for
model training, and Weights and Biases for experiment tracking. Our primary compute resources
include the n2-standard-4 VM instance (4vCPU, 2 core, 16GiB memory) and the g2-standard-8 GPU
instance (8vCPU, 4 core, 32GiB memory), scaling up as needed for the dataset’s magnitude.

Apache Spark was crucial to our entire pipeline, especially for preprocessing and modeling tasks.
PyTorch Lightning provides a high-level interface for our deep learning workflows, enabling efficient
model training and hyperparameter tuning. Our end-to-end pipeline comprises four main components:
downloading, preprocessing, modeling, and inference, illustrated in Figure 2.

3.1. Downloading and Preprocessing

We utilize aria2, a lightweight multi-protocol and multi-source command-line download utility that fa-
cilitates fast and reliable downloading of large datasets. The images and metadata files were downloaded
and stored in Google Cloud Storage for subsequent preprocessing.



The preprocessing phase involves two main steps: converting images to Apache Parquet format
and performing cropping and resizing operations. We concatenate image data in batches to optimize
cloud computation, as reading millions of images incurs significant network overhead. Columnar data
formats like Parquet efficiently represent data for batch processing, handling both binary and metadata.

Many images in the dataset are rectangular and inconsistent in resolution. To improve processing
efficiency, we crop and resize all images to ensure the subject remains in focus, as shown in Figure
3. Each image is cropped to a square centered at the midpoint and resized to ℛ128×128 pixels. This
step reduced the dataset size from 281GiB to approximately 15GiB, achieving more than an order
of magnitude reduction. This reduction facilitated faster embedding extraction using DINOv2 and
decreased computational load during training and inference. We choose a relatively small, square
dimension to allow for constructing a multi-class dataset from collages of smaller images.

Figure 3: Comparison of original images with ℛ128×128 cropped and resized squared images. The original
images have a minimum resolution of 800 pixels on the longest side, allowing for the use of high-resolution
classification models and potentially improving the prediction of small plants in large vegetative plots.

We preprocess each image into a grid of tiles and extract DINOv2 features for each tile (Figure 1).
Using the base DINOv2 model, we extract full-size embeddings ℛ257×768 from each image, including
DCT coefficients of the tile tokens and the [CLS] token. With the fine-tuned DINOv2 model, we focus
on extracting the [CLS] token embeddings. We create the following embedding datasets in Table 1.

Base DINO DCT. The base DINOv2 model extracts embeddings from the cropped and resized single-
label image dataset. The embeddings have dimensions of ℛ257×768. We apply the DCT algorithm for
dimensionality reduction with an 8x8 filter size, resulting in a ℛ1×64 tensor. The DCT captures multi-
dimensional low-rank structures in frequency and is known for its compressive properties on datasets,
such as JPEG and MP3 for images and audio respectively [8]. It is a data-independent transformation
that runs in 𝑂(𝑛 log 𝑛) time, with accessible and efficient implementations, unlike data-dependent
transformations like singular value decomposition (SVD) which requires 𝑂(𝑛3) eigen-decompositions.
The DCT can identify periodicity within the 2D patch tokens and a low-frequency space useful for
downstream tasks with minimal overhead.

Base DINO [CLS] token. The base DINOv2 model extracts the [CLS] token embeddings from
the cropped and resized dataset. The [CLS] token is a special token added to the input sequence of
the Vision Transformer, aggregating information from all tiles and providing a generalized feature
representation of the entire image for classification tasks. The resulting [CLS] token embedding is a
tensor of ℛ1×768 dimensions.

Fine-tuned DINO. We use the fine-tuned model dinov2-onlyclassifier-then-all discussed in
Section 2.1 to extract [CLS] token embeddings from the cropped and resized single-label image dataset,
resulting in a tensor of shape ℛ1×768.



Table 1
An overview of the embedding datasets created by utilizing the DINOv2 model to extract embeddings from the
cropped and resized single-label image dataset. facebook-dinov2-base refers to the base off-the-shelf DINOv2
model, and dinov2-onlyclassifier-then-all refers to the fine-tuned ViT model provided by the organizers.

DINOv2 Model Dataset created Size

facebook-dinov2-base Base DINO DCT 403.85MiB
facebook-dinov2-base Base DINO [CLS] token 4.09GiB
dinov2-onlyclassifier-then-all (non-frozen) Fine-tuned DINO 4.09GiB

3.2. Modeling and Inference

We train linear classifiers on both DCT-reduced embeddings and [CLS] token embeddings using PyTorch
Lightning and the negative log-likelihood loss. For inference, we performed multi-class classification
on full-size images to predict a single plant species per image.

To address multi-label classification, each test image is divided into a grid of tiles, with embeddings
extracted for each tile using the fine-tuned DINOv2 model. We then perform inference on these tile
embeddings using argmax and top 𝐾 probabilities for prediction aggregation.

Our inference workflow employs a Luigi [9] task, which processes the image prediction output by
extracting species IDs corresponding to the top 𝐿 probabilities for each image. Duplicates are removed,
and order is preserved by converting to a set and sorting by their original appearance in the logits list.
The unique species IDs are compiled into a structured dataframe, with each record corresponding to an
image, formatted for submission, and written to a CSV file.

We employ two distinct approaches to image prediction on the test dataset, as shown in Figure 4:
full-image and grid-based image prediction. The test dataset is not cropped and resized to preserve
the high quality of multi-label images.

Full-Image Prediction. In this approach, the entire test image is processed in its original dimension.
The fine-tuned ViT model evaluates the image and outputs probabilities for each of the 7806 plant
species classes. We then extract the top 20 probabilities, representing the most likely species present,
and map these probabilities to their corresponding species IDs.

Figure 4: Comparison of full-image prediction and grid-based image prediction. The left plot shows a typical
vegetative plot from the test set, where a botanist recorded 8 species: Cardamine resedifolia L., Festuca airoides
Lam., Pilosella breviscapa (DC.) Soják, Lotus alpinus (Ser.) Schleich. ex Ramond, Poa alpina L., Saxifraga moschata
Wulfen, Scorzoneroides pyrenaica (Gouan) Holub, and Thymus nervosus J.Gay ex Willk. The right plot illustrates
the same image divided into a 3× 3 grid, demonstrating the grid-based approach for species classification by
processing each tile independently.



Grid-based Image Prediction. We segment the image into an 𝑁 ×𝑁 grid of tiles, resulting in 𝑀
tiles. Each tile is independently processed using the fine-tuned ViT model, which outputs probabilities
for each species class. We then select the top 𝐾 probabilities (default 𝐾 = 10) for each tile and map
them to their respective species classes. This produces a nested array of prediction lists per tile, which
we flatten into a single array, further limiting to the top 𝐿 probabilities (default 𝐿 = 5) from each tile.
For example, a 3× 3 grid yields nine tiles, each with ten top probabilities, selecting the top five logits in
each tile, totaling 45 species IDs and probability mappings.

Let 𝑃𝑖,𝑗 be the probability of species 𝑖 in tile 𝑗. For the argmax approach, we select:

𝑦𝑗 = argmax
𝑖

𝑃𝑖,𝑗 (1)

For the top 𝐾 probability approach, we aggregate the top 𝐾 logits per tile, and select the top 𝐿 species
across all tiles, where 𝐿 = 5, and 𝑀 is the total number of tiles:

𝑌 = Top-𝐿

⎛⎝ 𝑀⋃︁
𝑗=1

Top-𝐾(𝑃:,𝑗)

⎞⎠ (2)

We generate a consolidated array of predictions whether processing the entire image or employing
the grid-based approach. This array, a collection of species ID and probability mappings, is sorted in
descending order based on the probability scores. This prioritization helps accurately identify the most
likely species in each image tile.

3.3. Class Imbalance

The training dataset exhibits significant class imbalance, with a highly right-skewed distribution of
species. Of the approximately 7,800 species, nearly half have fewer than 100 images. To mitigate this
imbalance, we select a subset of plant species with at least 100 images for training While this approach
may overlook rare species, we hypothesize that focusing on more represented species will increase the
confidence in species identification.

By selecting species with a minimum of 100 images, we aim to improve the balance between precision
and recall for the included species, directly impacting the Macro F1 Per Species and Macro F1 Per Plot
metrics. While this may lead to a lower recall for rare species in the test set, it enhances the precision
for the more common species, resulting in higher Macro F1 scores for those species. For the Micro F1
score, which is more sensitive to the performance of common species due to the overall count of true
positives, false positives, and false negatives, our approach is likely to result in higher scores as well.

3.4. Evaluation Metrics

The metrics used to evaluate our model are Macro F1 Averaged Per Plot, Macro F1 Averaged Per Species,
and Micro F1 scores.

The F1 score is the harmonic mean of precision and recall, defined as:

𝐹1 = 2 · 𝑃 ·𝑅
𝑃 +𝑅

(3)

where 𝑃 and 𝑅 denote precision and recall, respectively.
The Macro F1 Averaged Per Plot and Macro F1 Averaged Per Species are calculated as follows:

Macro F1 Per Plot =
1

𝑁

𝑁∑︁
𝑖=1

𝐹1(𝑦𝑖, 𝑦𝑖) (4)

Macro F1 Per Species =
1

𝐶

𝐶∑︁
𝑐=1

𝐹1(𝑦𝑐, 𝑦𝑐) (5)



where 𝑁 is the number of plots, 𝐶 is the number of species, 𝑦𝑖 is the true label for plot 𝑖, and 𝑦𝑖 is the
predicted label for plot 𝑖.

The Micro F1 score aggregates the contributions of all classes to compute the average F1 score:

Micro F1 =
2
∑︀𝐶

𝑐=1 𝑇𝑃𝑐

2
∑︀𝐶

𝑐=1 𝑇𝑃𝑐 +
∑︀𝐶

𝑐=1 𝐹𝑃𝑐 +
∑︀𝐶

𝑐=1 𝐹𝑁𝑐

(6)

4. Results

We present our best results on the public and private leaderboards. Our best model utilizes a linear
classifier trained on the fine-tuned DINO embeddings (Table 1) and performs inference using a grid-
based approach with argmax logit per tile. We achieved public scores of 20.77 for Macro F1 Averaged
Per Plot, 47.42 for Macro F1 Averaged Per Species, and 19.67 for Micro F1, as shown in Tables 2 and 3.

Table 2
A summary of the top 3 best scores in the public and private leaderboards. Our solution achieved the third-highest
score in both leaderboards.

Leaderboard Team name Rank
MacroF1
Averaged
Per Plot

MacroF1
Averaged
Per Species

MicroF1

Public
Atlantic 1 29.62 51.2 30.01
NEUON AI 2 23.01 46.2 20.84
DS@GT-LifeCLEF (Ours) 3 20.77 47.42 19.67

Private
Atlantic 1 28.73 45.76 29.57
NEUON AI 2 21.31 34.69 20.75
DS@GT-LifeCLEF (Ours) 3 19.04 32.4 19

The linear classifier trained on the fine-tuned DINOv2 embeddings consistently outperforms base
DINOv2 models across all metrics, demonstrating enhanced feature representation from additional
training (Table 3). The base DINOv2 models show relatively low performance, with the model trained
on the [CLS] token embeddings performing slightly better than the DCT embeddings. The lower
performance of the DCT embeddings is due to their reduced dimensionality ℛ1×64 compared to the
[CLS] token embeddings ℛ1×768, leading to information loss. While base [CLS] token embeddings are
more effective than DCT embeddings, both are less effective than fine-tuned model embeddings.

Table 3
Summary of the linear classifiers trained on the embedding datasets. All classifiers are single-layer linear
networks implemented with PyTorch’s nn.Linear() and trained using the negative log-likelihood loss. The
embedding dataset used to train the classifiers and the inference method significantly impact the results, with
more capable models extracting richer features that improve classification performance.

Dataset Inference method
MacroF1
Averaged
Per Plot

MacroF1
Averaged
Per Species

MicroF1

base dino dct
Multi-class, full-image

0.28 33.33 0.1

base dino cls token 2.06 31.46 1.62

fine-tuned dino

Multi-class, full-image 8.47 34.39 7.04

Multi-class, grid-based,
argmax logit per tile

20.77 47.42 19.67

Multi-label, grid-based,
top 5 species per tile

20.62 42.31 19.07



The multi-class, full-image inference method with the linear classifier trained on fine-tuned DINOv2
embeddings shows significant improvement over the base models. For a more sophisticated approach,
we utilize a grid-based inference method to improve multi-label classification capability, employing two
strategies: argmax logit per tile and top 5 species per tile. The grid-based approach with argmax logit
per tile achieves the highest scores across all metrics. The grid-based approach with top 5 species per tile
also performs well with slightly lower performance due to less confident predictions introducing noise
and ambiguity, and the complexity of aggregating multiple logits, resulting in suboptimal predictions.

For inference using the fine-tuned model, we found that a 3× 3 grid size struck a balance between
computational efficiency and species distribution, having experimented with 2× 2 and 5× 5 grid sizes
without observing significant improvements, as shown in Table 4. We chose 5 species per tile to maximize
the Macro F1 Score Per Species, focusing on the most represented species in the dataset. However, this
approach leaves room for improvement, particularly for rare species that are underrepresented.

Table 4
An overview of the inference experiments using the fine-tuned ViT model on the test embedding dataset.

Inference method Prediction method
MacroF1
Averaged
Per Plot

MacroF1
Averaged
Per Species

MicroF1

Multi-label, full-image
Top 5 species 9.88 43.87 8.96

Top 20 species 7.88 33.64 7.98

Multi-label, grid-based

Top 5 species, 3x3 grid 17.76 44.76 14.39

Top 3 species, 3x3 grid 16.30 43.98 12.26

Top 5 species, 5x5 grid 17.71 41.84 14.36

Top 5 species, 2x2 grid 15.41 42.64 12.92

5. Discussion

By leveraging transfer learning, we use embeddings from both base and fine-tuned DINOv2 models
to train linear classifiers, addressing the challenge of single-label training data versus multi-label test
data. Our preprocessing pipeline manages the large-scale dataset by converting images to Parquet
format, reducing dimensionality through cropping and resizing, and decreasing computational load for
extracting embeddings and making inferences.

We demonstrate the effectiveness of using DCT for dimensionality reduction and the [CLS] token
for generalized feature representation. The fine-tuned DINOv2 model provides enhanced feature
representations crucial for multi-label classification. Our grid-based inference approach with argmax
and top 𝐾 probability aggregation enables accurate prediction of multiple species within each image.

We did not test the base DINOv2 in a grid-based manner or the fine-tuned DINOv2 with full-image
inference due to computational constraints and our hypothesis that fine-tuning would yield better results
when exploiting local features through tiling. While capturing the top 5 logits per tile provides broader
species identification, it also introduces less confident predictions, complicating final aggregation.
Conversely, the argmax method directly selects the highest probability, leading to better predictions.

5.1. Species Representation in Embedding Spaces

In Figure 5, we visualize the spatial separation between species using the embeddings extracted from
the base and fine-tuned ViTs. The UMAP [10] projections of the top five plant species illustrate the
importance of training a model to create a discriminating feature space and the challenge of obtaining
unique representations without a learning mechanism like the DCT coefficient.



Figure 5: UMAP projections of the top 5 plant species with the highest number of images. The fine-tuned
model’s embeddings exhibit better spatial separation, highlighting their effectiveness as feature representations.

The image token DCT coefficients exhibit the poorest species separation among the three approaches.
Although effective for dimensionality reduction and capturing low-frequency information, DCT does
not inherently learn discriminative features for classification tasks. In contrast, the base DINOv2 [CLS]
token embeddings show better species separation, as the [CLS] token aggregates information from all
image patches, providing a more comprehensive representation of the entire image.

The fine-tuned DINOv2 model’s [CLS] embeddings demonstrate the clearest species separation. The
additional training on the specific task data refines the model’s feature representations, making them
more relevant and discriminative for classification. Fine-tuning effectively bridges the gap between
general-purpose feature extraction and task-specific discriminative power, resulting in more accurate
and reliable species classification, as shown in Table 3.

6. Future Work

One direction for future work is to generate a collage dataset by tiling individual species that are
likely to co-occur. We propose a collaborative filtering approach to address the multi-label problem,
leveraging Locality Sensitive Hashing (LSH) [11], Approximate Nearest Neighbor Search (ANN) [12],
and Alternating Least Squares (ALS) [13]. LSH reduces dimensions and detects similarity by hashing
similar items into the same “buckets” with high probability. ANN then efficiently finds the nearest
neighbors within this subset, and ALS generates recommendations by combining scores with geographic
proximity from LSH and ANN, ranking and recommending images based on their geographic closeness
and similarity. This method could generate images for direct use in multi-label learning.

7. Conclusion

We present a robust multi-label plant species classification approach using self-supervised Vision Trans-
former (DINOv2) models. Our study highlights the potential of combining self-supervised learning
and transfer learning with data processing techniques to tackle large-scale biodiversity challenges. We
offer a scalable solution for multi-label image classification using only single-label training data. Future
work could enhance model training and inference by integrating additional data augmentation tech-
niques, experimenting with various grid sizes, exploring other dimensionality reduction methods, and
utilizing alternative loss functions such as binary cross-entropy and asymmetric loss [14]. Additionally,
developing more sophisticated aggregation strategies for multi-label prediction could further improve
classification performance. Our code is available at github.com/dsgt-kaggle-clef/plantclef-2024.

https://github.com/dsgt-kaggle-clef/plantclef-2024
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