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Abstract
Understanding the spatial and temporal distribution of plant species is important for many biodiversity
management and conservation scenarios. This paper presents solution to the GeoLifeCLEF challenge,
which involves prediction of the presence of plant species using satellite images and time series, climate
time series and other rasterized environmental data. Multimodal model leveraged satellite images,
bioclimatic cubes and feature vectors of satellite time series and environmental scalar values. With the
selected presence probability threshold for inference this method allowed to reach 𝐹1-score of 0.347 on
public and 0.345 on private leaderboard, placing us 9th on the leaderboard.
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This is a technical report for final contribution to the GeoLifeCLEF 2024 challenge , sub-
mitted under pseudonym “Lonan Syayf”, with which the ninth place was obtained (out of 51
competitors) on the private leaderboard.

1. Introduction

The GeoLifeCLEF 2024 competition [1] is held jointly as part of the LifeCLEF 2024 lab [2] and
the FGVC11 workshop. Just like in the GeoLifeCLEF 2023 competition [3] the goal is to predict
a list of species most likely to be observed at a given location using various geographical and
environmental data such as satellite images and time series, climatic time series, and other
rasterized data: land cover, human footprint, bioclimatic, and soil variables. Typically, the
task of species distribution modelling [4] has challenges associated with imbalances in species
presence and absence in the data, large-scale multimodal learning, and plant species diversity.
Its results could be useful for predicting biodiversity change and mitigating environmental
pressures from human activities.

The GeoLifeCLEF 2024 training data includes a collection of observations of plants in Europe.
Each survey consists of a list of plant species with the GPS coordinates and a set of variables
characterizing the landscape and environment around them. There are around 90K surveys
with around 5K unique plant species in the dataset.
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This technical report presents selected approach to the competition, which is a multimodal
network based on bioclimatic cubes, sentinel image patches (RGB-patch and NIR-patch) and
vector of climate, elevation, human footprint, land cover, soilgrid and landsat time series data.
Traing code can be found here1.

2. Data and Evaluation Metric

Data plays an important role in prediction plant species distribution in a given location and time.
In this section, we briefly present the data and the evaluation metric used for the competition.

2.1. Data

This paragraph is simply a description of the standard GeoLifeCLEF 2024 dataset. The training
dataset contains presence-absence (PA) surveys and presence-only (PO) surveys. PO data
includes about 5 million observations and reports only presence and not absence of certain plant
species in specific areas. On the other hand, PA data combines around 90K surveys with about
5K unique species of the European flora and reports presence and absence of plant species. In
solution only presence-absence surveys were used and everywhere below the report will only
be about this type of data. The total number of surveys in the test set was 5K.

Training dataset distribution of the number of observations of each plant species is shown
in Figure 1. Almost 50% of plant species in training data have a number of occurrences less
than 16 and only 20% have more than 110 occurrences. Almost all observations were made in
Western Europe, a map of locations can be seen in Figure 2. More detailed descriptions can be
found at competitions’s homepage2.

Each survey is paired with the following covariates:

• Satellite image patches: 128m×128m RGB-NIR patches centered at each observation, at a
resolution of 1 meter per pixel;

• Satellite time series: Up to 20 years of values for six satellite bands (R, G, B, NIR, SWIR1,
and SWIR2);

• Environmental rasters Various climatic, pedologic, land use, and human footprint variables
at the European scale. It was provided as scalar values, time-series, and original rasters;

2.2. Evaluation Metric

The evaluation metric for the GeoLifeCLEF 2024 competition is the samples-averaged 𝐹1-score
computed on a set made of species presence-absence samples. The 𝐹1-score is an average
measure of overlap between the predicted and actual set of species present at a given location
and time. Each observation 𝑖 is associated with a list of ground-truth labels 𝑌𝑖 corresponding

1https://www.kaggle.com/code/lonansyayf/baseline-with-modifications/notebook
2https://www.kaggle.com/competitions/geolifeclef-2024/data
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Figure 1: Histogram for distribution of the occurrences of plant species in the training dataset. Hori-
zontal axis on a logarithmic scale for better understanding.

Figure 2: Map of Europe with observation distribution. The train data location is green point, the test
data is red points.

to the observed plant species. For each observation, the submissions provide a set of species
predicted presence 𝑃𝑖,1, 𝑃𝑖,2, ..., 𝑃𝑖,𝑅𝑖 . The micro 𝐹1-score is then computed using:

𝐹1 =
1

𝑁

𝑁∑︁
𝑖=1

𝑇𝑃𝑖

𝑇𝑃𝑖 + (𝐹𝑃𝑖 + 𝐹𝑁𝑖)/2

where 𝑇𝑃𝑗 , 𝐹𝑃𝑗 and 𝐹𝑁𝑗 are the true positive, the false positive and the false negative of
the j-th input sample, respectively. 𝑁 is the number of samples for evaluation.



3. Methodology

This section describes the methods that were tried during the competition. Strategy was centered
around the baseline model3 provided by the competition organizers. The baseline 𝐹1-score is
0.31 on the public set. This model leveraged all environmental data and utilized a multimodal
neural network with separated features extractors to return a single prediction set in order to
take advantage of every modality (satellite images, bioclimatic cubes, landsat cubes). The main
change was to replace landsat cubes with a vector of satellite time series and environmental
scalar values, everywhere below it is called feature vector. In addition, plant species with an
occurrence number greater than 10 was used to train the model.

3.1. Feature vector

Feature vector consists of climate, elevation, human footprint, land cover, soilgrid and landsat
time series data. Methods for compiling this data are taken from the public notebook4. Climatic
time series data was merged within a 10-year time window. Some positions had missing values,
which were filled with spatial interpolation. It appeared that there were densely populated
measurements near the missing regions, so missing values were filled with values from the
nearest neighbors. Finally, each survey had 1198 values of feature vector. The train and test
versions can be found here. Before going to model feature vectors are normalized with standard
scaler.

3.2. Model architecture

The architecture closely follows the baseline model, incorporating a multimodal neural network
that utilizes three distinct feature extractors for bioclimatic rasters (19 channels), satellite images
(4-channel RGB with NIR), and feature vectors (1198 channels). These outputs are combined
and processed through fully connected layers to generate predictions. The first bioclimatic head
involves layer normalization, ResNet18 [5] without pretrained weights, and a dropout [6] with a
0.1 probability. The second image head employs a , swin transformer [7] model with ImageNet
[8] weights and a dropout layer with a 0.1 probability. Prior to this stage, image data undergo
augmentation techniques like random rotation, random brightness contrast, and normalization.
The third head comprises a sequence of layer normalization and three linear layers with GELU
[9] activation function, along with dropout set at a 0.1 probability (the first layer mapping from
1198 to 1198, the second and the third layers map to 1000 outputs). Subsequently, the bioclimatic
and feature outputs are normalized and combined with the image output. The final classifier is
constructed with three linear layers utilizing GELU activation function and dropout at a 0.1
probability.

3.3. Training and inference

The model was trained on PA data for 12 epochs using the Adam optimizer with a learning rate
of 8e-5 and binary cross entropy (BCE) loss and batch size equal to 128. During training, we
3https://www.kaggle.com/code/picekl/sentinel-landsat-bioclim-baseline-0-31626
4https://www.kaggle.com/code/gobyeonggeon/preprocess-visualize-spatial-data-eda-xgb
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Figure 3: Selected multi-model architecture. Bioclimatic, image and feature heads mapping to 1000,
768, 1000 outputs, respectively. Then stacked outputs pass through linear layers mapping to the 2857
species (species with occurrence number > 10)

focused on plant species with an occurrence number greater than 10, resulting in 2857 unique
species out of a total of 5015. It’s important to highlight that the occurrence threshold value
was determined through experimentation.

In final approach to inference, the strategy used in the baseline notebook was changed. Rather
than forecasting the 25 most probable species for every observation in the test dataset, selected
threshold of 0.18 was used. This threshold determined that species with probabilities surpassing
this value were classified as present. Additionally, test observations featuring fewer than 4
represented species was assigned with the 4 most likely species.

4. Experimental results

4.1. Experimental settings

Experiments were conducted with the multimodal network described in Section 3.2. The detailed
settings of training are shown in Table 1. For comparing different versions of models we used
25 most probable species to remove bias with probability threshold described in Section 3.3.

4.2. Usage of feature vector

In order to investigate the impact of using the feature vector head we conducted ablation study.
Table 2 represents the detailed results. It seems that with selected hyperparameters combination



Table 1
Frequency of Special Characters

Hyper-parameters

Batch size 128
Optimizer Adam

Learning rate 8e-5
Lr scheduler CosineAnnelingLR

Number of epochs 12

Table 2
Ablation study of usage the feature vector head

Bioclimatic head Image head Feature head Landsat head
𝐹1-score

Public Private

✓ ✓ - ✓ 0.315 0.316
✓ ✓ ✓ ✓ 0.317 0.317
- ✓ ✓ ✓ 0.306 0.311
✓ ✓ ✓ - 0.322 0.323

Table 3
Score depending on the number of occurrences of plant species for model training

Species with number of occurrences
𝐹1-score

Public Private

>0 (5096 in total) 0.322 0.323
>5 (3425 in total) 0.322 0.326
>10 (2857 in total) 0.326 0.329
>15 (2511 in total) 0.324 0.328

of bioclimatic, image and feature heads gives the best performance of around 0.32 on both public
and private scores. The performances of other configurations are about 0.31 or less.

4.3. Imbalanced data

As was mentioned before, the dataset is strongly unbalanced, which means that for almost
all species the number of observations detecting their presence is much less than the number
of observations detecting their absence. we tried to solve this problem in different ways, for
example, adding pos_weight to bce loss, adding different data augmentation. The final option
was to limit the number of species on which the model is trained, taking only those with
occurrence number greater than 10. Table 2 shows how the score depends on the threshold
for the occurrence number. Another thing was lowering the threshold for a species having
a probability higher than which it was considered present. For those observations that had
fewer than 4 species present we assigned the 4 most likely plant species. Results of different
probability thresholds are presented in Table 3.



Table 4
Score depending on the presence probability threshold

Probability threshold
𝐹1-score

Public Private

0.4 0.309 0.303
0.3 0.334 0.332
0.2 0.346 0.345
0.15 0.345 0.342
0.1 0.329 0.327

5. Conclusion

We presented the working principles of submission to the GeoLifeCLEF 2024 challenge and
discussed some of the key findings of the results. We have not conducted an expansive, let alone
exhaustive hyperparameter search and believe that doing so could raise performance a bit. The
main achievement was to use proper model architecture, choosing training data and changing
the inference strategy. In final solution, we did not use PO data and training strategies used in
previous years [10, 11]. Obviously, using more data would help for better generalization and it
is certainly high on the list of improvements that need to be made. Also, possible improvements
can be achieved by additionally searching for better backbone models, like Inception-v4 [12] or
Vision Transformer, ViT B / 16 [13] for different modalities and using an ensemble of various
models.
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