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Abstract
In this paper, we present our system for the BioNNE English track, which aims to extract 8 types of biomedical
nested named entities from biomedical text. We use a large language model (Mixtral 8x7B instruct) and ScispaCy
NER model to identify entities in an article and build custom heuristics based on unified medical language system
(UMLS) semantic types to categorize the entities. We discuss the results and limitations of our system and propose
future improvements. Our system achieved an F1 score of 0.39 on the BioNNE validation set and 0.348 on the test
set.
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1. Introduction

Named entity recognition is an information extraction task that aims to identify named entities in text
and classify them into predefined categories. Nested named entity recognition involves detecting both
the outer entities and the inner entities. The BioNNE competition [1], being part of CLEF 2024 BioASQ
lab [2], focuses on extracting nested named entities from biomedical text. The nested named entity
types include anatomy (ANATOMY), chemicals (CHEM), diseases (DISO), physiology (PHYS), scientific
findings (FINDING), injury or poisoning damages (INJURY_POISONING), lab procedures (LABPROC),
and medical devices (DEVICE) [3].

The challenge offers Russian, English and bilingual tracks. For the English track, the organizers
provided a training set with 50 records and a validation set with 50 records. Each record contains a
text, which is a PubMed abstract, and a list of entities annotated in BRAT format with the starting and
ending locations of the entities in the text. In the testing phase, the organizers released a test set with
154 abstracts and 346 extra files, which resulted in 500 records in total.

Our team focuses on the BioNNE English track. Our system uses a large language model (specifically
Mixtral 8x7B instruct model [4]) and a biomedical NER model to find entities in an article. Then, the
system uses unified medical language system (UMLS) semantic types to filter and aggregate the entities.
The implementation can be found on Github1.

2. Related Work

2.1. Nested NER

The state-of-the-art nested NER models are the machine reading comprehension (MRC) model [5] and
the sequence learning model [6]. Loukachevitch et al. trained the MRC and sequence model on the
NEREL-BIO dataset [3], which is the predecessor of the BioNNE dataset. The two datasets are based on
PubMed abstracts and with the nested NER annotations. The difference is that the NEREL-BIO dataset

CLEF 2024: Conference and Labs of the Evaluation Forum, September 09-12, 2024, Grenoble, France
*Corresponding author.
$ wzhou77@gatech.edu (W. Zhou)
� 0009-0002-3325-3357 (W. Zhou)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://github.com/dsgt-kaggle-clef/bioasq-2024

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:wzhou77@gatech.edu
https://orcid.org/0009-0002-3325-3357
https://creativecommons.org/licenses/by/4.0


Figure 1: BioNNE System Design

contains more entity types, including the BioNNE entity types and additional entity types such as food,
gene and activity. Loukachevitch et al. were able to achieve a macro-F1 score of 0.5968 with MRC model
on the NEREL-BIO dataset.

2.2. Large Language Model

Recently, large language models (LLM) have shown great potential in solving NLP tasks. Since they are
pre-trained on a large corpus, they can solve various problems in different domains including biomedical
question answering and information extraction. Prompt engineering [7] is one of the key techniques to
interact with LLM. The model is given a prompt with instructions and examples. The model can then
generate the response according to the prompt. This is also known as LLM few-shot in-context learning.
The quality of the prompt affects model output and performance. As a result, a lot of research has been
done on prompt engineering to optimize the performance of LLM on specific tasks, as an alternative to
model finetuning, because finetuning is more expensive and time-consuming.

Chen et al. [8] measured the performance of GPT-3.5 on the Biomedical Language Understanding
and Reasoning Benchmark (BLURB). GPT-3.5 achieved 58.5 while the SOTA model had a score of
84.5. Although the existing LLM models are not as good as the SOTA biomedical models, LLMs show
great potential in text reasoning and generation. At the same time, LLMs have limitations such as
hallucination and inconsistency [9].

Mixtral 8x7B [4], a sparse mixture of experts model (SMoE) is one of the well-known LLM models,
which can process five languages including English, French, Italian, German and Spanish with a context
of 32k tokens. The basic model and the instruct model of Mixtral 8x7B achieve better performance than
the counterparts of GPT-3.5 [10] and Llama2 70B [11] in several benchmarks. Mixtral 8x7B only uses
13B parameters during inference time, which makes it more efficient than other models with the same
performance. Therefore, we use Mixtral 8x7B instruct as our LLM model in this study.

3. Methodology

We build a system for the BioNNE English track that uses a general-purpose LLM and a biomedical
domain language model to identify entities in an article and then uses custom heuristics based on unified
medical language system (UMLS) semantic types to determine the entity types. The system design is
shown in Figure 1. Figure 2 shows an example of how DISO and LABPROC entities are extracted from
an article by LLM and categorized by UMLS heuristics.

3.1. LLM and Prompt Engineering

Given an article abstract, we use Mixtral 8x7B instruct LLM model to find the entities for each category.
We construct a prompt for each category using two of the examples in the training dataset and an
instruction that describes the entity type. Then the LLM returns a list of entities separated by semicolon
in the response. We then parse the returned entities and store them as candidates for the category.



Figure 2: BioNNE Data Flow

We perform post-processing on the response list to remove duplicates as well as entities that are not
present in the original text. If the entities in the returned string are not separated by semicolons, we
resample the LLM output. For example, Table 1 shows the prompt and response to query ANATOMY
entity for record 26271422_en.

Table 1
Example Prompt and Response for ANATOMY entity

Prompt:

Instruction: Return phrases or entities that comprise organs, body part, cells and cell components,
body substances in TEXT, in the ANATOMY concatenated by ";"

[TEXT]: Impact of bosentan therapy on stress-induced pulmonary hypertension in patients with
systemic sclerosis. AIM To describe hemodynamic and clinical changes in patients with elevated
mean pulmonary artery pressure (MPAP) ...
[ANATOMY]: pulmonary; artery; pulmonary artery; lung;heart; left heart; atrial; right atrial; cardiac;
arterial; vascular; pulmonary arterial; pulmonary vascular
###
[TEXT]: The authors present the material of their study of the morphological and molecular biological
features of damage to the stem cell ...
[ANATOMY]: lung biopsies; respiratory acinus; lung tissue; mesenchymal cell; myofibroblast;
mesenchymal stem cell; SCN; stem cell; cell; lung;pulmonary; acinus; stem cell niches; tis-
sue;mesenchymal; SCN areas; respiratory acini; biopsies; sections; acini; cells
###
[TEXT]: Endoprosthetic replacement with lifting of abdominal wall in treatment of umbilical and
postoperative ventral hernias. The results of ...
[ANATOMY]:

Response:

abdominal wall defect; abdomen ptosis; polypropylene prosthesis; main flap; roundish edges; addi-
tional flap; super lightweight; hypogastric area; musculoaponeurotic tissues lifting; physical health
component; psychic health component; standard; original

3.2. Biomedical NER model

In addition to LLM, we also use the ScispaCy biomedical NER model en_ner_bc5cdr_md [12] to find the
named entities. The ScispaCy model is trained on the BC5CDR corpus, which detects DISEASE and



Table 2
BioNNE type and UMLS type mapping

BioNNE Category UMLS semantic types

DISO B2.2.1.2 Pathologic Function
CHEM A1.4.1 Chemical

ANATOMY
A1.2 Anatomical Structure
A2.1.5.2 Body Location or Region

LABPROC
B1.3.1.1 Laboratory Procedure
B1.3.1.2 Diagnostic Procedure

INJURY_POISONING B2.3 Injury or Poisoning
DEVICE A1.3.1 Medical Device
PHYS B2.2.1.1 Physiologic Function

FINDING A2.2 Finding

CHEMICAL entities in the document. We store the entities found by the ScispaCy model as candidates
for the DISO and CHEM categories.

3.3. UMLS Heuristics

Finally, we query UMLS [13] to find the semantic types for the candidate entities. The UMLS release
version used in this study is 2023AB. Specifically, we use UMLS [14] "/search/current" API and set
the search term as our entity to retrieve the top 5 Concept Unique Identifiers (CUI) and their names
associated with the entity. For each CUI, we use the "/content/current/CUI/cui" API to retrieve the
semantic type name for the CUI and then use the semantic_uri to find the treeid of the semantic type.
Finally, the treeid is mapped to the BioNNE category to finalize the category of an entity.

An entity is finalized as a specific category only when both the language model (either LLM or
NER model) and the UMLS heuristics agree on the category. If UMLS heuristics show that the entity
fits multiple categories in the top 5 CUI results, we will use the category type that comes first as the
final category. The mapping between BioNNE category and UMLS semantic type is shown in Table 2.
The mapping is based on the NEREL-BIO paper [3], with additional UMLS semantic types added for
ANATOMY and LABPROC categories.

3.4. Acronym Detection

We use the ScispaCy abbreviation detector [12] to detect acronyms in the abstract. If the long form of
the acronym is identified by the language model and UMLS heuristics as a named entity, the acronym
will be assigned the same category as the long form entity.

4. Results and Discussion

Our model achieved 0.348 F1 score on the leaderboard for the BioNNE English track test set. The F1
score we achieved on the validation set is 0.39, which is close to the test F1 score. Since the golden
answers for the test set have been not released, we will discuss the validation set results here.

The English validation set contains 50 records. The F1 scores for each category sorted in descending
order are shown in Table 3. Our model performs well on DISO, CHEM, and ANATOMY entities, with
F1 scores above 0.5, but the F1 scores for FINDING and PHYS are below 0.3.

We examine the model predictions for FINDING and PHYS entities and have the following observa-
tions.

1. The LLM model generates a lot of false positives for the FINDING entities. The UMLS heuristics
can filter out some of the false positives. However, since our UMLS concept search does not search
for exact terms, some of the LLM-recognized phrases that are part of some FINDING entity word
are not filtered out, even though those LLM-recognized phrases (when looked at independently)



Table 3
F1 Score for each category on the validation set

Category Precision Recall F1 Score
DISO 0.7565 0.5613 0.6444

CHEM 0.7857 0.4695 0.5878
ANATOMY 0.8101 0.4082 0.5429
LABPROC 0.5357 0.2632 0.3529

INJURY_POISONING 0.2778 0.4545 0.3448
DEVICE 0.6250 0.2 0.3030
PHYS 0.4875 0.1444 0.2229

FINDING 0.1288 0.2537 0.1709

do not belong to the FINDING type. For example, for the sentence (in record 27029443_en), "The
authors suggest the algorithm for choosing the order of priority of surgical interventions on
coronary and brachiocephalic arteries", the LLM recognizes "suggest" as a FINDING entity, but
the UMLS heuristics do not filter it out because it corresponds to "Abnormal/suggest Ca", which
is a FINDING concept.

2. PHYS entity recognition has a low recall. On one hand, PHYS entities sometimes contain generic
one-word terms such as "healthy", "lifetime", "size", "shape" and "adults", which are not recognized
by LLM or UMLS as PHYS entities. On the other hand, some long phrases (which are outer
nested entities) recognized by LLM as PHYS entities are excluded by UMLS heuristics because
the UMLS search cannot find such terms. For example, "spirometric indicators" and "peripheral
blood oxygen saturation" in record 27030325_en are excluded by UMLS heuristics.

The general takeaways from the results are:

1. Context is important in NER task. The same phrases have different entity types in different
documents. For example, the words “inflammatory” and “albuminuria” can be PHYS or DISO in
different contexts. Our UMLS heuristics only check the semantic meaning of phrases without
looking at the context, which limits the performance of our model.

2. Our model is often unable to detect the outer nested named entities. For example, it recognizes
“cardiac contractility” as PHYS, but fails to recognize “low cardiac contractility” as FINDING.
Sometimes those outer nested named entities are identified by LLM but rejected by UMLS
heuristics because UMLS search cannot find matching terms in the UMLS system.

4.1. Impact of UMLS Heuristics

To understand the impact of UMLS heuristics on the system performance, we remove the UMLS
heuristics from the system pipeline. When the LLM model identifies multiple entity types for a phrase,
we assign the final entity type according to the INJURY_POISONING, ANATOMY, PHYS, DISO, CHEM,
LABPROC, DEVICE and FINDING order. The macro-F1 score on the validation set without UMLS
heuristics is 0.2151, which is significantly lower than the F1 score (0.348) when UMLS heuristics are
used. The F1 scores for every category are shown in Table 4. We observe that without UMLS heuristics,
the precision score for each category becomes lower. This is because the LLM model generates many
false positives. In terms of recall, only the INJURY_POISONING and ANATOMY types have better
recall scores when UMLS heuristics are not used. This is because we prioritize assigning the final entity
type as INJURY_POISONING and ANATOMY when the LLM detects multiple matching entity types.
This result shows that UMLS heuristics play an important role in eliminating the false positives of LLM
predictions.

4.2. Training Dataset and Results

The Mixtral 8x7B model officially supports five languages, which do not include Russian. Therefore, we
only attempt the English track. It is possible that other LLM models that support Russian can be used



Table 4
F1 Score for each category on the validation set when UMLS heuristics are not used

Category Precision Recall F1 Score
DISO 0.4551 0.4676 0.4613

CHEM 0.3731 0.3049 0.3356
ANATOMY 0.2036 0.4629 0.2828
LABPROC 0.1964 0.0973 0.1302

INJURY_POISONING 0.1304 0.5455 0.2105
DEVICE 0.069 0.08 0.0741
PHYS 0.0742 0.10 0.0852

FINDING 0.1357 0.1463 0.1408

to accomplish the Russian/bilingual track using the same modeling pipeline. The method we use in
this study is few-shot prompt engineering and we only use two examples from the training dataset to
construct the LLM prompt. We did not include more examples in the prompt, as the input token size of
LLM is limited and the cost of processing a long prompt is high. We also do not expect adding more
examples in the prompt would improve the performance significantly, as the prompt is mostly used
to guide the model to generate outputs in the desired format. The entities recognized by the model
are mostly based on the original knowledge of the model. However, we believe the remaining training
examples will be useful if we want to finetune the LLM model on the BioNNE task in the future.

5. Future Work

There are two directions for future improvement.
First, we can improve the heuristics for determining the category of an entity. Our current algorithm

is weak at detecting the outer nested entities. Even though the LLM model recognizes them, we fail to
assign the correct category for those entities using the existing UMLS heuristics. We can add a new
set of heuristics for detecting the outer nested entities. Specifically, if a long phrase contains an inner
entity that is a named entity, we can assign the outer entity with the same category as the inner entity
or assign the outer entity with a category detected by the LLM.

Second, we can improve the performance of the LLM model. Currently LLM model generates many
false positives and it may assign several entity types to a single phrase. For example, it recognizes
"neuronal dysfunction" as DISO, ANATOMY, PHYS, FINDING and CHEM in the sentence "the severity of
coronary artery lesions and low cardiac contractility affect the degree of cerebral ischemia and neuronal
dysfunction detected by spectral EEG power" (in record 25726786_en). This is probably because the
general-purpose LLM model (Mixtral 8x7B instruct) trained on the general text does not have the
domain knowledge of the biomedical field. Therefore it cannot distinguish the subtle differences among
the BioNNE entity types. We can fine-tune the LLM model on the BioNNE training data as well as other
biomedical NER datasets to improve the performance of the model in this task.

Although the Mixtral 8x7B model does not officially support the Russian language, a recent study
by Fenogenova et al. [15] shows that Mistral 7B (a smaller version of Mixtral 8x7B) performs well on
Russian language benchmarks compared to other LLMs. Future work can explore using Mixtral or other
LLM models to solve the BioNNE bilingual NER problems using prompt engineering techniques in the
paper or fine-tuning the model with bilingual datasets.

6. Conclusions

We build a system that uses a general-purpose LLM, a biomedical domain NER model and UMLS-based
heuristics to extract nested named entities from biomedical text. Our model achieved an F1 score of
0.39 and 0.348 on the BioNNE English validation and test sets. Although the results are not comparable
to those of the state-of-the-art models [3], that were trained on the domain-specific dataset, our study



demonstrates the potential of using general-purpose LLM and prompt engineering with domain-specific
rules to solve biomedical NER tasks.
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