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Abstract
The FungiCLEF 2024 challenge aims to foster research in the field of application-oriented fine-grained open-set
classification. Particularly, it sets the challenge to optimize fungi species classification while recognizing unknown
species with the evaluation of multiple metrics targeting the problems of actual use-cases, e.g., the risk of a highly
detrimental confusion of a poisonous species for an edible species. To develop a well-performing approach, we
focus on reducing this particular risk by introducing multiple improvements. The major improvements are a
poisonous reranking which prevents predicting an edible species while a significant chance of the sample being
poisonous exists and a genus loss which provides additional training information improving the regularization of
the feature space. The advancements provide a large improvement in terms of poisonous confusion but also in
terms of overall classification accuracy. With this approach, we achieved the 1st place in the challenge’s main
metric. Code is available at https://huggingface.co/stefanwolf/fungi2024.
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1. Introduction

Fine-grained open-set classification is an important topic in the biology context in order to find samples
of rare species and to provide inexperienced citizen scientist with a support to identify species of
plants and animals. Particularly, fungi species classification has an additional use case: identifying
poisonous species to reduce the risk of accidental eating poisonous fungi. Thus, the FungiCLEF 2024
challenge [1], part of the LifeCLEF 2024 lab [2], sets up the task of open-set fungi species classification
with an emphasis on correctly identifying fungi species while preventing confusing poisonous species
for edible species.

While the task of open-set fungi classification has been intensively investigated in the recent iterations
of the FungiCLEF challenge [3, 4], optimizing the poisonous confusion error has only been lightly
approached rendering the room for improvements quite large. Thus, we focus on the poisonous
confusion error and can achieve significant gains with multiple advancements. These advancements are

• a poisonous reranking which predicts the highest ranking poisonous species if its confidence is
only lower by a certain factor than the overall highest ranking species.

• a genus loss that regularizes the feature space by incorporating the genus label in training.
• a second open-set threshold to reduce the risk of misclassifying a poisonous sample as an unknown

species.
• a two-stage metadata integration that enhances the overall classification accuracy.
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Figure 1: Overview of our approach. We employ a Swin Transformer V2 Base backbone to extract image features.
The image features are passed to an auxiliary genus loss during training. The metadata features are processed
by a multi-layer-perceptron and thereafter, they are combined with the image features and fed into the species
classifier. Afterwards, our poisonous reranking and the two-threshold entropy-guided open-set recognition is
applied.

2. Related work

A wide range of approaches have been proposed targeting fine-grained fungi classification in wildlife
images. Sulc et. [5] employ an ensemble of CNNs to classify images of fungi. Picek et al. [6] propose
a simple but effective probabilistic strategy to exploit metadata in order to improve the accuracy of
fine-grained fungi classification. Kiss and Czùni [7] provide a study about a broad-range of design
choices optimizing mushroom type classification accuracy. The 2022 [3] and the 2023 [4] iterations of
the FungiCLEF challenge summarize a variety of approaches with the 2022 iteration being focused on
improving open-set fungi classification and the 2023 iteration emphasizing the importance of choosing
metrics based on use cases to focus research on relevant aspects, e.g., focusing on reducing the confusion
of poisonous species with edible species.

3. FungiCLEF 2024 challenge

The 2024 iteration of the FungiCLEF challenge [1] aims to stimulate research about efficient open-set
fungi classification. The target is to distinguish 1,604 fungi species by using an observation consisting
of one or multiple images with different perspectives and additional metadata information such as
habitat, substrate, time and location. Apart from distinguishing the known species, the submitted
approach needs to be able to solve an open-set scenario, i.e., it needs to recognize whether a sample is
of a species not part of the training samples. The provided training data consists of the Danish Fungi
2020 dataset [6], the validation data consists of the test set of FungiCLEF’s 2022 iteration [3] and the
test data consists of new data for the 2024 iteration. The evaluation is done based on three metrics:

• Track 1: Classification error – standard classification with "unknown" category.
• Track 2: Poisonous confusion error – cost for confusing edible species for poisonous and vice

versa (with 100× weight for confusing edible species for poisonous).
• Track 3: User-focused error – user-focused loss composed of both the classification error and the

poisonous/edible confusion.



4. Approach

Our challenge submission is based on the approach by Wolf and Beyerer [8]. To simplify the training
and due to insignificant impact, we refrain from applying the resampling-based class balancing. We
extend the approach by applying several improvements as described in this section, i.e., a two-stage
integration of metadata, a genus loss, a poisonous reranking and a two-threshold open-set recognition
strategy. The overall architecture of our approach is shown in Figure 1.

4.1. Model architecture

We employ a Swin Transformer V2 Base [9] as an image feature extractor backbone. Additionally, we
use the metadata information provided by the Danish Fungi dataset [6] to improve the classification
accuracy. The metadata is encoded similarly to the approach by Ren et al. [10] We encode the month 𝑚
and day 𝑑 of each observation as a vector

(︀
sin(2𝜋𝑚12 ), cos(2𝜋𝑚12 ), sin(2𝜋𝑑31 ), cos(2𝜋𝑑31 )

)︀⊺
. The geographical

locations country code, substrate and habitat are encoded as one-hot vectors. All metadata vectors are
concatenated and fed into two fully connected layers with an output size of 64 and each being followed
by a ReLU activation and a layer norm [11]. The resulting metadata feature vector and the image feature
vector are concatenated and fed into a final linear classification layer followed by a softmax activation.
We apply an auxiliary second classification head for predicting the genus of a sample during training
which is fed the image features.

4.2. Training process

For training the model, we apply two losses: a classification loss on the species level as commonly
used and an auxiliary classification loss on the genus level. Both are label-smooth losses [12] with a
smoothing value of 0.9. To prevent a degradation of the image features when training with metadata,
we use a two-stage training with the first stage only training the image classification stream of the
network and the second stage training the complete network including the metadata feature extractor
with a newly initialized species classifier.

4.3. Inference

During inference, we extract the feature vectors of all images of an observation and concatenate the
observation-wise mean of the image features with the metadata features before feeding the result
into the species classification head. Based on the resulting softmaxed confidence scores, we apply our
poisonous reranking which reranks the poisonous species with the highest confidence to the top of
the species ranking if its confidence is higher than the actual top-1 species’ confidence divided by a
poisonous reranking factor 𝛼. After the poisonous reranking, we apply the entropy-based open-set
thresholding based on the approach by Ren et al. [10] If the entropy of the output confidences is above
a certain threshold 𝜏 , we predict the observation to be out-of-distribution. We extend this approach by
employing two thresholds 𝜏𝑒 and 𝜏𝑝, which are applied if the predicted species is edible or poisonous,
respectively. The threshold 𝜏𝑝 is selected higher than the threshold 𝜏𝑒 to reduce the risk of misclassifying
a posionous species as an out-of-distribution species. Both, the poisonous reranking and the second
threshold, are improvements targeting the challenge’s Track 2 metric which is measuring the poisonous
confusion with a significantly higher weight for mispredicting poisonous species than edible species.

5. Evaluation

5.1. Datasets

We use the official FungiCLEF 2024 [1] datasets. The Danish Fungi 2020 [6] dataset is used for training.
All metrics reported in this study are based on the official validation set which is the test set of
FungiCLEF’s 2022 iteration [3]. The test set for the official ranking is a set of images which has not



Table 1
Impact of the auxiliary genus loss. Our auxiliary genus loss shows a small improvement for the classic classification
metrics F1 score and Track 1 (classification error). However, particularly the poison-focused Track 2 metric is
drastically improved due to better feature separation on the genus level which is important for distinguishing
poisonous from edible species. Note: the images of each observation are combined by a post-classification mean
fusion.

Genus loss F1 score Track 1 Track 2 Track 3

No 49.1 0.413 0.220 0.633
Yes 49.7 0.410 0.181 0.591

been disclosed publicly prior to the end of the challenge. Only the results of the public part of the test
set was publicly visible with the results on the private part only being disclosed after the challenge
deadline.

5.2. Implementation and baseline

We use the MMPreTrain [13] classification framework based on PyTorch [14] for the training and the
inference of the models. All models are pre-trained on the ImageNet-21k dataset [15] and trained
for 24 epochs with an AdamW optimizer [16], a base learning rate of 6.25 · 10−5, a learning rate
warm-up for 2100 iterations and a cosine learning rate decay. We train with a total batch size of 128.
The metadata training is performed for two epochs in a second stage with a frozen image encoder.
Our image pre-processing pipeline for training includes a random crop of an image area between 8%
and 100%, a resize to 384×384 pixels, a random horizontal image flip, RandAugment [17] and random
erasing [18]. We use 8 Nvidia A100 GPUs for training. The pre-processing pipeline for the inference
includes an image scaling with 438 pixels output size on the shorter edge and a center crop of size
384×384 pixels.

5.3. Genus loss

We compare a training with and without our genus loss in Table 1. All metrics are improved by the
application of the genus loss. Particularly, the Track 2 error focused on identifying poisonous samples
as such improves significantly with a drop of 0.22 to 0.18. Nonetheless, also the classification-focused F1
score and Track 1 error show an improvement. The strong increase in terms of identifying poisonous
species is likely due to most genus containing only edible species. Thus, considering the genus level in
training the feature space results in a denser feature representation of these poisonous-wise uniform
genus. Therefore, the chance of misclassification of a species of a uniformly edible genus with a non-
edible species is heavily reduced. The improvements in terms of classification accuracy are probably
induced by species with a low number of samples. The risk of misclassifying them with species from
other genus due to a lack of variance in the data is reduced when also training the feature space on the
genus level.

5.4. Poisonous reranking

We apply the poisonous reranking additional to the genus loss and evaluate it with different factors. It
reranks poisonous species to the top-1 if their confidence is higher than the actual top-1’s confidence
divided by an 𝛼 > 1 in order to prevent costly confusions of poisonous fungi with edible fungi. The
results are shown in Table 2. As expected, it drastically reduces the Track 2 error from 0.181 to 0.076
due to a lower number of samples misclassified as an edible species. While the Track 1 error is slightly
increased from 0.41 to 0.416 due to some so far correctly classified samples from edible species now
being misclassified as a poisonous species, the increase is small compared to the drop in terms of Track 2
error resulting in a significant drop in the overall Track 3 error from 0.591 to 0.492. Out of the evaluated
values of 𝛼, the Track 2 and 3 errors are reduced until an 𝛼 of 10 while a value of 20 is leading to



Table 2
Impact of the poisonous reranking with different values of 𝛼. The results show the positive impact of reducing
the risk of misclassifying a poisonous species for an edible species with significantly lowered Track 2 and 3 errors
outweighing the small increase in terms of Track 1 error due to an overall increased species misclassification.
Note: the images of each observation are combined by a post-classification mean fusion.

Poisonous reranking factor 𝛼 F1 score Track 1 Track 2 Track 3

- 49.7 0.410 0.181 0.591
2 49.7 0.411 0.144 0.555
5 49.3 0.413 0.106 0.518
10 49.1 0.416 0.076 0.492
20 48.8 0.421 0.079 0.500

Table 3
Impact of the two-threshold entropy-based open-set recognition. For the softmax-score-based recognition, we
report results for thresholds optimized separately for each metric while we report results for a pair of thresholds
for the entropy-based strategy which is manually optimized for Track 3. Thus, the softmax-score-based approach
shows the best results for all metrics but the combined Track 3. For the Track 3 metric, the entropy-based
approach outperforms the softmax score.

Open-set recognition F1 score Track 1 Track 2 Track 3

- 49.9 0.412 0.082 0.494
Softmax score 52.1 0.364 0.070 0.469
Entropy-based with two thresholds 50.3 0.376 0.074 0.449

Table 4
Impact of the metadata integration. Exploiting the metadata gives a significant improvement for all metrics.

Metadata F1 score Track 1 Track 2 Track 3

No 50.3 0.378 0.068 0.445
Yes 56.4 0.329 0.051 0.380

an increase in all error metrics. Particularly, also the Track 2 error increases showing that even the
comparatively lowly weighted case of mispredicting an edible species for a poisonous species now
playing a significant role.

5.5. Open-set recognition

We employ the entropy-based open-set recognition by Ren et al. [10] and extend it by a second threshold
for poisonous species. If the predicted species is poisonous, a higher entropy is needed to classify the
sample as out-of-distribution since out-of-distribution samples are considered edible by the Track 2
metric and thus, misclassifying a poisonous sample as out-of-distribution increases the Track 2 error
heavily. We compare it to applying no open-set recognition and applying a simple softmax-based
thresholding. The results including genus loss and poisonous reranking as baseline are shown in Table 3
and indicate an improvement in all metrics for both open-set recognition methods. The entropy-based
approach with two thresholds provide an additional improvement over the softmax-based thresholding.

5.6. Metadata

We integrate metadata information in the inference process by feeding the encoded metadata through
two fully connected layers and concatenating the resulting vector to the feature vector of the image
encoder before the final linear classification layer. The impact of this metadata exploitation strategy
is shown in Table 4 including all previously mentioned improvements. The results show a significant
improvement across all evaluated metrics.



Table 5
Overview of the top-5 challenge submissions. The best performing submission according to the challenge’s main
metric Track 3 is selected. Performance is measured on the private test set.

Team F1 score Track 1 Track 2 Track 3

IES 54.3 0.311 0.090 0.401
jack-etheredge 54.9 0.244 0.163 0.407
upupup 53.6 0.390 0.072 0.462
chirmy 51.8 0.269 0.415 0.684
TingTing1999 51.4 0.275 0.438 0.713

5.7. Final model

The final best-performing model includes all proposed improvements with the following adjustments:

1. a poisonous reranking factor 𝛼 of 13, the overall best performing value on the public test set.
2. an open-set entropy thresholds of 𝜏𝑒 = 2.5 for edible species and 𝜏𝑝 = 7 for poisonous species.
3. including the validation set in training with unknown samples being assigned a vector with each

element having the same value as target label similar to the approach by Ren et al. [10] and the
true genus label for the genus loss.

5.8. Challenge results

The final private test set results of the top-5 challenge participants are shown in Table 5. We ranked
first with the lowest error in the main metric Track 3 due to a high emphasis on optimizing Track 2
while not lacking too far behind in terms of Track 1. Particularly, we achieve the first place with an
efficient solution that consists of only a single model. While the runner-up team achieved a better Track
1 error, the Track 2 error is almost twice as high. In contrast, the third-placed team achieved an even
better Track 2 metric than our approach. However, this achievement comes at a large Track 1 error
outweighing the advantage.

6. Conclusion

In this study, we described our top-ranking approach for the FungiCLEF 2024 challenge. With a
high emphasis on reducing the risk of confusing poisonous species for edible species, we propose
several advancements which improve the respective error drastically while also improving the overall
classification accuracy. Particularly, we introduced a poisonous reranking, a genus loss, two-threshold
open-set recognition and an efficient two-stage metdata exploitation strategy.
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