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Abstract
The deterioration of the performances of Information Retrieval Systems (IRSs) over time remains an open issue
among the Information Retrieval (IR) community. With this study for Task 1 of the Longitudinal Evaluation
of Model Performance LAB (LongEval) at Conference and Labs of the Evaluation Forum (CLEF) 2024, we aim to
propose and analyze the performance of an IRS that is able to handle changes over time in the data. In addition,
the model uses different Large Language Models (LLMs) to enhance the effectiveness of the retrieval process by
rephrasing the queries for the search and the reranking of the retrieved documents. With an in-depth analysis
of the performance of the MOUSE group Retrieval System, using the datasets provided by the organisers of
CLEF, the proposed model was able to reach a Mean Average Precision (MAP) of 0.22 and a Normalized Discounted
Cumulated Gain (nDCG) of 0.40 for the English collection, increasing the performance for the original French
collection up to 0.31 and 0.50, for MAP and nDCG respectively.
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1. Introduction

Search Engines (SEs) have become an integral tool for people in retrieving information throughout their
daily routines. Recent research studies [1, 2] in the field of Information Retrieval (IR) have analyzed the
problem of evaluating the persistence of the Information Retrieval Systems (IRSs) performances over
time, observing an important problem: the effectiveness of the system deteriorates due to changes in
the data used for the searching of documents. Therefore, the Conference ad Labs of the Evaluation Forum
(CLEF) 2024 LongEval task proposed the implementation of a SE able to handle changes in data over
time. The dataset provided was obtained by scraping the Qwant [3] SE to acquire a large collection
of information comprising a corpus of web pages, queries and user interactions. Such a dataset was
collected over several months to reflect the changes in the search performances of the users. In addition,
the documents in the collection were then selected to be able to well evaluate retrieval on the queries
at the time they were collected, thus representing a good simulation for the changes over time. The
dataset was provided in the original language of the collection, French, and these documents were
automatically translated into English.

This work reports the proposed solution implemented by the MOUSE group at the University of
Padua as part of the Course of Search Engines. Alongside the traditional search pipeline, the MOUSE
system also utilizes query expansion and reranking techniques based on the text generated by Large
Language Models (LLMs) to enhance the retrieval capability of the queries used. Finally, the best model
proposed was able to achieve a MAP and nDCG of 0.22 and 0.40 for the English collection, respectively,
increasing the performances to 0.31 and 0.50 on the original French data.
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The paper is organized as follows: Section 2 briefly introduces some related works for past LongEval
tasks at CLEF 23; Section 3 describes our approach; Section 4 explains our experimental setup; Section 5
discusses our main findings; finally, Section 6 draws some conclusions and outlooks for future work.

2. Related Works

Section 2 describes related works used during the implementation of the MOUSE system. Subsection 2.1
proposes a walk-through of two of the studies that have faced the problem of Longitudinal Evaluation
of IRSs at the CLEF 23 LongEval Laboratory.

The implementation of our IRS uses as base code the one proposed during the Search Engines course
in the academic year 2023/24. The classes implemented in Java provided during the course were
ParsedDocument, DocumentParser, TipsterParser, DirectoryIndexer, BodyField, TopicsReader, Searcher, and
they were used for the Tipster collection [4]. Our implementation uses these classes as a starting point
and is described in depth in Section 3.

2.1. Past LongEval research

Prior research in the field of IR has explored different methods for evaluating the performance of an
IRS considering changes over time. In their study, Antolini et al. [5] presented a pipeline for document
processing that involves the elimination of irrelevant scripts and advertisements, followed by an analysis
utilizing various techniques such as stemming and stopword filtering. After that, the documents are
then indexed for efficient retrieval. As in our study, the queries are expanded using the ChatGPT 3.5
Turbo [6] model to enhance the performance before the searching step. We assumed a similar approach,
changing the model used for the query expansion process, adopting Open Source models with higher
performance if compared to the ChatGPT 3.5 Turbo1.

Differently, Bolzonello et al. [7] used pre-trained Language Model (LM) to rerank the results obtained
by searching documents with BM25. The authors used a T5-base [8] and a Bert-base [9] models,
achieving an improvement of 3.5% and 8.5% on MAP and nDCG respectively. Through the inclusion of
LLMs in our query expansion process, we were able to top the results of Bolzonello et al. [7] without
requiring any additional reranking.

3. Methodology

In this section of the paper, we describe the methodology adopted, with a focus on the architecture of
our system, implemented using the Apache Java Lucene library along with other Python code for the
query expansion step. Figure 1 provides the traditional Apache Lucene system.

We also provide a general overview of the workflow implemented, Figure 2. We provide a brief
explanation of the main phases of the process:

• Parsing and Analyzing: the text sanitization of queries and documents conducted to extract
relevant information and remove useless noise. The raw input query and documents are tokenized,
stemmed and filtered in order to remove useless code, HTML tags and special characters, such as
emoji.

• Indexing: each document undergoes an indexing process, retaining only essential information.
Indexed documents contain an ID field with the document’s identifier in the collection and a
content field comprising the entire body of the document.

• Query Expansion: reformulating the queries with a LLM to broaden the scope of the user query.
By supplementing original query terms with additional and contextually relevant terms, the
effectiveness of the topic retrieval capability is increased.

1https://artificialanalysis.ai/

https://artificialanalysis.ai/
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Figure 1: Traditional Y model for Search Engines using the Apache Lucene Java library. The blue boxes represent
the different steps and objects used in the retrieval, while the green box stands for the final result, i.e., the list of
retrieved documents.

• Reranking: sorting the obtained retrieved document list considering new scores provided by a
Transformer based model. By rearranging the retrieved documents, the reranking phase enhances
the user’s search, presenting more relevant results at the top of the list.

3.1. Parser

Firstly, we downloaded the data from the LongEval data website2. Then, before starting the system
implementation, we inspected the documents provided by CLEF LongEval 2024 organizers. During this
initial phase, we conducted a thorough analysis of the data to gain a deeper understanding of how to
optimize the parsing of documents and queries. This was a critical step in ensuring the effectiveness of
the search processes and improving the overall performance.

The first phase of the workflow consisted of parsing the documents present in the collection; at the
end of the parsing process, unnecessary noise is removed from each document. Three main Java classes
were implemented to help this process:

• DocumentParser: This Java class is helpful in reading different types of documents and working
with their content.

• MouseParserJson: This Java class is a parser for documents provided in JSON format for those
supplied by CLEF LongEval 2024 organizers.

2https://clef-longeval.github.io/data/

https://clef-longeval.github.io/data/
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Figure 2: The MOUSE pipeline implemented in this study. The blue boxes represent the different steps and
objects used in the retrieval, while the green box stands for the final result, i.e., the list of retrieved and reranked
documents. In the diagram, next to the query expansion and reranking phase, the icons of the LLMs are shown.

• ParsedDocument: This Java class represents the parsed document ready to be indexed. The
class collects two fields: the id and the body, i.e., the document’s content comprising the text to
be parsed.

Following implementation, we executed the aforementioned classes and stored the resulting data
for the subsequent retrieval phase, which encompasses the analyzer step. During this phase, the
MouseParserJson class was utilized to iterate over the input documents, while the ParsedDocuments class
was employed to represent the document that required indexing.

3.2. Analyzer

After the parsing phase, we want to process and manipulate texts that come from queries and documents.
We first decided to test the default Lucene Analyzer3, and then we implemented a custom version of it:
the MouseAnalyzer. This class has been used to manipulate words before the retrieval process.

Before explaining the analyzer, we need to explain the class MouseParams used by the Analyzer briefly.
Such a class helps initialize the parameters the analyzer uses. Furthermore, we defined a TokenizerType
attribute to specify which kind of tokenizer the system should use:

• Whitespace: the WhitespaceTokenizer is a tokenizer from the Lucene Library4 that divides text
at whitespace characters as defined by the method isWhitespace5.

3https://lucene.apache.org/core/9_10_0/core/org/apache/lucene/analysis/Analyzer.html
4https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/core/WhitespaceTokenizer.html
5https://docs.oracle.com/javase/8/docs/api/java/lang/Character.html?is-external=true#isWhitespace-int-

 https://lucene.apache.org/core/9_10_0/core/org/apache/lucene/analysis/Analyzer.html
https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/core/WhitespaceTokenizer.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Character.html?is-external=true#isWhitespace-int-


• Letter: the LetterTokenizer is a tokenizer from the Lucene Library6 that divides text at non-letters.
• Standard: the StandardTokenizer is a tokenizer that divides text according to the Word Break rules

from the Unicode Text Segmentation algorithm [10], which considers numbers and acronyms as
separate tokens.

The file also contains a StemFilterType attribute, which represents the Stemming filter to use, with
possible values comprising the following typology:

• EnglishMinimal: A minimal stemmer for English considering only plural words7.
• Porter: An implementation of the Porter stemming Algorithm [11].
• K: An implementation of the Krovetz stemming Algorithm [12], by using the native class KStem-

Filter in the Lucene library8.
• Lovins: An implementation of the Lovins stemming Algorithm [13].
• SnowBall: An implementation of the Snowball stemmer, a native class in the Lucene library9.
• French: An implementation of the "UniNE" algorithm [14].
• None: This flag says that no stemmer should be used.

CLEF LongEval 2024 organizers provided a collection of documents in English and French. We chose
the best parameters for each language in our system based on the different trial run results obtained.
The French documents were processed with:

• Tokenizing: the StandardTokenizer had the best overall performance.
• Stemming: the StemFilterType used in the system was the French one.
• Stopword Removal: the StopFilter is used to remove common and frequent words (e.g. "le",

"et", and "à") from the text. In our system, we tried some stoplists with different lengths and
words; the best we found was stopwords-fr.txt and train24-top125-nominmaxlen.txt. The first list
of stopwords was provided by the Open Source project for stopwords removal [15]; the second
list was computed by obtaining the first 125 terms with the higher frequency in the collection
analyzing the index of the documents without applying any stemming or a stoplist. All the lists
are available in the MOUSE repository10.

• Elision Removal: the ElisionFilter was implemented in this system. Elisions in French, such
as the contractions found in phrases (e.g. "aujourd’hui" or "qu’il"), were identified and handled
appropriately to maintain the integrity of words in the analysis.

For the English documents, instead, were used:

• Tokenizing: the StandardTokenizer had the best overall performance.
• Stemming: the StemFilterType used in the system was the Porter one.
• Stopword Removal: the StopFilter is used to remove common and frequent words (e.g. "the",

"an", and "that") from the text. In this case, we tested different stoplists, and as the final lists we
decided to use for the final runs the stopwords-en.txt and train24-top125-nominmaxlen.txt.

• Possessive Removal: the EnglishPossessiveFilter was implemented in this system. It removes the
possessives (’s) from words.

3.3. Searcher

The searching procedure starts when a user submits a query to the system, which then analyzes the
query and searches through indexed documents to find relevant information. The system aims to retrieve
and rank documents that align with the user’s query, returning a list of results that best match the
user’s information needs, ordered by relevance. In this section, we explain some searching techniques
that we implemented in our methodology.
6https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/core/LetterTokenizer.html
7https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/en/EnglishMinimalStemmer.html
8https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/en/KStemFilter.html
9https://lucene.apache.org/core/9_10_0/analysis/common/org/tartarus/snowball/SnowballStemmer.html
10https://bitbucket.org/upd-dei-stud-prj/seupd2324-mouse/src/master/
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3.3.1. BM25

For evaluating the matching between parsed and analyzed query 𝑄 = (𝑞1, . . . , 𝑞𝑛) and document 𝐷,
we used the Okapi BM25 [16, 17] scoring function. In Equation 1 the scoring function is reported, where
𝑓(𝑞𝑖, 𝐷) is the frequency that a query term 𝑞𝑖 appears in the document 𝐷, IDF is the Inverse Document
Frequency (IDF) of the query terms [18], avgdl is the average document length in the text collection
from which documents are taken from. In implementing our system, we employed the Okapi BM25
retrieval system offered by Lucene11. Moreover, we used the default settings provided in the Lucene
library, i.e., 𝑘 = 1.2 and 𝑏 = 0.75. Accordingly, we found that the BM25 scoring function performed
effectively without tuning these default parameters.

score(𝐷,𝑄) =

𝑛∑︁
𝑖=1

IDF(𝑞𝑖) ·
𝑓(𝑞𝑖, 𝐷) · (𝑘1 + 1)

𝑓(𝑞𝑖, 𝐷) + 𝑘1 ·
(︁
1− 𝑏+ 𝑏 · |𝐷|

avgdl

)︁ (1)

3.3.2. Fuzzy

A fuzzy query is a type of search query that finds matches even when the search terms do not exactly
match the terms in the documents. This helpful approach is used to get a query’s (partial) match to
a document, even if there are some variations, e.g., words misspelt, abbreviations and typographical
errors. Fuzzy is a powerful Lucene Library12 established on the similarity between terms: such similarity
measurement is based on the Damerau-Levenshtein algorithm [19], which is a method for computing the
closeness between two strings, which takes into account the number of insertion, deletion, substitution,
and transposition operations needed to transform one string into the other.

3.3.3. Spell-Checker

During the first analysis of the queries collection, we noticed that some of them contained words with
grammatical errors:

Wrong Queries:

• emploi terriotrial
• espace sheingen

We implemented the Spell-Checker Lucene Library13 to fix grammatical errors in the queries. Such
a method is used inside the Searcher class, creating when the system encounters a token that is not
present in the Indexer. We inspected the dictionary provided to see if the wrong word could be replaced
with a correct version of it (or with a similar one). Thus, the queries become:

Corrected Queries:

• emploi territorial
• espace schengen

3.3.4. Word N-Grams

The Searcher, 3.3, also implements the ShingleFilter, a special filter that constructs shingles, i.e., n-grams
tokens from a given stream of terms. They are a special sentence technique analysis that divides words
of a sentence into sequences of n consecutive words; they improve search relevance.

For example, if we have a sentence like "Let’s try it" we can have "let’s try, try it, let’s it" and we see
that the sentence was divided into three shingles. We handled the base case in which the query has only

11https://lucene.apache.org/core/9_10_0/core/org/apache/lucene/search/similarities/BM25Similarity.html
12https://lucene.apache.org/core/9_10_0/core/org/apache/lucene/search/FuzzyQuery.html
13https://lucene.apache.org/core/9_10_0/suggest/org/apache/lucene/search/spell/SpellChecker.html

https://lucene.apache.org/core/9_10_0/core/org/apache/lucene/search/similarities/BM25Similarity.html
https://lucene.apache.org/core/9_10_0/core/org/apache/lucene/search/FuzzyQuery.html
https://lucene.apache.org/core/9_10_0/suggest/org/apache/lucene/search/spell/SpellChecker.html


one word, and then the shingle is the query itself. Specifically, we set two variables: the maxShingleSize
represents the maximum number of shingles a query should be divided into, and shingleProximity that
is a measure of the distance of terms in shingles used to identify documents in which the search term
appears. We tested with and without this filter and saw a remarkable increment in the MAP. The Word
N-grams method is applied for queries that contain more than a single word, creating overlapping
sequences of terms.

3.4. Query Expansion

To improve the effectiveness of the queries, we adopted a query boosting methodology based on LLM,
as previously done by [5]. Figure 3 represents the pipeline used.

groq API

groq Cloud Playground

Query ExpandedQuery

Figure 3: Query Expansion Pipeline.

We wrote the python script queryExpansion.py to interact with the groq API14 and the models
offered by the organization in their cloud infrastructure, i.e., LLaMA [20] models (LLaMA3 7b and
LLaMA2 70b), Mixtral 8x7b [21], and Gemma 7b [22], deployed using the version provided by the
Hugging Face platform15. To have access to the models, we generated a GROQ_API_KEY in the groq
cloud platform and saved it as a configuration file to be accessed by the script. Since we used the Free
Beta program of the service, we worked under some limitations: the number of possible requests per
minute is limited to 30, and we could not fine-tune any model. Nevertheless, to exploit the capabilities
of the LLMs used, we tried different contextualizations in the prompt submitted, identifying as most
effective the following, written in French (translating the English original prompt with the help of the
Google Translation service).

Prompt:

"Extend the following query with 20 related terms or expressions in French: QUERY. Only print
terms on a single line, separated by commas, do not add additional text or explanations."

French translation:

"Étendre la requête suivante avec 20 termes ou expressions liés en French: QUERY. Imprimez
uniquement les termes sur une seule ligne, séparés par des virgules, n’ajoutez pas de texte ou
d’explications supplémentaires."

Hence, the script queryExpansion.py, takes as input the path to the query dataset path, passed
with the "-d" flag, and the model name "-m" to be used, storing the final expanded queries in a .tsv file
to be used for the retrieval phase. The communication between the localhost and the model used in the
cloud respects the API limit by resting 60 seconds every 30 queries submitted in order to avoid the "429
TooManyRequests" HTTP Error. The results are saved in the predefined directory, storing the query
id, original query, expanded query, and model used for the expansion.

14https://github.com/groq/groq-python
15https://huggingface.co/

https://github.com/groq/groq-python
https://huggingface.co/


3.5. Reranking

Figure 4 shows a schematic view of the reranking performed to rearrange the results of the first retrieval.
For such a task, we tried three different approaches: the first was provided by connecting with the
Cohere API16 to use LLMs for performing the reranking scoring computation. Then, we used the
Pygaggle Library17 for interacting with deep neural architectures for text ranking, designed in Python.
We also tried the rerank model ms-marco-MultiBERT-L-12, with the Multi-lingual support provided
by the Python module FlashRank18. Finally, we found that the first two approaches gave us the best
performances and decided to discard the third one to avoid encumbering.

Furthermore, the Cohere approach, thanks to the API service, gives us the opportunity to rerank
up to 100 documents; on the other hand, Pygaggle runs the model on the local machine and, with our
computational power, we were able to rerank approximately 20 documents per run. We wrote a simple
Python script for each of these approaches with two functions: load_ranker and rerank. The former is
called inside the constructor of the Searcher class, loading the model and saving it into a global variable.
After that, the method rerank is called in the searching process after retrieving documents. This method
receives the query title and the contents of documents as parameters to perform the reranking.

Once the scores have been computed, we used the normalization function proposed by Bolzonello
et al. [7], Equation 2 to create the final ranking.

nScore𝑟𝑟(𝑖) =
(︂

Score𝑟𝑟(𝑖) + min
𝑗∈[1,𝑛]

Score(𝑗)
)︂
· ScoreBM25(1)

Score𝑟𝑟(1)
(2)

where ScoreBM25(𝑖) is the score given by BM25 for the document at rank position 𝑖 and Score𝑟𝑟(𝑖) is
the score computed by the reranker for the document at rank position 𝑖, while 𝑛 is the total number of
documents reranked. The ratio ScoreBM25(1)

Score𝑟𝑟(1)
preserves the score computed by the first retrieved document

from the BM25 IRS. Finally, as done by Bolzonello et al. [7], the final score is computed, Equation 3.

finalScore(𝑖) = mntr + (1− 𝛼) · Score𝐵𝑀25(𝑖) + 𝛼 · nScore𝑟𝑟(𝑖) (3)

where mntr is the maximum score of docs that are not reranked, preserving the order of the leftover
docs. For the experiments, we used 𝛼 = 0.6.

The data presented in Table 1 outlines the models utilized for query expansion and reranking, as well
as other information on the runs submitted to CLEF24 LongEval.

Table 1
Summary of parameters for the runs submitted to CLEF 24 LongEval.

English

Parameter Run 1 Run 2 Run 3 Run 4 Run 5

Stem Filter Porter Porter Porter Porter Porter
Tokenizer Standard Standard Standard Standard Standard
Stoplist train24-top125-nominmaxlen.txt train24-top125-nominmaxlen.txt train24-top125-nominmaxlen.txt stopwords-en.txt -
Query Expansion Model Llama3-70b Llama3-70b Mixtral-8x7b Llama3-70b Mixtral-8x7b
Reranking Model Pygaggle-Luyu-20-w06 Cohere-100-w06 Pygaggle-Luyu-20-w06 - -

French

Parameter Run 6 Run 7 Run 8 Run 9 Run 10

Stem Filter French-Light French-Light French-Light French-Light French-Light
Tokenizer Standard Standard Standard Standard Standard
Stoplist train24-top125-nominmaxlen.txt train24-top125-nominmaxlen.txt train24-top125-nominmaxlen.txt stopwords-fr.txt -
Query Expansion Model Llama3-70b Llama3-70b Mixtral-8x7b Llama3-70b Mixtral-8x7b
Reranking Model Pygaggle-Luyu-20-w06 Cohere-100-w06 Pygaggle-Luyu-20-w06 - -

16https://docs.cohere.com/docs/rerank-2
17https://github.com/castorini/pygaggle
18https://github.com/PrithivirajDamodaran/FlashRank

https://docs.cohere.com/docs/rerank-2
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Figure 4: Reranking schema. The relevant documents (yellow and bronze) are sorted towards the first positions
of the final retrieved document list considering the scores obtained using Cohere and Pygaggle.

4. Experimental Setup

The experimental setup of the project consists of the following:

• The project source code is available in the Mouse group repository in Bitbucket:
https://bitbucket.org/upd-dei-stud-prj/seupd2324-mouse/src/master/.

• The collection used was provided by the CLEF LongEval 2024 Organizers at:
https://researchdata.tuwien.at/records/y60e9-k9b51.

• The evaluation tool used is the trec_eval script (provided during the course and present in the
repository).

• To compute the runs, we used the following hardware:

– PC 1 - French: Microsoft Windows 11 Home, CPU 13th Gen. Intel i9 (20@5.2GHz), GPU
Intel Raptor Lake-P [Iris Xe Graphics].

– PC 2 - English: Pop!_OS 22.04 LTS, CPU 11th Gen. Intel i7 (8@4.7GHz), GPU Intel TigerLake-
LP GT2 [Iris Xe Graphics].

We provided a README file in the group repository with all the instructions for reproducibility.

5. Results and Discussion

In this Section, we present the experimental results obtained and discuss the findings. We structured
the presentation of the results by dividing the discussion based on the language of the collection used,
i.e., English and French.

5.1. Training Results

We report the results obtained using the implemented system. For clarity reasons, we decided to
structure the name of the models used for the runs deciding the such names on the parameter values
reported in Table 1, displaying the names in a common structure:

Model: StemFilter_Tokenizer_Stoplist_QueryExpansionModel_RerankingModel

https://bitbucket.org/upd-dei-stud-prj/seupd2324-mouse/src/master/
https://researchdata.tuwien.at/records/y60e9-k9b51


English Collection Results. Table 2 displays the MAP and nDCG scores for the runs conducted
on the English data collection. As outlined in Section 3, the English dataset was generated through
automated translation of the original French queries. Consequently, we noted that the MAP and the
nDCG were affected by the quality of these translations. Furthermore, it appears that using query
expansion and reranking techniques based on LLMs is not successful enough in resolving the issue of
poorly translated queries and documents.

Table 2
MAP and nDCG with the English collection.

Model MAP nDCG

Eng-LLama3-70b_Cohere-100-w06 0.2226 0.4017
Eng-Mixtral-8x7b_Pygaggle-Luyu-20-w06 0.2153 0.3968
Eng-LLama3-70b_Pygaggle-Luyu-20-w06 0.2144 0.3955
Eng-LLama3-70b 0.1946 0.3799
Eng-Mixtral-8x7b 0.1933 0.3787

Figure 5 illustrates the interpolated Precision-Recall curve, which can be advantageous in understand-
ing the inverse relationship between the two measures. Hence, the graph highlights the importance of
balancing the fraction of retrieved documents that are relevant to the user, the Precision of the system,
and the effectiveness of the retrieval system in obtaining all pertinent documents, i.e., the Recall. The
curve indicates that the model employing the LLama3-70b and Cohere models for query expansion and
reranking, respectively, generally provides a superior Precision Recall trade-off if compared to other mod-
els. Conversely, the absence of reranking and stopwords removal appears to be disadvantageous for the
system, cf. models Porter_Standard_stopwords-en.txt_LLama3-70b and Porter_Standard_Mixtral-8x7b.
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Figure 5: Interpolated Precision Recall graph, English collection. The dataset used is LongEval 2024 Train
Collection (cf. 4).

French Collection Results. Using the original French queries positively impacted the system’s
performance in terms of both MAP and nDCG. Table 3 describes the systems’ performance for the



different runs using the French collection. The French runs yielded a considerable improvement in
the models, with each of them increasing the MAP and nDCG by at least 7% and 9%, respectively.
Once again the worst results were presented by the model with no stopwords filtration and reranking,
decreasing the best model performance of 5% in terms of MAP and 4% in terms of nDCG. However,
such a model reaches better performance if compared to the best model of Table 2, which used the
English collection data.

Table 3
MAP and nDCG with the French collection.

Model MAP nDCG

French-Light_Standard_train24-top125-nominmaxlen.txt_LLama3-70b_Pygaggle-Luyu-20-w06 0.3127 0.5077
French-Light_Standard_train24-top125-nominmaxlen.txt_LLama3-70b_Cohere-100-w06 0.3107 0.5052
French-Light_Standard_train24-top125-nominmaxlen.txt_Mixtral-8x7b_Pygaggle-Luyu-20-w06 0.3101 0.5055
French-Light_Standard_stopwords-fr.txt_LLama3-70b 0.2921 0.4917
French-Light_Standard_Mixtral-8x7b 0.2622 0.4663

Finally, we also present the Interpolated Precision-Recall curve derived from the French dataset. Once
again, we note a consistent pattern of the Precision-Recall trade-off, highlighting the importance of
stopwords removal for this collection before starting the search process. It has been observed that the
integration of query expansion and reranking, based on LLMs, results in a consistent and outstanding
performance across the different models used.
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Figure 6: Interpolated Precision Recall graph, French collection. The dataset used is LongEval 2024 Train
Collection (cf. 4).

5.1.1. Discussion

Observing the results obtained, we derived that the English collection, composed of automatically
translated queries and documents, yielded poor performance outcomes. This lack of effectiveness can
be attributed to the automatic translation process, which often fails to translate the query correctly
and alters the user’s real information needs. In second place, the adoption of a stopwords list had an



important impact on the systems’ performance: instances where irrelevant words were not removed,
did not yield meaningful results, contributing to poor performance even when queries were expanded.
As a matter of fact, from the training results, the influence of LLMs on query expansion and reranking
is significant in both analyzed scenarios. Across the experiments, the most effective models consistently
included query expansion and reranking pipelines based on LLama3, Mixtral, Cohere, and Pygaggle
models. These models increased the overall performance in terms of MAP, nDCG, and Precison-Recall
trade-off, showcasing the significant potential of leveraging advanced language models for enhancing
retrieval relevance.

5.2. Test Results

This Section comprises the statistical tests performed to investigate the performance of the submitted
runs on the short and long-term collections. Specifically, we tackle the performance changes and the
statistical analysis of the results obtained. Moreover, the ANOVA 2 test is used with a significance
level of 𝛼 = 0.05 to assess whether the null hypothesis can be rejected, thereby indicating a significant
statistical difference between the results of the given runs. Specifically, the two-way ANOVA is used
to determine how two independent variables—namely, the system and a query—impact a dependent
variable, which, in our case, is a specific measure. In each ANOVA2 table, we reported df,i.e., the degree
of freedom in the source, SS, i.e., the sum of squares due to the source, MS, i.e., the mean sum of squares
due to the source, F, i.e., the F-statistic and PR(>F) that is the p-value. To avoid encumbering, we
report only meaningful insights on the measures collected, however, all the analysis and the graphs
are available on the study repository. Finally, we performed the pairwise comparison, i.e., the Tukey’s
Honestly Significant Difference (HSD) test, to verify if, among our submitted systems, some significant
statistical differences are present. For each multi-comparison graph, we highlighted in blue the best
model obtained, in red the models for which there is a significant difference computed by Tukey’s HSD
test. In gray, models that are not statistically different are reported.

Since our submissions were both using English and French collections, for this final analysis we
decided not to remove any of the systems used during the training phase.

5.2.1. English Test Results: Short Term collection

Table 4
Overall results on test set - English Collection - Short term. The Table reports the averages of the performances
measured.

June
System nDCG nDCG@10 MAP P@10 Recall@1000

Eng-Llama3-Cohere rerank 0.3060 0.2031 0.1705 0.1671 0.5827
Eng-Llama3-Pygaggle rerank 0.3038 0.1982 0.1666 0.1604 0.5827
Eng-Mixtral-Pygaggle rerank 0.3036 0.1992 0.1664 0.1611 0.5821
Eng-Llama3-NoRerank 0.2914 0.1805 0.1525 0.1475 0.5817
Eng-Mixtral-NoRerank 0.2910 0.1807 0.1527 0.1480 0.5809

Table 4 reports the test results obtained by each of the submitted systems on the June test collection.
Upon comparing the results obtained during the training phase, cf. Table 2, it is evident that there is a
slight reduction in the effectiveness of the retrieval systems, particularly in terms of MAP and nDCG.
Based on the Boxplots obtained from Figure 7, it is evident that the model utilizing Llama3-Cohere
query expansion and reranking demonstrates ideal robustness in handling performance losses from
training to testing phases, preserving for some topics good results, as indicated by both nDCG@10 and
P@10 metrics. A final important remark on the boxplots is that all the systems present a similar trend
in terms of median and interquartile range, also showing the presence of outliers for specific queries.
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Figure 7: Box plot of the nDCG@10 and of P@10 for the English Short term collection.

ANOVA 2 The ANOVA 2 analysis was performed to investigate how different types of systems were
able to retrieve the relevant documents for the provided topics and, in addition, to understand how
different searched topics, i.e., the queries, performed across these systems. Table 5 shows the ANOVA2
tables of the nDCG@10 and P@10 on the June dataset. The insight that Table 5 is that the pvalue of the
test is below the threshold 𝛼 = 0.05, implying that there is indeed a significant statistical difference
among the systems.

Table 5
Anova 2 Way for nDCG@10 and P@10 considering Topics and Systems for the English Short term collection.

nDCG@10 P@10

df SS MS F PR(>F) df SS MS F PR(>F)
Topics 403 80.5779 0.1999 45.4342 0 403 46.8477 0.1162 53.1366 0
Systems 4 0.1912 0.0478 10.8625 1.0846e-8 4 0.1214 0.0303 13.8747 3.9426e-11
Residuals 1612 7.0940 0.0044 - - 1612 3.5265 0.0022 - -
Total 2019 87.8631 - - - 2019 50.4956 - - -

Tukey’s HSD Test The results of Tukey’s HSD multiple comparisons are reported in Figure 8. From
the pairwise test between the different systems, we can see that for the short-term dataset from the best
systems, i.e., the models that use the LLM for query expansion and reranking there are no significant
statistical differences, for both nDCG@10 and P@10, while on the other hand, the differences are shown
with the models that only uses query expansions models.

5.2.2. English Test Results: Long Term collection

Table 6 reports the test results obtained by each of the submitted systems on the test collection for
the English August collection. Also in this case, the results are sorted based on the nDCG measure,
implying that the model that achieved the best nDCG was the Llama3 Cohere model.

From the box plots in Figure 9, once again, we can observe that for both measures, we obtained
comparable graphs in terms of median and inner quartiles, showing the presence of outliers topics
towards better performance. If we compare the results obtained in Figure 9, with the June test results,
Figure 7, what we can gain is the information that the model with the higher mean in terms of nDCG@10
and P@10 is the Llama3 Cohere model, demonstrating the robustness of the system in handling changes
through time.
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Figure 8: Tukey’s HSD test for nDCG@10 and of P@10 in the English Short term collection between the different
systems.

Table 6
Overall results on test set - English Collection - Long term. The Table reports the averages of the performances
measured.

August
System nDCG nDCG@10 MAP P@10 Recall@1000

Eng-Llama3-Cohere rerank 0.2353 0.1747 0.1265 0.1310 0.4005
Eng-Mixtral-Pygaggle rerank 0.2324 0.1719 0.1238 0.1268 0.4008
Eng-Llama3-Pygaggle rerank 0.2323 0.1717 0.1237 0.1265 0.4005
Eng-Mixtral-NoRerank 0.2254 0.1592 0.1143 0.1171 0.4016
Eng-Llama3-NoRerank 0.2246 0.1589 0.1151 0.1175 0.3996
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Figure 9: Box plot of the nDCG@10 and of P@10 for the English Long term collection.

ANOVA 2 Even in this case, by using as two independent variables the systems and the topics used
for the retrieval process, we wanted to investigate how such variables influenced the performances
for the nDCG@10 and the P@10. The ANOVA 2 table, Table 7, provides evidence of a statistically
significant difference between the models for all analyzed measures, indicating that the pvalue is lower
than the threshold 𝛼.



Table 7
Anova 2 Way for nDCG@10 and P@10 considering Topics and Systems for the English Long term collection.

nDCG@10 P@10

df SS MS F PR(>F) df SS MS F PR(>F)
Topics 1517 239.9876 0.1582 44.5911 0 1517 114.6827 0.0756 56.3080 0
Systems 4 0.3534 0.0883 24.9026 1.7557e-20 4 0.2331 0.0583 43.4200 5.5860e-36
Residuals 6068 21.5278 0.0035 - - 6068 0.0013 0.0013 - -
Total 7589 261.8688 - - - 7589 114.9171 - - -

Tukey’s HSD Test The graphs of Figure 10 represent the pairwise Tukey’s HSD test. For the
nDCG@10 measure, there is no significant statistical difference among the LLMs reranking-based
systems, while on the other hand, the models that do not implement any reranking strategy obtain
worse performance and they are found to be statistically different from the best model. However,
when it comes to P@10, the statistical difference is found also with the other two query expansion
and reranking LLMs based systems: this aspect underlines the importance and the positive impact that
query expansion and reranking performed with the latest versions of LLMs architecture have on the
search pipeline.
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Figure 10: Tukey’s HSD test for nDCG@10 and of P@10 in the English Long term collection between the
different systems.

5.2.3. French Test Results: Short Term collection

Table 8
Overall results on test set - French Collection - Short term. The Table reports the averages of the performances
measured.

June
System nDCG nDCG@10 MAP P@10 Recall@1000

Fr-Llama3-Cohere rerank 0.3946 0.2895 0.2484 0.2356 0.6615
Fr-Mixtral-Pygaggle rerank 0.3932 0.2856 0.2459 0.2307 0.6615
Fr-Llama3-Pygaggle rerank 0.3923 0.2852 0.2453 0.2314 0.6615
Fr-Llama3-NoRerank 0.3863 0.2750 0.2355 0.2243 0.6639
Fr-Mixtral-NoRerank 0.3672 0.2461 0.2145 0.1990 0.6636

Table 8 reports the test results obtained on the June French test collection by the five submitted



systems. Comparing the results achieved in the training phase, cf. Table 3, it is clear that the effectiveness
of retrieval systems has slightly decreased. However, considerable values in terms of MAP and nDCG
have been achieved, especially compared to those obtained on the English collection. A possible
motivation for explaining the fact that the results of the French collection are superior to those obtained
from the English collection is because, in the former case, the original documents and queries were
used, while in the latter case, an automatic translation has been applied. As a consequence, in the latter
case, the results depend heavily on the quality of the translation.

Upon examing the Boxplots depicted in Figure 11, it is possible to understand that the systems with
reranking outperformed those without this feature. In particular, the system that employed Llama3 as
the query expansion method and Cohere as the rerank model achieved, once again, the most favourable
results when compared to the others.
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Figure 11: Box plot of the nDCG@10 and of P@10 for the French Short term collection.

ANOVA 2 As previously done for the English June collection, we performed the Anova 2 test to gain
a deeper understanding of the topics and systems influence for achieving the computed values. In this
case, Table 9, the result was that pvalue less than 𝛼, thus implying the presence of statistical difference
in the analysis of systems and queries.

Table 9
Anova 2 Way for nDCG@10 and P@10 considering Topics and Systems for the French Short term collection.

nDCG@10 P@10

df SS MS F PR(>F) df SS MS F PR(>F)
Topics 403 89.7287 0.2226 33.6255 0 403 50.0862 0.1243 34.2320 0
Systems 4 0.5068 0.1267 19.1337 2.1754e-15 4 0.3474 0.0869 23.9247 2.9997e-19
Residuals 1612 10.6739 0.0066 - - 1612 5.8525 0.0036 - -
Total 2019 100.9094 - - - 2019 56.2861 - - -

Tukey’s HSD Test The Tukey’s HSD test confirmed the hypothesis of the importance of the LLMs
query expansion and reranking process: in Figure 12, the best model, represented by the French Llama3
Cohere model, shows a statistical difference in the performance, nDCG@10 and P@10, with the Mixtral
NoRerank model. Moreover, the query expansion process performed with the Llama3 model underlines
the strength of the model to reach out to the performances of the reranking systems. A possible future
direction can be related to an extensive analysis toward more specific research in the adoption of a



certain LLM architecture over another for the expansion of a query and the reranking. We leave this
aspect as an open issue and possible future work.
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Figure 12: Tukey’s HSD test for nDCG@10 and of P@10 in the French Short term collection between the
different systems.

5.2.4. French Test Results: Long Term collection

Table 10
Overall results on test set - French Collection - Long term. The Table reports the averages of the performances
measured.

August
System nDCG nDCG@10 MAP P@10 Recall@1000

Fr-Llama3-Pygaggle rerank 0.2981 0.2337 0.1752 0.1771 0.4620
Fr-Llama3-Cohere rerank 0.2979 0.2346 0.1741 0.1812 0.4620
Fr-Mixtral-Pygaggle rerank 0.2976 0.2329 0.1748 0.1768 0.4620
Fr-Llama3-NoRerank 0.2877 0.2188 0.1632 0.1692 0.4616
Fr-Mixtral-NoRerank 0.2863 0.2165 0.1615 0.1680 0.4614

Finally, we report the August results for the French collection. Table 10 reports the test results
obtained by each of the submitted systems on the test collection. Upon comparing these results with
those achieved in the training phase, once again, shown in Table 3, it is evident that the effectiveness of
the retrieval systems has experienced a slight decrease. However, notable values in terms of MAP and
nDCG have been attained, this time by the Llama3 Pygaggle model, particularly in comparison to those
obtained from the English collection. Once again we want to stress the fact that an underlying reason
for the better results of the French collections, as opposed to the English ones, may be attributed to the
usage of the original documents and queries in the former, while an automatic translation was applied
in the latter. Consequently, the quality of the translation significantly influences the results in the latter
case.

Moreover, the box plots in Figure 13 show comparable results to the ones provided in the Sections
above. However, it is possible to understand that this time, the mean values of the P@10 for the models
with query expansion and reranking based on LLMs are below the medians, hence showing a negatively
skewed distribution of such results.

ANOVA 2 Table 11 shows the results of the ANOVA 2 for nDCG@10 and P@10. In this case, there are
significant differences as the pvalue obtained from the two-way test is below the threshold 𝛼 = 0.05.
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Figure 13: Box plot of the nDCG@10 and of P@10 for the French Long term collection.

Table 11
Anova 2 Way for nDCG@10 and P@10 considering Topics and Systems for the French Long term collection.

nDCG@10 P@10

df SS MS F PR(>F) df SS MS F PR(>F)
Topics 1517 267.5830 0.1764 37.6977 0 1517 141.7925 0.0934 49.1038 0
Systems 4 0.4784 0.1196 25.5625 4.1955e-21 4 0.1936 0.0484 25.4237 6.4256e-21
Residuals 6068 28.3925 0.0047 - - 6068 11.5504 0.0019 - -
Total 7589 - - - 7589 153.5365 - - -
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Figure 14: Tukey’s HSD test for nDCG@10 and of P@10 in the French Long term collection between the
different systems.

Tukey’s HSD Test To conclude the statistical test analysis, we finally implemented a pairwise Tukey’s
HSD test to get important statistical differences between the models. However, conversely to the case
analyzed for the June French collection, cf. Figure 12, the no reranking models present a significant
difference with the reranking models in term of nDCG@10, while the test on the P@10 measure
underlines once again the robustness of the Llama3 query expansion process showing no differences
between the reranking with Cohere and Pygaggle.



6. Conclusions and Future Work

Our work proposed a method for Searching relevant documents based on query expansion and reranking
techniques that use the application of LLMs. Our system was able to achieve a MAP of 0.3127 and nDCG
of 0.5077 on the French data collection using LLama 3-70b and the Pygaggle-Luyu-20-w06 models for
query expansion and reranking.

We observed a significant enhancement in our study when employing the French dataset over the
English counterpart. It appears that translations may introduce inaccuracies and inconsistencies, im-
pacting the overall data quality. Moreover, the application of query expansion and reranking based on
LLMs shows a promising potential for further investigation considering the results obtained. Further-
more, further related works plan to enhance the effectiveness of our system, exploring the utilization
of next-generation LLMs for translation, query expansion and reranking, as they will offer superior
capabilities compared to current models in task comprehension and text generation capabilities. Finally,
experimenting with various combinations of stoplists and stemming methods could yield even more
favourable outcomes, optimizing our system’s performance.
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