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Abstract
This paper presents how the IRIS group of the Search Engines 2023/2024 course, held at the University of Padua,
developed its Information Retrieval system for the Task 1 - LongEval-Retrieval of the LongEval CLEF 2024 Lab,
aimed at developing an Information Retrieval (IR) system resilient to temporal evolution of Web documents.
To address this challenge, our approach focused on traditional techniques combined with innovative methods. In
particular, we focus on cross-encoder re-rankers and analyse Generate, Filter & Fuse (GFF) as a noise reduction
technique to improve performance and resilience of Query Expansion (QE) techniques and re-rankers.
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1. Introduction

Search engines are software systems designed to help users find the best answers to their information
needs, i.e. retrieving documents (web pages) that match as close as possible the information specified in
a textual web search query. Search engines have become an essential part of the internet experience,
and continue to evolve with it.

Research showed that the evolution over time of web documents may cause performance deterioration
in IR systems as time passes. From this observation, the goal of our work is to develop systems that are
resilient to performance losses over time.

Our systems are designed to retrieve documents from a corpus containing English and French files.
We use ad-hoc techniques such as parsing, tokenization, stopwords removal and stemming to build
a strong base foundation for our systems. Then, we explore novel approaches to query expansion
by leveraging Large Language Models (LLMs) in keyword generation and re-ranking with sentence
transformers, like in our implementation of the GFF technique.

Our paper is organized as follows: Section 2 introduces related work and our starting point for the
development of our systems. Section 3 describes in detail the whole developed system and its capabilities.
Section 4 shows our experimental setup. Section 5 discusses the experimental process we utilized to
select our best systems, discussing useful insights and providing the results of our final systems on the
train set. Section 6 introduces the results of our best systems in the test sets, finally providing deep
analyses of their overall performances across time lags. Section 7 wraps-up the discussion by reporting
statistical analysis to evaluate the effectiveness of our techniques and final systems. Section 8 draws
our conclusions and outlooks for future work.
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Figure 1: High-level view of the workflow of our systems. The dotted boxes indicate optional components that
can be used or not by specifying them in the system parameters.

2. Related Work

The basic structure of our systems has been provided by Professor Ferro in the Search Engines course
held at the University of Padua, it consists of an implementation of Apache Lucene components that we
then adapted to our task and from which we built our systems on.

Additionally, we experimented with an adaptation of the GFF technique proposed by Li et al, 2023, v1
[1], from which we also took inspiration for the filtering mechanism used in our Query to Keyword (Q2K)
implementation.

3. Methodology

In this section we describe the methodology adopted for the development of our system.
Our workflow began with creating a stable version of the system that could work with both English

and French documents. After trying a few systems for both collections, we observed that those dealing
with the French collection performed better, so we decided to focus on them. Since the English corpus
consists of machine translations of the French one, the lower starting-point performance may be
motivated by some translation errors & context loss.

Figure 1 represents an high-level view of the workflow of our systems, in the rest of this section we
delve into the important features of the components.

3.1. Noise elimination: Parser components

Our systems implement a parser designed to handle content cleaning of documents, such as removing
emojis, URLs, HTML, and code, based on various flags. Extensive details about our parser component
can be found in Appendix A.

URLs Parser: Along with the above, a more robust URL parser, named URLParser, has been devel-
oped; it provides parsing for the docID to URLs mappings file, storing them in a hash map by segmenting
the text of the URLs into words, removing prefixes and symbols specific to the URLs syntax. In particular,
using URLParser, we removed all the syntactic constructs typical of URLs, such as extensions like
.html, .php, .pdf, symbols like #, -, =, and split them in order to divide each element with a space.



Figure 2: High-level description of the searcher component, responsible of building the queries and retrieving
the associated relevant documents.

3.2. Text processing: Analyzer component

In our systems, text processing is handled by the analyzer component, whose role is to apply a selection
of techniques such as tokenization, stemming, stopword removal, and more. Extensive details about
our Analyzer component can be found in Appendix B.

3.3. Storing documents & URLs: Indexer component

In order to store the documents and allow fast retrieval at query time, we implemented an inverted index
built by the DirectoryIndexer class, which is responsible for calling the Parser and Analyzer, re-
trieving documents processed by these components, and indexing them as instances of ParsedDocument.
Additionally, if URLs support is enabled, the class also handles the mapping of documents to URLs and
the storage of relative information in the inverted index.

BM25 The similarity function we selected for the first-stage retrieval is the BM25, as provided by the
off-the-shelf Lucene’s BM25Similarity [3], which allowed us to have a strong baseline and to move
our focus to the novel techniques in the re-ranking phase.

3.4. Retrieving relevant documents: Searcher component

Figure 2 shows the basic workflow of our Searcher component.
The application of the URL parser (see Section 3.1) is motivated by the observation that many users

search for partial URLs, e.g. "emplois.inclusion.beta.gouv.fr".
After a first-stage retrieval step through BM25, the collection of retrieved documents may go through

a re-ranking phase, to increase the quality of the order of the matches. The retrieve &/or re-rank
phase can also be performed using more advanced techniques, such as our implementation of the GFF
framework [1] and Q2K.

3.4.1. Re-ranker

With document re-ranking, we refer to the process of recomputing scores for a small subset of the
retrieved documents, e.g. 1000, by a first stage retriever (in our case, BM25).

In particular, we focus our efforts on computing query-document similarities using multilingual
bi-encoders and cross-encoders provided by the Python library Sentence Transformer [4].

We test two models:

• Cross-encoder: mmarco-mMiniLMv2-L12-H384-v1 [5], from now on referred to as MMARCO.



• Bi-encoder: paraphrase-multilingual-MiniLM-L12-v2 [6], from now on referred to as SBERT. For
this model, we will produce two subsystems; see paragraph 3.4.1-"Query - Document similarity".

Using these models, we compute the new scores for the documents retrieved by BM25 with the
following formula:

scorere-ranked = scoreBM25 + 𝛼 · simQ-D

Where 𝛼 is the weight parameter, specified by the ScoreOperation parameter of the searcher:

• ADD: take as 𝛼 the value of the ManualScoreWeight parameter.
• MAXMIN_ADD: 𝛼 is calculated on each query using the following formula:

𝛼 = max
doc∈𝑆BM25

doc.score − min
doc∈𝑆BM25

doc.score

where 𝑆BM25 is the set of documents retrieved by the BM25 first-stage retriever for each query.

Query - Document similarity simQ-D: Sentence transformers models, like the two we implemented,
have a limited capacity in the number of tokens that they can receive in input. Taking as an example the
MMARCO cross-encoder with parameter max_length = 128, if it receives in input a pair of strings
whose total token count is greater than 128, it truncates both streams of tokens down to a maximum
total sum of 128.

Taking into account this behaviour, we implemented a document-splitting solution by using a French
model pre-trained in Apache OpenNLP Sentence Detector [7] to split each document at re-ranking time
into a list of sentences.

Given the document as a list of sentences, we compute the query-document similarity by the following:

• SBERT, as a bi-encoder, produces vector embeddings of an input string, allowing us to build two
subsystems:
We first get the vector embedding of the query, then:

– SBERTSUM: we get the document vector embedding as the sum of the sentence embeddings
divided by the number of sentences; then we score the query-document similarity by cosine
similarity between the query and document embedding.

– SBERTAVERAGE: we get the list of sentence embeddings in order to compute a list of
query-sentence similarities by cosine similarity, and, finally, we score the query-document
similarity by taking the average of the query-sentence similarities.

• MMARCO, as a cross encoder, takes in input two lists of strings and produces a matrix of
similarities between pairs from the two lists: we compute the query-document similarity by first
producing a list of query-sentence similarities through the model (first input list contains only
the query, while the second contains all the sentences), and then aggregate the results into the
final query-document similarity score by taking the average of the query-sentence similarities.

An useful intuition on the different methods is given in Figure 3.

Summarizer Another technique we implemented is summarization of long documents for re-ranking
by using the Large Language Model (LLM) mistralai/Mistral-7B-Instruct-v0.2 [8]. Anyway, this technique
has proven completely unfeasible for our systems, since the overhead time required to summarize
documents, even a small fraction of them, is excessive compared to the potential benefit the technique
could have brought.

3.4.2. Query Expansion: Synonyms & Query2Keyword

Query expansion refers to the class of techniques used to rewrite queries by expanding their information
content to better match relevant documents at search time.



Figure 3: Graphical representation of the difference between bi-encoders and cross-encoders [6].

Synonyms: Given the user’s query, we produce synonyms of the words composing the query and
add both the original query and a weighted synonym BoostQuery to a Lucene’s SynonymQuery,
that will act as our original query to retrieve documents for. Analysing the results of the synonyms
generation process, we observed that the produced synonyms are of low quality and dampen the overall
performance of the systems, thus in our final systems this technique is not used.

Q2K: As a query expansion technique, we focus our effort on the Q2K technique using LLMs with
few-shot prompting to generate a set of keywords from a query that might be relevant to the user’s
information needs.

Our query to keyword (q2k) implementation can be divided into the following steps:

1. Generate: for each query, we use the LLM to generate approximately 10 keywords related to that
query. The process of keyword generation is repeated 3 times for each query, since LLM-based
keyword generation methods involve stochasticity, and we want to filter out noise in the next
step. In the end, we obtain up to approximately 30 keywords per query.

2. Filter: Given the query and its list of keywords, we first produce the tokenization of the query
through our Analyzer, then we also tokenize each keyword, and if its tokens are different from
those forming the query, we add the keyword to a frequency map. Finally, from the frequency
map we take the top-k keywords by frequency (where k is specified by the parameter QETopK).

3. Boost: Given the top-k keywords by frequency, we produce a Lucene’s BooleanQuery by adding
at first the user’s query and then each keyword as a Lucene’s BoostQuery with weight specified
by the parameter keywordsWeight.

As LLM, we used the model mistralai/Mistral-7B-Instruct-v0.2 [8] with a few-shot prompt with
examples taken from MSMARCO passages. For the French system, we translated the examples into
French to achieve better quality keywords. The French and English prompts used are reported in
Appendix C.

Our system allows QE by Q2K to be performed both on-the-fly at search time or by using a pre-
processed set of expanded queries. To generate keywords on-the-fly, we provide a Python server
mistralai_server.py. To generate the pre-processed queries file, we provide the MistralKWGF.py
Python script that adds to each query, given in a TREC-format TSV file, the list of keywords generated
by the LLM.

Our q2k system is provided with support for both English and French queries, but, as already
highlighted, we advise to focus on French, as it significantly outperforms its English variant.

Lastly, in case a system with URLs support is run with Q2K, the top-𝑘 keywords are also added as
weighted URLqueries.



3.4.3. GFF: Generate, Filter & Fuse

Our system implements a modified version of the GFF [1] framework, adapted to our use case with
some specific tweaking.

The strength of this technique lies in two aspects:

• The ability to generate high-quality keywords, leveraging proven effective techniques such as
Q2K by LLMs and keyword filtering.

• The ability to fully utilize the increased performance provided by cross-encoder re-rankers
(compared to bi-encoders), thanks to the high quality of keywords and the fusion of corresponding
expanded queries results.

Generate: The first step is to generate keywords for a user’s query using LLMs; this is done by using
the same Q2K implementation described in the Generation step of Section 3.4.2.

Filter: The second step consists of the following:

1. Production of the top-𝑘 keywords: as already described in the Filtering step of Section 3.4.2, we
produce a list of top-𝑘 keywords, where 𝑘 is specified by the QETopK parameter.

2. Creation of expanded queries: we take the list of top-𝑘 keywords and produce a list of 𝑘
Lucene’s BooleanQuerys, where each expanded query is built from adding the original query
and a BoostQuery, containing the keyword with weight keywordWeight, to the relative
BooleanQuery.

Fuse: Finally, the fuse step consists of the following:

1. Search: We perform BM25 on the original query and store the retrieved documents in a list
ordered by score 𝐿og, then we search each expanded query, and store the result in a ordered list
𝐿𝑘, where 𝑘 refers to the 𝑘-th expanded query.

2. Re-rank: With the objective of re-ranking the maximum number of documents, and observing
that there is often a significant overlap in the results from the original and expanded queries, we
maintain a hashmap to record the similarities between the original query and the documents that
appear in 𝐿og and each 𝐿𝑘. This hashmap has the role of speeding up computation by reusing
similarities that have already been computed; this implies a noteworthy alteration from the
original GFF framework [1], since we score the document similarities in each 𝐿𝑘 to the original
query instead of the respective expanded query.
We first populate the hash map by re-ranking the first maxDocumentsToRerank documents in
𝐿og and store the similarities returned by the chosen re-ranker. Then, given an internal document
counter starting at GFFLeftoverDocumentsLimit, for each 𝐿𝑘 in frequency order, we re-rank
the documents that have already been scored for similarity, then compute and store similarities
for first-time appearing documents up to what is left in the document counter, finally re-ranking
them; in case the counter goes under GFFMinimumDocumentsToRerank, for each subsequent𝐿𝑘 ,
scores for new documents are computed up to GFFMinimumDocumentsToRerank documents.
Finally, after updating the scores for each 𝐿𝑘, the list is ordered by decreasing document score.
To get a better grasp of the hashmap population process, let us take as an example:

• maxDocumentsToRerank = 1000,
• GFFLeftoverDocumentsLimit = 400,
• GFFMinimumDocumentsToRerank = 100

We re-rank 𝐿og for the first 1000 documents, then for each 𝐿𝑘 (in order of keyword frequency),
we compute the query-document similarity for each document that has not already been scored
and store its similarity score by up to the first 400 new documents; After 400 new documents
scored among expanded queries’ lists, we score exactly up to 100 not-already-seen documents
for each of the remaining lists.



Figure 4: An intuitive representation of our implementation of the GFF[1] framework.

3. Weight: We associate with each 𝐿𝑘 a weight 𝛼𝑘 using the reciprocal rank [9] of the original top-1
document in this ranking list:

𝛼𝑘 =
1

Rank(𝑑+, 𝐿𝑘)

where Rank(𝑑+, 𝐿𝑘) is the rank of the top-1 document retrieved for the original query in the
candidate list 𝐿𝑘 associated with the expanded query 𝑘.

4. Fuse: We compute new scores for all the documents retrieved, using the following formula:

scorefinal = scoreog +

QETopK∑︁
𝑘=1

𝛼𝑘scorek

Where scoreog is the document score in 𝐿og and scorek is the score of the document in 𝐿𝑘; the
default value for both is 0 if they do not appear in the respective list.
Finally, we take the top-MaxDocumentsToRetrieve in decreasing score order.

An high-level intuition on the basis of the above steps is given in Figure 4.
Lastly, in case a system with URLs support is run with GFF and the parameter excludeURLsFromExpansion

is off, then the 𝑘 keywords are also added as weighted URLqueries when retrieving 𝐿𝑘.

3.4.4. Available parameters

The list of parameters for our Searcher is available in the file SearcherParams.xml and, grouped by
category, includes the following:

• General:

– ogQueryClause: what Lucene’s BooleanQuery clause to use for the original user query.
– useURLs: whether to search for the user’s query in the documents URL field or not;

creates additional URLqueries added to the final BooleanQuery. It must be coupled with a
URL-supporting index, refer to Section 3.3 & Section 3.1.

– urlsWeight: weight to be assigned to the URLqueries as instances of Lucene’s BoostQuery.



• Reranker:
Refer to Section 3.4.1 for more details.

– reranker: which re-ranker model to use, requires the corresponding <model>-server.py
up and running. If the field is left empty, the re-ranking phase is skipped. Options are
MMARCO, SBERTAVERAGE, SBERTSUM.

– maxDocumentsToRerank: upper bound on the number of documents to be re-ranked
after the first-stage search step.

– splitDocuments: whether to split documents into sentences to provide as inputs to the
re-ranker models.

– scoreOperation: what formula to use for re-ranking documents. Possible values are
ASSIGN, ADD, MAXMIN_ADD but, since ASSIGN provided very poor performances, it is
omitted from this work.

– scoreManualWeight: weight to be used in the ADD score operation.
– useSummarizer: whether to invoke mistralai/Mistral-7B-Instruct-v0.2 [8] to summarize

long documents (requires mistral_server.py up and running).
– tokenThreshold: the minimum number of tokens in a document for the summarizer to be

invoked.

• Synonyms:
Refer to Section 3.4.2 for more details.

– useSynonyms: whether to generate synonyms for the query.
– WordNetSynonymsPath: path to the wordnet file for synonyms generation.
– WordNetSynonymsWeight: weight to be assigned to the synonyms as a Lucene’s BoostQuery.

• Q2K with LLMs:
Refer to Section 3.4.2 for more details.

– queryExpansionTechnique: what query expansion technique leveraging LLMs to use,
the only possibility implemented is Q2K. The system does not use Q2K if the field is left
empty.

– useProprocessedQueries: whether to use a preprocessed TSV format file containing all
expanded queries.

– preprocessedQueriesPath: the path to the preprocessed expanded queries file.
– QETopK:

∗ Standard Q2K: the number of keywords to add the the original query.
∗ GFF: the number of keywords to use in the framework; refer to Section 3.4.3 for more

details.
– keywordsWeight: weight to be assigned to the keywords as a Lucene’s BoostQuery.
– rerankWithKeywords: whether to concatenate the original query with its related key-

words in the re-ranking phase. Since this reduced the systems performances, for the rest of
this work we implicitly assume that it is set to False/0.

• GFF:
Refer to Section 3.4.3 for more details.

– useGFF: whether to use the adapted GFF framework implementation.
– GFFLeftoverDocumentsLimit: upper bound counter for new documents to be re-ranked

from the expanded queries first-stage search results.
– GFFMinimumDocumentsToRerank: minimum number of new documents from the

first-stage search results of expanded queries to always be re-ranked.
– excludeURLsFromExpansion: whether to exclude URLqueries of the keywords in the

expanded queries.



4. Experimental Setup

The goal of the project was to create one or more information retrieval systems that, for each given
query, returned the most relevant documents related to that query. For that purpose, we needed:

• A repository that contained our IR systems, available at https://bitbucket.org/upd-dei-stud-
prj/seupd2324-iris/src/master/.

• One or more machines to develop and run our systems, in particular the specifics of the machines
we used are reported in Table 1.

Table 1
Machines used to develop and run our systems.

# OS CPU RAM GPU

1 Windows 11 Pro AMD Ryzen 7 3750H 16GB 2400MHz NVIDIA GeForce GTX 1660
2 Windows 11 Pro AMD Ryzen 5 6600H Crucial DDR5 16GB 4800MHz NVIDIA rtx 3050 4GB
3 Windows 11 Pro 13th Gen Intel Core i9-13905H 32GB LPDDR5X-6400MHz NVIDIA GeForce RTX 4060 8GB
4 Windows 11 Pro AMD Ryzen 7 3700x CORSAIR Vengeance 32GB 3600MHz NVIDIA rtx 2060

4.1. Data description

LongEval released two sets of data containing queries and documents: a Training Collection and a Test
Collection.

4.1.1. Train Collection

The train collection was given with the purpose of testing different techniques and choosing the systems
with best results.
The detailed description is given by the LongEval website: "The collection consists of queries and
documents provided by the Qwant search Engine (https://www.qwant.com). The queries, which were
issued by the users of Qwant, are based on the selected trending topics. The documents in the collection
were selected with respect to these queries using the Qwant click model. Apart from the documents
selected using this model, the collection also contains randomly selected documents from the Qwant
index. All the data were collected over January 2023. In total, the collection contains 599 train queries,
with corresponding 9,785 relevance assessments coming from the Qwant click model. The set of doc-
uments consist of 2,049,729 downloaded, cleaned and filtered Web Pages. Apart from their original
French versions, the collection also contains translations of the webpages and queries into English.
The collection serves as the official training collection for the 2024 LongEval Information Retrieval Lab
(https://clef-longeval.github.io/) organised at CLEF." [10]

To summarize the collection details:

• Collection 2023_01

– Number of queries: 599;
– Number of documents: 2049729.

Finally, CLEF also provided us also with the DocID to url mappings for the train collection.

4.1.2. Test Collection

The test collection was given with the purpose of running our systems through a larger set of queries
and documents to produce the final results.
The detailed description is given by the LongEval website: "The collection consists of queries and docu-
ments provided by the Qwant search Engine (https://www.qwant.com). The queries, which were issued

https://www.qwant.com
https://clef-longeval.github.io/
https://www.qwant.com


by the users of Qwant, are based on the selected trending topics. The documents in the collection were
selected with respect to these queries using the Qwant click model. Apart from the documents selected
using this model, the collection also contains randomly selected documents from the Qwant index. All
the data was collected over June 2023 and August 2023. In total, the collection contains 1,925 test queries.
The set of documents consist of 4,321,642 downloaded, cleaned and filtered Web Pages. Translations
of the webpages and queries into English will be added when available. The collection serves as the
official test collection for the 2024 LongEval Information Retrieval Lab (https://clef-longeval.github.io/)
organised at CLEF." [11]

To summarize the collections details:

• Collection 2023_06

– Number of queries: 407;
– Number of documents: 1790028.

• Collection 2023_08

– Number of queries: 1518;
– Number of documents: 2531614.

Finally, CLEF provided us also with the DocID to url mappings for the test collections.

4.2. Evaluation measures

To select the best results, the following evaluation measures have been taken into account: Precision
at Document Cut-off (P@k), Mean Average Precision (MAP), Recall at Document Cut-off (R@k) &
Normalized Discounted Cumulated Gain (NDCG), with a particular focus on the latter.

Our measures were computed through trec_eval [12], executed on the runs produced by our IR
systems.

To aid comparisons between runs, we also created a Jupyter notebook implementing the Ranx [13]
library, which allows to produce comparison tables for the above measures.

5. Experimental results: tuning alternatives on training data

In this section, we provide a summary of the experiments that lead us to choose our final runs to submit,
as well as related observation and insights extracted from them.

The name of each system is constructed starting from runID by appending the following flags:

• _M - MUST clause is applied to the original query when added to the final BooleanQuery.
• _url_w𝑋 - the system uses URLs support; 𝑋 refers to the weight applied to the URLqueries. If

the system also applies GFF and the parameter excludeURLsFromExpansion is switched on,
then also NK is appended.

• _SYN_w𝑋 - the system uses synonyms in QE; 𝑋 refers to the weight applied to the synonym in
the SynonymQuery.

• _GFF@𝐾_w𝑋 - the system uses GFF with 𝐾 keywords weighted at 𝑋 .
• _Q2K@𝐾_w𝑋 - the system uses Q2K with 𝐾 keywords weighted at 𝑋 .
• _reranker@𝑌 _ScoreOperation_w𝑍 - use reranker as the re-ranker model for up to

the first 𝑌 documents retrieved, using as formula ScoreOperation with weight 𝑍 , if needed.

https://clef-longeval.github.io/


5.1. Base system & URLs

The first system we developed is the baseSystem: in this scenario we do not consider any model or
framework in the search phase and only resort to the base first-stage BM25 retrieval, thus the system
performance is purely result of the quality of the Indexing phase. By looking at the Table 2, we can
notice that, at this level of complexity, the URLs are not improving the overall performance of the
baseline.

From this point on, we will treat the baseSystem as a reference point for the systems we are going to
describe, so that we can detect the improvements gained by enabling the different techniques during
the Searching phase.

Table 2
Overall effectiveness of the base systems with and without the URL support. The best results for each
measure are highlighted in boldface, however the use of URLs does not bring any performance changes.

Model NDCG MAP R@100 R@200 R@500 R@1000

baseSystem 0.47233 0.26868 0.75861 0.82598 0.88151 0.91686
url_w10.0 0.47233 0.26868 0.75861 0.82598 0.88151 0.91686
url_w4.0 0.47233 0.26868 0.75861 0.82598 0.88151 0.91686
url_w5.0 0.47233 0.26868 0.75861 0.82598 0.88151 0.91686

5.2. Q2K base: parameters fine-tuning

In order to choose the most suitable base run for Q2K, we focused on the recall@1000 value. This choice
was crucial as in the successive stages, we planned to use reranking on all the 1000 documents retrieved.
Therefore, we wanted to favour the runs with higher recall values.

The results can be found in Table 3; analyzing the performances for different number of keywords
and keyword weight, we observed a decrease in performance as the number of keywords increased,
leading us to opt for a single additional keyword. Additionally, we observed that adding URLs support
actually reduces the value of Recall@1000.

Based on these findings and on the Recall@1000 values returned, we concluded that the optimal choice
was Q2K@1_w0.16, which sets the number of keywords per query to concatenate at 1 and the keyword
weight at 0.16. This configuration improves recall compared to other combinations of keywords and
weights and, in particular, compared to the base system.

Table 3
Overall effectiveness of the Q2K base systems with and without the URL support. The best results for
each measure are highlighted in boldface, in particular the focus is on recall@1000.

Model NDCG MAP R@100 R@200 R@500 R@1000

baseSystem 0.47233 0.26868 0.75861 0.82598 0.88151 0.91686
M_Q2K@1_w0.16 0.46513 0.26110 0.75599 0.82455 0.88496 0.92045
Q2K@1_w0.12 0.46763 0.26390 0.75732 0.82689 0.88528 0.92066
Q2K@1_w0.14 0.46647 0.26198 0.75394 0.82391 0.88480 0.92082
Q2K@1_w0.16 0.46406 0.25906 0.75483 0.82256 0.88539 0.92165
Q2K@3_w0.12 0.45787 0.25306 0.75054 0.82232 0.88453 0.91782
Q2K@3_w0.16 0.45045 0.24488 0.74120 0.81947 0.88532 0.91733
url_w1.4_Q2K@1_w0.16 0.46750 0.26314 0.75234 0.82300 0.88259 0.91996



5.3. GFF base: parameters fine-tuning

Being GFF one of the main techniques we implemented, we wanted to find the parameters’ combination
that best improves the recall@1000, in order to then improve the overall performance of the system
after re-ranking.

First of all, we worked on the number of keywords and their respective weights in the expanded
queries to determine the best combination. Then, we tested it on the systems with URLs support to
determine their effect when combined with the GFF framework.

The results are presented in Table 4 and we observed the following:

• The combination with higher recall@1000 was the one with 12 keywords and weight 0.162. In
general, we observed that the higher the number of keywords, the better the performance.

• Given the best combination of number of keywords and weights, we were able to slightly increase
the Recall@1000 by using the URLs-supporting system with URLqueries weight 1.4.

• Adding the keywords to the URLqueries of the expanded queries provided better performance
than not adding them, highlighting their importance in URL-matching.

In conclusion, we decided to use systems GFF@12_w0.162 & url_w1.4_GFF@12_w0.162 in the next
step involving re-ranking, in order to improve the nDCG.

Table 4
Overall effectiveness of the GFF base systems with and without the URL support. The best results for
each measure are highlighted in boldface, in particular the focus is on recall@1000.

Model NDCG MAP R@100 R@200 R@500 R@1000

baseSystem 0.47233 0.26868 0.75861 0.82598 0.88151 0.91686
GFF@12_w0.16 0.47512 0.27126 0.76085 0.82584 0.88438 0.91792
GFF@12_w0.162 0.47490 0.27128 0.76019 0.82666 0.88411 0.91890
GFF@12_w0.1625 0.47478 0.27069 0.75910 0.82441 0.88364 0.91880
GFF@3_w0.162 0.47182 0.26844 0.75803 0.82499 0.88517 0.91861
url_w1.4NK_GFF@12_w0.162 0.47467 0.27072 0.76028 0.82478 0.88335 0.91808
url_w1.4_GFF@12_w0.162 0.47497 0.27130 0.75959 0.82567 0.88380 0.91913
url_w1.5_GFF@12_w0.162 0.47528 0.27085 0.75878 0.82635 0.88359 0.91851
url_w1.6_GFF@12_w0.162 0.47477 0.27070 0.75940 0.82588 0.88404 0.91860

5.4. Re-ranker@100: test performance of re-ranker models

One of the many experiments we run was testing our base system against our different re-ranker models
and the many score operations on a small subset, i.e. 100, of the documents retrieved by the base
system.

The goal of these experiments was to get a general intuition on the best performing re-ranker models
to be used in our final systems; Additionally, we were also interested in proving the strength of the GFF
framework when presented with a cross-encoder for re-ranking.

In particular, we observed how Recall & Precision changed under the threshold of 100 documents, as
well as changes in the nDCG.

The results are presented in Table 5; the most important resulting observations are the following:

1. The bi-encoder approaches, SBERTAVERAGE & SBERTSUM, degrade performances by a signifi-
cant margin in all the metrics compared to the base system, even with GFF; the most effective
document-to-sentences-to-document embedding aggregation technique is ADD, while the score
operation is ADD. This behaviour calls for more in-depth studies on its origin, raising the following
research points:

• Different models may be needed and fine-tuning may prove successful.



• Bi-encoders may need larger documents pool to prove effective.
• Multilingual bi-encoder models might not generalize well to mainly monolingual documents.
• Bi-encoders may not be as effective as BM25Similarity in scoring web pages, maybe due

to their noisy nature.
• Alternative re-scoring formulas might be needed, to better capture the similarity between

queries and documents when applied on top of, or instead of, first-stage BM25Similarity
retrieval.

2. As expected, the cross-encoder approach to re-ranking with MMARCO proves really successful,
even on the small subset of 100 documents. This confirms their positive effects on last-stage
ranking and their increased performance compared to bi-encoders[6].

3. The best value for the max length of the query-sentence pairs tokens is 128.
4. On the cross-encoder, the ADD score operation at weight 5 seems to perform better overall than

the MAXMIN_ADD. However, the performance difference is small and the MAXMIN_ADD performs
better in some cases, like the GFF system shows. Given the small pool of documents re-ranked,
we decided to keep both the operations in our final runs, since the two may perform differently
when presented with different conditions.

5. As expected, the GFF framework significantly increases the performance of cross-encoders and,
given the small pool of documents the re-ranking has been applied on, we expect to observe even
better performances when that pool is increased.

On a final note, we specify that the GFF systems have been run with parameters:

• GFFLeftoverDocumentsLimit = 100,
• GFFMinimumDocumentsToRerank = 100.

Table 5
Overall effectiveness of our re-ranker models on a small portion of the retrieved documents. The best
results for each measure are highlighted in boldface, in particular the focus is on nDCG and the changes
in Precision-Recall brought by re-ranking.

Model NDCG MAP P@5 P@10 P@50 P@100 R@50 R@100

baseSystem 0.47233 0.26868 0.26711 0.22387 0.09653 0.05549 0.66408 0.75861
128GFF@12_w0.162_MMARCO@100_ADD_w5 0.49927 0.30340 0.30250 0.25075 0.10167 0.05674 0.70024 0.77650
128GFF@12_w0.162_MMARCO@100_MAXMIN_ADD_w5 0.50586 0.31018 0.30150 0.25643 0.10371 0.05895 0.71572 0.80665
128MMARCO@100_ADD_w5 0.49906 0.30496 0.30017 0.25559 0.10080 0.05549 0.69325 0.75861
96MMARCO@100_ADD_w5 0.49673 0.30123 0.29716 0.25225 0.10030 0.05549 0.69064 0.75861
64MMARCO@100_ADD_w5 0.49654 0.29962 0.29716 0.24691 0.09990 0.05549 0.68937 0.75861
MMARCO@100_MAXMIN_ADD_w5 0.49709 0.30254 0.29783 0.25426 0.10070 0.05549 0.69259 0.75861
SBERTAVERAGE@100_ADD_w5 0.45169 0.24816 0.23973 0.21135 0.09452 0.05549 0.65156 0.75861
SBERTAVERAGE@100_MAXMIN_ADD_w5 0.44806 0.24269 0.23472 0.20601 0.09459 0.05549 0.65270 0.75861
SBERTSUM@100_ADD_w5 0.45612 0.25050 0.24341 0.20417 0.09279 0.05549 0.64173 0.75861
SBERTSUM@100_MAXMIN_ADD_w5 0.45044 0.24258 0.23472 0.20217 0.09302 0.05549 0.64368 0.75861
GFF@12_w0.162_SBERTSUM@100_ADD_w5 0.45629 0.25032 0.24674 0.20484 0.09249 0.05514 0.63921 0.75509

5.5. Re-ranker@1000: final systems with MMARCO@1000

To produce our final systems, we applied re-ranking to all the 1000 retrieved documents, so that we
could analyze which system produces the best performance in the nDCG metric.

As described in the previous section, we chose the MMARCO cross-encoder approach with max
length of the query-sentence pairs tokens at 128; we use both ADD and MAXMIN_ADD as score operation
to see if, on a bigger set of documents, their results were still similar.

Starting from these configurations, our goal was to show the improvement of nDCG at a higher
number of re-ranked documents on our base system, on the GFF framework and when applying Q2K
technique for QE.



Since we observed that the use of the URLs combined with GFF led us to small improvements of the
overall performance, we decided to also use a model with score operation ADD in order to try to obtain
further improvements in performance.

The results of our final systems are presented in Table 6.
By comparing the systems we observe that:

1. As we have seen for the re-ranking@100, the difference between the ADD score operation at
weight 5 and the MAXMIN_ADD is not significant. Depending on whether the system involves
Q2K or other techniques, the score operations may lead to better or worse results with respect to
the other.

2. The re-ranking on all the set of retrieved documents led the systems to gain additional overall
performance.

3. The use of the URLs-supporting GFF system improves the quality of ranking since it moves in a
higher position documents that are relevant.

Table 6
Overall effectiveness of the Re-ranker@1000 with MMARCO@1000 systems with and without the URL
support. The best results for each measure are highlighted in boldface, for these systems the focus is on
the overall measures in particular on nDCG.

Model NDCG MAP P@5 P@10 R@200 R@1000

baseSystem 0.47233 0.26868 0.26711 0.22387 0.82598 0.91686
GFF@12_w0.162_MMARCO@1000_ADD_w5 0.50897 0.31311 0.30083 0.25893 0.86591 0.91978
GFF@12_w0.162_MMARCO@1000_MAXMIN_ADD_w5 0.50677 0.31073 0.30217 0.25659 0.86358 0.91916
MMARCO@1000_ADD_w5 0.50812 0.31321 0.30484 0.25977 0.86294 0.91686
MMARCO@1000_MAXMIN_ADD_w5 0.50568 0.30980 0.30184 0.25860 0.86432 0.91686
Q2K@1_w0.16_MMARCO@1000_ADD_w5 0.50582 0.31030 0.29850 0.25760 0.86391 0.91930
Q2K@1_w0.16_MMARCO@1000_MAXMIN_ADD_w5 0.50612 0.30892 0.30050 0.25710 0.86471 0.92082
url_w1.4_GFF@12_w0.162_MMARCO@1000_ADD_w5 0.50906 0.31325 0.30250 0.25860 0.86441 0.91956

6. Results and Discussion

In this section, we provide a discussion on the results of our systems and their overall performance,
with a particular focus on the temporal evolution across the training January collection and the two
test collections of June and August.

Considering the results discussed in Section 5, our 5 final submitted systems to Task 1 - LongEval-
Retrieval of the LongEval CLEF 2024 Lab are the following:

1. url_w1.4_GFF@12_w0.162_MMARCO@1000_ADD_w5,
2. GFF@12_w0.162_MMARCO@1000_ADD_w5,
3. GFF@12_w0.162_MMARCO@1000_MAXMIN_ADD_w5,
4. MMARCO@1000_ADD_w5,
5. Q2K@1_w0.16_MMARCO@1000_MAXMIN_ADD_w5.

For the construction of system IDs and the absolute performance measures of the systems on the
January training data, refer to Section 5.

6.1. Results on test data

The LongEval-Retrieval Lab provided us with the results of our systems on the test sets of June and
August, Table 7 reports them and allows us to follow with some considerations.

First of all, we notice that almost all systems suffered a loss of approximately 0.1 in nDCG and 0.07
in MAP across the time lags; this behaviour is coherent with the performance degradation over time of
web IR systems and will be the subject of deeper analysis going forward in this work.



Another interesting observation that arises is the change in "ranking" of our systems, focusing on
nDCG, we can observe the following:

• June: the ranking does not change much, except for system 3,
GFF@12_w0.162_MMARCO@1000_MAXMIN_ADD_w5, slightly outperforming system 4,
MMARCO@1000_ADD_w5.

• August: the ranking between systems shows a noteworthy change, even though still being slightly
apart from each other; this might be an indicator of the need to update the systems, since the
temporal evolution of the collection seems to "flatten" the differences between systems over time.

Table 7
Effectiveness of the final systems on both test sets. The best results for each measure are highlighted in
boldface, for these systems the focus is on the nDCG values for June and August.

# Model NDCG June NDCG August MAP June MAP August

1 url_w1.4_GFF@12_w0.162_MMARCO@1000_ADD_w5 0.39229 0.29340 0.24401 0.17062
2 GFF@12_w0.162_MMARCO@1000_ADD_w5 0.39222 0.29359 0.24391 0.17063
3 GFF@12_w0.162_MMARCO@1000_MAXMIN_ADD_w5 0.39188 0.29339 0.24207 0.17041
4 MMARCO@1000_ADD_w5 0.39131 0.29326 0.24325 0.17056
5 Q2K@1_w0.16_MMARCO@1000_MAXMIN_ADD_w5 0.39022 0.29356 0.23984 0.17077

6.2. Overall performance over time

Given all the pieces collected so far, we can now discuss the results of our systems in depth. Figure 5
presents the performance of our final systems on the 3 provided time lags in the form of box plots.

First of all, we want to discuss the effect of temporal evolution of the collection that emerges when
comparing the box plots of our systems across the 3 time lags. In particular, we focus this discussion on
the nDCG values.

The deterioration in performance of our systems over time can be attributed to the evolution of the
collection across time lags: the more time passes, the more "new" queries appear for which our systems
are unable to consistently retrieve relevant documents and rank them highly. This idea is supported by
the following observations:

• Across time lags, the mean performance values decrease significantly and their distribution across
the queries are progressively more skewed to lower values; additionally, the presence of outliers
increases as time passes.

• Looking at the evolution of interquartile ranges among time lags, we observe that at January and
August the distribution of nDCG values across queries are focused around the mean, while at
June the distribution suffers a greater dispersion.

These observations imply that, as time passes, our systems are still able to perform well for certain
queries, but their number decreases significantly over time, indicating the presence of queries for which
we do not have relevant-enough documents to retrieve. In particular, we can observe that:

1. At January, the performance is good and consistent: for each query we retrieve relevant documents
and rank them highly.

2. At June, the performance suffers a significant overall loss and a greater dispersion across queries
occur: now for a portion of queries the performance becomes poor and, for another portion, it
keeps being as good as January, suggesting a sort of balance between "new" poor-performing
queries and well-performing ones.

3. At August, the overall performance deteriorates significantly and the distribution focuses around
low nDCG values across most queries: now the number of "new" queries for which the systems
do not perform well increases significantly and dominates the mean performances, leaving a few
well-performing outliers.



(a) Final systems nDCG performance on January train
set.

(b) Final systems MAP performance on January train
set.

(c) Final systems nDCG performance on June test set. (d) Final systems MAP performance on June test set.

(e) Final systems nDCG performance on August test set. (f) Final systems MAP performance on August test set.

Figure 5: Report on overall performance of our final systems on the January train set, June test set and August
test set. For the system ID, refer to the numbers associated to the submitted runs discussed in section 5.5.

Finally, looking at the overall results, we want to spend some words on the need for updates of the
systems over time: while at June it can be argued that the overall performance is still "good enough",
at August the performance has deteriorated to such a point that an update of the system is inevitable;
in particular, we suggest that good indicators for the need to update the systems can be found in the
relation between interquartile range and mean performance values, since they allow to control the
overall performance and its dispersion across queries.



6.3. Temporal performance evolution: nDCG drop analysis

Since our final objective is developing systems resilient to the temporal evolution of the collection, in
this section we want to dedicate some time to analyse the effects of our techniques on the nDCG drop
between time lags, if any effect is observable.

In order to measure the temporal resilience of our systems, we decided to compute the "drop-
percentage" for each time lag from the train set results, i.e.:

drop% = 100
nDCGlag

nDCGtrain

Table 8
nDCG percentage drop of our final and corresponding base systems from the January runs to the two
time lags (June and August).

# Model January-June drop% January-August drop%

1 url_w1.4_GFF@12_w0.162_MMARCO@1000_ADD_w5 77.06164 57.63564
2 GFF@12_w0.162_MMARCO@1000_ADD_w5 77.06151 57.68512
3 GFF@12_w0.162_MMARCO@1000_MAXMIN_ADD_w5 77.33093 57.89411
4 MMARCO@1000_ADD_w5 77.01133 57.72848
5 Q2K@1_w0.16_MMARCO@1000_MAXMIN_ADD_w5 77.10029 58.00205
0 baseSystem 78.71615 57.09990
0 GFF@12_w0.162 78.20593 57.08570
0 Q2K@1_w0.16 79.10615 57.83734
0 url_w1.4_GFF@12_w0.162 78.36284 57.11939

Table 8 presents the results on our system and highlights the following:

• The dynamic MAXMIN_ADD score operation on re-ranking better mitigates the performance loss
compared to the fixed weight ADD operation. This can be observed both in June and August and
is consistent with our intuition on the two score operations.

• Re-ranking does not seem to be effective in mitigating performance drops over time and, in
general, it appears to be affected by a relative performance drop proportional to the size of the
interquartile range, i.e. dispersion of nDCG values across queries, at the respective time lag
when compared to systems that do not implement re-ranking. This observation seems intuitively
coherent with the relation and interaction that re-ranking may have with the first-stage retrieved
documents for each query when a "greater dispersion of performance" occurs.
In other words: at January the majority of queries are "well-performing", i.e. the systems retrieve
a significant portion of the relevant documents and rank them high, and thus the improvement in
performance produced by re-ranking is high when compared to the performance of base systems.
At June instead, the bigger interquartile ranges suggest a mixed presence of "well" and "poor"
performing queries, leading to a bigger drop of performance for re-ranking systems (since they
"start higher") compared to the drop of base systems. Finally, at August, the contained interquartile
ranges and low mean performance values suggest the presence of mainly "poor-performing"
queries, thus the effect of re-ranking grants a lower relative performance drop than base systems.
However, a future study on more time lags and different models is needed to highlight more
definitive results and deeper conclusions.

In conclusion, ad-hoc techniques like dynamic weight re-ranking formulas seems to be successful in
mitigating performance losses by a small amount; however, further research on other ad-hoc techniques
to significantly increase resilience is needed, if any significant improvement can be achieved at all.

6.4. Topics evolution over time

In order to further investigate the role played by the evolution of queries over time in the performance
drop of IR systems, we compute the Jaccard distance between the sets of queries at the three time lags.



In particular, before computing the distance between each set, we applied the Analyzer component to
the queries, in order to get the tokens our systems are actually searching for.

The results, presented in Table 9, reinforce our hypothesis about the appearance of "new" queries
over time, since the more time passes, the greater the Jaccard distance between time lags grows.

Table 9
Jaccard distances between the set of queries at the three time lags.

Time lags Jaccard Distance

January - June 0.71300
June - August 0.75812
January - August 0.76465

This may be motivated by a shift in the users research interests over time and, again, highlights the
need for system updates in order to better answer the user information needs.

7. Statistical analysis

In this chapter we want to wrap-up the discussion we presented so far by performing statistical
significance tests to see whether we can reject the null hypothesis between QE techniques and "base"
systems, between "base systems" and "re-ranking systems" and, finally, between our final submitted
systems.

The statistical tools we utilize in this chapter are the two-way ANalysis Of VAriance (ANOVA) and
Multiple Comparisons with Tukey’s HSD test, applied only on the nDCG values. For all tests we have
chosen a significance level 𝛼 = 0.05.

7.1. Analysis of statistical significance of QE techniques

In this section, our goal is to study whether the use of QE techniques has a statistically significant effect
on the systems. The systems we study in this section are the "base version", without re-ranking, of the
QE techniques we use in our final submitted systems.

Results on the two-way ANOVA are presented in table 10 and, considering also the multiple compar-
isons between the base QE systems reported in Figure 6, we conclude the following:

• Train (January): the ANOVA test allows us to reject the null hypothesis, since 𝑝 < 𝛼; this tells us
that there is a statistically significant difference between the different QE techniques, as well as
using them or not.
Looking at the multiple comparisons, we indeed observe that the lower performance of the Q2K
is statistically significant, proving again our Q2K implementation to be the less effective between
our final techniques, being actually a little detrimental to nDCG performance compared to the
base system.
Another important observation is that the improvement brought by the use of GFF techniques
proves to be too contained to be statistically significant compared to the base system; however,
we argue that, even though not statistically significant, the improvement introduced by GFF may
be practically significant, since it may lead to better user satisfaction.

• Test (June and August): the ANOVA test fails to reject the null hypothesis, since 𝑝 > 𝛼. In
particular, the results appear to be coherent with the discussion of Section 6.2 on the passage of
time, since the increasing p-values from ANOVA and the multiple comparisons allow us to see
again the flattening effect on the nDCG performance distributions that time has on the systems.



Table 10
Two-way ANOVA on the "base systems" (no re-ranking) to test statistical significance of QE techniques
across the January (a), June (b) and August (c) time lags.

(a) Two-Way ANOVA performed on the base systems on the January training set.

Source SS df MS F Prob>F

Systems 0.0477 3 0.0159 13.2247 1.5343e-08
Topics 93.7170 598 0.1567 130.3901 0
Error 2.1562 1794 0.0012 [] []
Total 95.9209 2395 [] [] []

(b) Two-Way ANOVA performed on the base systems on the June test set.

Source SS df MS F Prob>F

Systems 0.0068 3 0.0023 1.6456 0.1771
Topics 67.0996 403 0.1665 121.3346 0
Error 1.6590 1209 0.0014 [] []
Total 68.7654 1615 [] [] []

(c) Two-Way ANOVA performed on the base systems on the August test set.

Source SS df MS F Prob>F

Systems 0.0081 3 0.0027 0.2034 0.8941
Topics 131.7012 1517 0.0868 6.5358 0
Error 60.4519 4551 0.0133 [] []
Total 192.1612 6071 [] [] []

7.2. Analysis of statistical significance of re-ranking

In this section, we aim to analyse the statistical significance of improvements introduced by the use of
re-ranking. In particular, we run our hypothesis testing against a set of 9 systems consisting of the 5
submitted final systems and their respective 4 base systems, i.e. without re-ranking.

First of all, looking at Table 11, the ANOVA test allows us to reject the null hypothesis across all the
time lags, since we obtain 𝑝 < 𝛼 in each situation, proving the central importance of re-ranking in IR
systems.

Since the ANOVA test confirmed that at least one among the systems is different from the others, we
now apply the Tukey’s HSD test to verify the pairwise statistical significance of the difference between
re-ranking systems and base systems. The results are presented in Figure 7.

Re-ranking proves to be a crucial technique to make an effective IR system, since it introduces a
statistically significant improvement even across time lags.

Additionally, it is interesting to observe how re-ranking dominates the performance of systems, since
a greater overlap between the re-ranking group can be observed compared to the "base" group across
all time lags.

On a side note, the overall behaviour appears to be coherent with the temporal evolution discussion
so far: when the systems are provided with "new" queries for which they are not able to retrieve
relevant-enough documents, the improvement of GFF techniques falls off over time, since the more
time passes, the less relevant documents there are for each query and the less the increased reach over
documents of GFF matters, in particular when the collection of retrieved documents goes through a
re-ranking phase.

7.3. Analysis of statistical significance on final systems across time-lags

Finally, we want to test whether there is a statistically significant difference between our final submitted
systems.



(a) QE techniques multiple comparison on January. (b) QE techniques multiple comparison on June.

(c) QE techniques multiple comparison on August.

# System ID

1 url_w1.4_GFF@12_w0.162
2 GFF@12_w0.162
3 BaseSystem
4 Q2K@1_0.16

(d) Legend for figure a, b and c.

Figure 6: Multiple comparison with Tukey’s HSD test on the 3 time lags with the base system & QE techniques,
with no-reranker. The aim of this test is to check statistical significance

First of all, Table 12 presents the results of two-way ANOVA test on the 5 final systems and, since
𝑝 > 𝛼 for all time lags, we fail to reject the null hypothesis. Additionally, looking at the p-values over
time, we find again a behaviour coherent with the temporal evolution discussion of Section 6.2. This
behaviour is also strengthened by the multiple comparisons with Tukey’s HSD test on the final systems
presented in Figure 8: we again fail to reject the null hypothesis and, as time passes, we can observe the
same behaviour discussed in Section 6.2.

Another interesting aspect emerges again from comparing results with Section 7.1: since we now fail
to reject the null hypothesis between final systems, and taking into consideration the increased overlap
between them (compared to the "base" systems), we can observe again how re-ranking dominates the
performances over QE techniques.

On a final note, we want to add some considerations about failing to reject the null hypothesis
between our final systems: as already argued in Section 7.1, the small improvements introduce by GFF,
even though statistically not significant, may prove practically significant since they are consistent and
may result on a better user-experience.

Additionally, the discussion opens an interesting future research topic regarding the GFF technique
and the trade-off between performance and computation time: considering that the use of GFF increases
the computational time proportional to the increase in size of the total pool of documents retrieved
per query, how does the performance-time trade-off scale when limiting the retrieval per expanded



Table 11
Two-Way ANOVA on the base systems and final systems to test statistical significance of our re-ranking
technique across January (a), June (b) and August (c).

(a) Two-Way ANOVA performed on the final systems and baseline on the training set.

Source SS df MS F Prob>F

Systems 1.8013 8 0.2252 67.3619 3.1250e-105
Topics 197.0354 598 0.3295 98.5764 0
Error 15.9905 4784 0.0033 [] []
Total 214.8271 5390 [] [] []

(b) Two-Way ANOVA performed on the final systems and baseline on lag6.

Source SS df MS F Prob>F

Systems 0.4017 8 0.0502 17.1105 3.8379e-25
Topics 145.4552 403 0.3609 122.9979 0
Error 9.4607 3224 0.0029 [] []
Total 155.3175 3635 [] [] []

(c) Two-Way ANOVA performed on the final systems at lag8.

Source SS df MS F Prob>F

Systems 1.8466 8 0.2308 19.0019 1.1516e-28
Topics 309.4818 1517 0.2040 16.7941 0
Error 147.4240 12136 0.0121 [] []
Total 458.7524 13661 [] [] []

Table 12
Two-way ANOVA on the final submitted system across the January (a), June (b) and August (c) time lags.

(a) Two-Way ANOVA performed on the final systems on the training set.

Source SS df MS F Prob>F

Systems 0.0043 4 0.0011 1.5803 0.1768
Topics 115.5409 598 0.1932 286.7509 0
Error 1.6117 2392 6.7380e-04 [] []
Total 117.1569 2994 [] [] []

(b) Two-Way ANOVA performed on the final systems on the June test set.

Source SS df MS F Prob>F

Systems 0.0012 4 2.9726e-04 0.6217 0.6471
Topics 85.3864 403 0.2119 443.1389 0
Error 0.7707 1612 4.7813e-04 [] []
Total 86.1584 2019 [] [] []

(c) Two-Way ANOVA performed on the final systems on the August test set.

Source SS df MS F Prob>F

Systems 5.2976e-05 4 1.3244e-05 0.0011 1
Topics 194.7365 1517 0.1284 0.1284 0
Error 70.0161 6068 0.0115 [] []
Total 264.7527 7589 [] [] []

queries to a smaller total pool of documents (i.e., including already-retrieved documents) than the
one we used in this work? Since the technique proved to be effective in achieving consistent small
improvements, we expect it to provide better relative performance improvements at a significantly
lower computation time when limiting the re-ranking phase to smaller total sets of documents per
query, in particular if we consider the empirical observation on the low quality of the "last-ranked"
documents retrieved by the expanded queries. In other words, the research question can be summarized



(a) Multiple comparisons on January train set. (b) Multiple comparisons on June test set.

(c) Multiple comparisons on August test set.

# System ID

1 url_w1.4_GFF@12_w0.162_MMARCO@1000_ADD_w5
2 GFF@12_w0.162_MMARCO@1000_ADD_w5
3 GFF@12_w0.162_MMARCO@1000_MAXMIN_ADD_w5
4 MMARCO@1000_ADD_w5
5 Q2K@1_w0.16_MMARCO@1000_MAXMIN_ADD_w5
6 url_w1.4_GFF@12_w0.162
7 GFF@12_w0.162
8 BaseSystem
9 Q2K@1_0.16

(d) Legend for figure a, b and c.

Figure 7: Multiple comparison with Tukey’s HSD test on the 3 time lags between the base systems and the
re-ranker implementing final systems.

as: does the GFF technique introduces more incisive and statistically significant improvements when
limiting the number of retrieved/re-ranked documents and does the overall performance-time trade-off
improves significantly?

8. Conclusions

In this work, we prove the effectiveness of cross-encoders as final-stage re-rankers, as well as the
potential strength of the GFF technique both stand-alone for improving QE and as a noise reduction
system to improve cross-encoders performance. Another point of interest that emerges from our work
is the observation that leveraging URLs information does not bring increased performance per-se but,
when coupled with noise reduction systems like GFF, it can bring to better performances.

Our experiments on re-ranking@100 with bi-encoder models prove them ineffective as a re-ranking
technique applied on top of BM25 first-stage retrieval for web search. Additionally, our final systems
do not present statistically significant differences between them. Those finding, combined with the
research points raised in Section 5.4 and 7.3, give us the idea to explore multi-stage GFF retrieval
systems that leverage BM25 to get a significantly larger pool of documents to be then re-ranked with a
fast document-to-token bi-encoder approach using the BERTScore [14] formula and a final last-stage



(a) Final systems multiple comparison on January. (b) Final systems multiple comparison on June.

(c) Final systems multiple comparison on August.

# System ID

1 url_w1.4_GFF@12_w0.162_MMARCO@1000_ADD_w5
2 GFF@12_w0.162_MMARCO@1000_ADD_w5
3 GFF@12_w0.162_MMARCO@1000_MAXMIN_ADD_w5
4 MMARCO@1000_ADD_w5
5 Q2K@1_w0.16_MMARCO@1000_MAXMIN_ADD_w5

(d) Legend for figure a, b and c.

Figure 8: Multiple comparison with Tukey’s HSD test on the 3 time lags for the final systems. The numbers
refer to the submitted systems, as reported in the "Sumbmitted runs" paragraph of Section 5.5.

cross-encoder re-ranker on a smaller pool of documents.
As future work, we also want to further explore the differences between ADD and MAXMIN_ADD

re-scoring formulas, as well as new possible solutions, in particular around BERTScore [14].
Finally, on the temporal evolution side, our work highlights again the well-known performance

deterioration effect caused by the passage of time and provides insights onto the temporal evolution of
the techniques explored in our systems.
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A. Description of the Parser component for noise elimination

Our systems implement a JSONParser class, designed to handle content cleaning of documents, such
as removing emojis, URLs, HTML, and code, based on various flags specified in the configuration file
ParserParams.xml.

Once the cleaning is completed, the document is converted into an instance of ParsedDocument,
that contains two fields: an "ID" field representing the document identifier, a "BODY" field containing
the document body. Furthermore, we have also included an additional optional field "URL" intended to
store the web address of the document, that could be useful especially in the case of queries directly
involving website URLs.

A.1. Parser Flags Description

Within the configuration file, there is a wide range of flags used to manage the cleaning process, offering
control over the elimination of noise from documents. The list of flags, along with their respective
functions, is the following:

• clearEmojis: Controls whether emojis should be removed from the document.
• clearHTML: Controls whether HTML tags should be removed from the document.
• clearURLs: Controls whether URLs should be split into their components and the non-informative

URL syntax removed from the document contents.
• clearCode: Controls whether code blocks should be removed from the document.
• clearTrailingPunctuation: Controls whether trailing punctuation should be removed from the

document.
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• clearNonStandardPunctuation: Controls whether non-standard punctuation should be re-
moved from the document.

• clearTelephone: Controls whether telephone numbers should be removed from the document.

All the flags are assumed to be set to on in our systems.

B. Description of the Analyzer component for text processing

Our system implements two distinct analyzers, that allow us to handle both processing of French
documents and English ones, in order to have a specific behaviour for each collection.

Their behaviour can be controlled by specifying the appropriate parameters in the relative
[Language]AnalyzerParams.xml file.

B.1. French analyzer

This analyzer is crafted to handle French collections and it accepts the following parameters:

• Tokenizer: determines how the text is divided into tokens. Our project implements the following
alternatives:

– StandardTokenizer: uses advanced rules, defined by the Unicode Text Segmentation
algorithm, to segment text into tokens.

– WhiteSpaceTokenizer: Splits text into tokens based on whitespace characters.
– LetterTokenizer: Breaks text into terms whenever it encounters a character which is not a

letter.

• Filters: change tokens by applying rules, and remove the ones that do not respect particular
conditions.

– Lower Case Filter: Converts tokens to lowercase;
– Minimum Length: Specifies the minimum allowed length of each token;
– Maximum Length: Specifies the maximum allowed length of each token.
– English stopList: removes common English words that are not meaningful for the content

of the document. It is also applied to the French Analyzer since, during the experimental
phase, we observed that it leads the systems to have an improvement of the performance, in
particular for those that implement our QE techniques. We suggest that this behaviour is
caused by the presence of English words in the documents that, after being stemmed by the
French stemmer, correspond to stems of French words with potentially different meanings;
however, this behaviour still needs further analysis and calls for future research work.

– ElisionFilter: it targets elisions, so it removes articles, prepositions and conjunctions,
hyphens, apostrophes.

– French stopList: serves the same purpose as the English stoplist, but it works for French
words.

• Stemming filters: reduce words to their root form (stem), enhancing search recall by considering
word variations.

– Snowball Filter: uses the Snowball stemming algorithm for French.
– FrenchLightStemmer: this filter offers greater flexibility and adaptability in managing

various forms of French language text.

Our experiments showed us that the different tokenizers have roughly the same performances, in
this situation we opted to use the StandardTokenizer, since it achieved slightly better performances
and a more accurate tokenization. As filters we used the LowerCaseFilter and ElisionFilter, additionally,
we set the minimumLength at 2 and the maximumLength at 15, since a lower number was too restrictive
for our queries. Finally, for stemming, we used the FrenchLightStemmer.

We tried different combinations with the other possible settings, but in our case we saw that the
performances were worse than the one just described.



B.2. English analyzer

The English analyzer performs the same logical steps as the French one, but it is specialized for the
English collection. It allows the following parameters:

• Tokenizer: determines how the text is divided into tokens. The English analyzer implements the
same tokenizers described for the French analyzer in Section ??.

• Filters:

– Lower Case Filter: Converts tokens to lowercase;
– Minimum Length: Specifies the minimum allowed length of each token;
– Maximum Length: Specifies the maximum allowed length of each token.
– English stopList: removes common English stopwords.
– English Possessive Filter: determines whether the English possessive filter should be

applied.
– synonymGraphFilter: for each token it maps single (or multi) token synonyms, producing

a fully correct graph output. If used for indexing it must be followed by FlattenGraphFilter
to squash tokens on top of one another, because the indexer cannot directly consume a
graph.

• Stemming filters:

– Snowball Filter: uses the Snowball stemming algorithm for English.
– English Minimal Stem Filter: Applies a minimal plural stemmer for English;
– K Stem Filter: Implements the K stemming algorithm.

In our implementation, we tested different combinations of parameters to efficiently preprocess text
before indexing and querying; however, as already mentioned, the performances of English systems
proved to be significantly lower than French ones, so we suggest again to focus on the latter.

On a final note, another test scenario involved the use of the SynonymGraphFilter with the syn-
onym collection engSynonyms.txt, which contains pairs of words representing British and American
versions of the same concept. This synonym collection was obtained from the synonym-list reposi-
tory on GitHub [2]. Employing this collection could have been useful to ensure greater uniformity of
results, making the query independent from the linguistic variant used by the user. However, while it
slightly improves the English system’s performance, its performances decrease when applied alongside
query expansion techniques, rendering the filter marginal or nearly redundant.

C. Prompts used for keyword generation through LLMs in French and
English

Table 13 and 14 report respectively the French and English prompt provided to the mistralai/Mistral-
7B-Instruct-v0.2 LLM model to generate the keywords used in the query expansion phases of our
systems.



Table 13
Few-shots prompt used for generating keywords related to a provided user query in French.

You are a bot used for query expansion.
Your task is to provide a list of 10 keywords, strictly in french, that might be related to a french query
provided after <<<>>>.

You must respond in a single line with the list of 10 keywords in csv format inside [[]].
Do not include the word "KEYWORDS".
Do not provide explanations or notes.
Do not provide translations or other additional information beside the keywords.

###
Here are some examples:

QUERY: lequel des éléments suivants est le principal facteur de risque du cancer du col de l’utérus?
KEYWORDS: [[ HPV, papillomavirus, système immunitaire, souches ]]

QUERY: Quelle est la teneur en cholestérol des noix de pécan?
KEYWORDS: [[ nutrition, mg, noix ]]

QUERY: Les causes du sous-emploi
KEYWORDS: [[ travailleurs, revenus, pauvreté, croissance ]]

QUERY: Où se trouve danville ca?
KEYWORDS: [[ Californie, Vallée, Comté ]]

QUERY: définition de conundrum
KEYWORDS: [[ énigme, question, difficile ]]
###

<<<
QUERY: user_query
>>>



Table 14
Few-shots prompt used for generating keywords related to a provided user query in English.

You are a bot used for query expansion.
Your task is to provide a list of 10 keywords, strictly in french, that might be related to a french query
provided after <<<>>>.

You must respond in a single line with the list of 10 keywords in csv format inside [[]].
Do not include the word "KEYWORDS".
Do not provide explanations or notes.
Do not provide translations or other additional information beside the keywords.

###
Here are some examples:

QUERY: which of the following is the main risk factor for cervical cancer?
KEYWORDS: [[ HPV, papillomavirus, immune system, strains ]]

QUERY: how much cholesterol is in pecans
KEYWORDS: [[ nutrition, mg, Nuts ]]

QUERY: causes of underemployment
KEYWORDS: [[ workers, income, poverty, growth ]]

QUERY: where is danville ca
KEYWORDS: [[ California, Valley, County ]]

QUERY: definition for conundrum
KEYWORDS: [[ riddle, question, difficult ]]
###
<<<
QUERY: user_query
>>>
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