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Abstract
The “Voight-Kampff” Generative AI Authorship Verification task aims to determine whether a text was generated

by an AI or written by a human. As in its fictional inspiration,
1

the Voight-Kampff task structures AI detection as

a builder-breaker challenge: The builders, participants in the PAN lab, submit software to detect AI-written text

and the breakers, participants in the ELOQUENT lab, submit AI-written text with the goal of fooling the builders.

We formulate the task in a way that is reminiscent of a traditional authorship verification problem, where given

a pair of texts, their human or machine authorship is to be inferred. For this first task installment, we further

restrict the problem so that each pair is guaranteed to contain one human and one machine text. Hence the task

description reads: Given two texts, one authored by a human, one by a machine: pick out the human.
In total, we evaluated 43 detection systems (30 participant submissions and 13 baselines), ranging from linear

classifiers to perplexity-based zero-shot systems. We tested them on 70 individual test set variants organized in

14 base collections, each designed on different constraints such as short texts, Unicode obfuscations, or language

switching. The top systems achieve very high scores, proving themselves not perfect but sufficiently robust

across a wide range of specialized testing regimes.

Code used for creating the datasets and evaluating the systems, baselines, and data are available on GitHub.
2

1. Introduction

Generative AI is undoubtedly a disruptive technology in the information ecosystem. In particular,

large language models (LLMs) have many desirable applications in writing assistance and information

access. Although often welcome, unlimited text generation raises concerns in many areas of creation;

examples include education and assessment, academic articles and reviews, synthetic misinformation and

disinformation, and social bots that influence public discourse. These troubling applications undermine

trust in (written) information. Recognizing the fingerprint of AI-generated text thus becomes a promising

element for a healthy future information ecosystem, which will become increasingly sophisticated as

the fluency and naturalness of the generated text increases.

The Voight-Kampff task investigates the feasibility of identifying whether text is written by a human

author or generated by a language model. We recognize that the detection of AI-generated text is

closely related to the identification of human authorship where, prospectively and with increasing

fidelity and diversification of models, each AI model can be considered an author that exhibits particular

and identifiable characteristics [1]. In this task, we adapt this idea and formulate AI detection as an

authorship problem. This allows us not only to draw upon experience from previous LLM detection

shared tasks [2, 3, 4, 5], but also to adapt decades of theoretical and engineering work on author

identification, including past work at PAN [6, 7, 8, 9, 10, 11].

1
In the movie “Blade Runner”, the eponymous officers use the Voight-Kampff machine to test whether a subject is a replicant.

2
Code and data: https://github.com/pan-webis-de/pan24-generative-ai-authorship-verification
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Input / Task

1. { ? , ? }

2. { ? , ? }
3. { ? , ? }
4. { ? , ? }
5. { ? , ? }
6. { ? , ? }

7. ?

−→

Possible Assignment Patterns

1. { A , M }

2. { A , M }, { A , A }
3. { A , M }, { M , M }
4. { A , M }, { A , A }, { M , M }
5. { A , M }, { A , A }, { A , B }
6. { A , M }, { A , A }, { A , B }, { M , M }

7. A , M

Figure 1: Hierarchy of authorship verification problems from easiest (1) to hardest (7), involving LLM-generated
text. Ignoring mixed human and machine authorship, the difficulty arises from the pairing constraints imposed
by the possible assignment patterns. M denotes LLM-generated text, while A and B denote human-authored
text (same letter meaning same human author).

Identifying a single disputed document as AI-generated without reference is an open problem and the

most difficult formulation of the AI detection task. Although the literature suggests limited success in

solving this problem with the current generation of LLMs, it is questionable whether this will remain the

case as the technology improves. Aside from mixed human-machine authorship, we have broken down

the relevant formulations of the problem with increasing levels of difficulty to gain a more fundamental

understanding of the task at hand and the feasibility of potential solutions. Figure 1 visualizes the

cascade of all problem variants from the easiest (Task 1) to the most difficult (Task 7). In the easiest

case, two documents of unknown authorship are given, but we guarantee that exactly one of them

was created by a human A and the other by a machine M . This constraint is relaxed in the following

variants, where e.g., both texts can be generated by a machine, { M , M }. In the hardest case, a single

text is given, which could be either A or M .

The Voight-Kampff task follows the easiest formulation of the task to establish a feasibility baseline.

The task description is: Given two texts, one authored by a human, one by a machine: pick out the human.
Our evaluation campaign was organized in a builder-breaker setup in collaboration between the

ELOQUENT and PAN labs at CLEF. In this setup, both systems and evaluation resources are built by

the participants and compete in an adversarial setting. The builders at PAN create analysis tools, in

this case for classifying texts as human-authored vs. machine generated. The breakers at ELOQUENT

provide the data points to break the analysis tools, in this case to fool the classifiers into believing

that a machine-generated text was authored by a human. This adversarial design is intended to focus

participants’ efforts by providing increasingly challenging baselines for both classifiers and generative

language models.

In total, our evaluation campaign includes 14 breaker dataset collections consisting in total of 70 indi-

vidual conditions (or variants), eight provided by PAN as baselines and six submitted by ELOQUENT

participants. We evaluate 43 builder systems, 13 of which were provided by PAN as baselines and 30 that

were submitted by PAN participants. We find that the strongest systems are highly effective and robust

across dataset variants in separating machine-generated and human-authored text, at least given the

latest generation of large language models. The most difficult evaluation settings across all submitted

systems are unexpected languages and very short texts, closely followed by Unicode obfuscations.

2. Detecting AI-generated Text

In total, 30 valid system were submitted to the builder task in addition to the baseline systems we

provided. Of these, 28 teams submitted descriptions of their systems in the form of notebook papers.

Table 4 shows the final system ranking and Table 1 shows an overview of the systems.



2.1. Baselines

We provided implementations of six baseline systems to compare submitted systems against four

state-of-the-art zero-shot LLM detection baselines and two adapted authorship verification baselines.

The zero-shot LLM detection baselines are: (1) Binoculars [12], (2) DetectLLM [13] (both NPR and

LRR scoring mode), (3) DetectGPT [14], and (4) Fast-DetectGPT [15]. All three were provided in two

variants using either Falcon 7B [16] or Mistral 7B [17] to estimate text perplexities. The required text

perturbations for DetectGPT and DetectLLM-NPR were generated with T5-3B [18].

The two authorship verification baselines were adapted to the LLM detection task by splitting each

text in half and comparing the two halves against each other under the assumption that LLM texts

are stylistically more self-similar than human texts. The baselines provided are a compression model

(PPMd Compression-based Cosine) [19, 20] and short-text authorship unmasking [21, 22].

As an additional seventh baseline, we measured and compared the text lengths in characters. This

baseline serves as both a quasi-random baseline and as a data sanity check.

2.2. Builder Submissions to PAN

While our baseline systems reproduce established methods in either authorship verification or intrinsic,

zero-shot LLM detection, the participant systems cover a broad range of approaches. Table 1 shows

an overview of the essential elements across all systems. The most frequent approach is to train or

fine-tune a (neural) classifier with term-based features, in most cases (BERT) embeddings. Many systems

either apply some training regime modification (such as PU loss or R-Drop), use ensembles, and / or

expand the given training data with other LLM detection datasets. Some systems use engineered

features like perplexity (PPL), term frequencies (TF), stylometric features (text length, properties of

token distributions), or a combination of these.

The systems use a broad range of classification models (SVM, XGBoost, LSTM, CNN) but in most

cases in combination with BERT. Most systems only classify if one given document is machine generated

and decide which of the two input documents is human-written by comparing the predicted probability,

similar to how the provided baselines do it. Some participants, however, also trained models to directly

discriminate between the pairings as in the traditional author verification setting. In some cases,

participants also utilized LLMs for the detection task, often using Low-Rank adaptation (LoRA).

2.2.1. Term-based Systems

Huang et al. [24], the second-ranked system (0.921), derives a method named Tri-Sentence Analysis

(TSA) from the multi-scale positive-unlabeled (MPU [51]) LLM-detector. TSA dissects the documents

into small (3-sentence) chunks and trains a BERT classifier for binary AI detection on the chunks, where

each chunk inherits the class label of the document. The chunk scores are then averaged to to estimated

the prediction on the original documents.

Lorenz et al. [25], the third-ranked system (0.886), uses feature-based, supervised classification: Naive

Bayes, Logistic Regression, and linear SVM based on the top 1,000 TF-IDF term count features.

Guo et al. [26] (0.884) use a supervised hybrid method that utilizes various types of BERT embeddings

and Google Books word frequency features embedded with an LSTM.

Several other mostly well-performing models fine-tuned a BERT (variant) with simple modifications:

Lin et al. [27] (0.851) with R-Drop [52] regularization, Yadagiri et al. [30] (0.806) with augmentation

through linguistic features (vocabulary count, a word-density measure, and POS counts), Lv et al. [31]

(0.804, DeBERTa) with Reptile meta-learning [53], Cao et al. [33] (0.778) with dataset augmentation,

Huang et al. [35] (0.735) with R-Drop in combination and additional training data from Kaggle [54] for

oversampling the human examples, Petropoulos and Petropoulos [41] (0.641) with a Bi-LSTM between

the RoBERTa and the linear classification layer, Wu et al. [42] (0.608) with an extra transformer-layer

between the BERT and the linear classification layer, Zhu and Kong [44] (0.555) by using DeBERTa

instead of BERT, Sun et al. [45] (0.531) with a 2D-CNN-layer between a BERT and a linear layer, and

Huang et al. [48] (0.480) with a siamese DeBERTa with contrastive learning and domain adaptation.



Table 1
Systems Overview. Shown is an overview of the kind of features used (contextualized embeddings, LLM-based
text perplexity (PPL), term frequency vectors (TF), or other stylometric / linguistic features), whether the system is
an ensemble, whether the training data was augmented, and whether the classifier was zero-shot or a supervised
learned fit to training data.

Team Features Ensemble Data Aug. Zero-shot

Embed. PPL TF Style

1 Tavan [23] x x x (x)
2 J. Huang [24] x
3 Lorenz [25] x
4 M. Guo [26] x x
5 Zi. Lin [27] x
6 Abburi [28] x x
7 Miralles [29] x x
8 Yadagiri [30] x x
9 Lv [31] x

10 Gritsai [32] x x
11 Cao [33] x x
12 L. Guo [34] x x

Binoculars (Falcon-7B) [12] x x
13 B. Huang [35] x x
14 Valdez-Valenzuela [36] x x x
15 Ye [37] x x
16 Chen [38] x x x x
17 W. Huang [39] x
18 Qin [40] x x x

Binoculars (Mistral-7B) [12] x x
DetectLLM LRR (Mistral-7B) [13] x x

19 Petropoulos [41] x
Fast-DetectGPT (Mistral-7B) [15] x x

20 Z. Wu [42] x
Text Length x x

21 gra†

22 Zh. Lin [43] x
23 Zhu [44] x

PPMd Compression-based Cosine [19, 20] x
24 Sun [45] x

DetectLLM NPR (Mistral-7B) [13] x x
25 Lei [46] x

Fast-DetectGPT (Falcon-7B) [15] x x
26 Liu [47] x x
27 e-comm-tech†

DetectGPT (Mistral-7B) [14] x x
28 K. Huang [48] x

DetectLLM NPR (Falcon-7B) [13] x x
Authorship Unmasking [21, 22] x

29 Sheykhlan [49] x x
DetectLLM LRR (Falcon-7B) [13] x x

30 G. Wu [50] x
DetectGPT (Falcon-7B) [14] x x

Sum of participant systems 20 11 1 5 5 6 0

† No notebook submitted.

Two systems build on contextualized word embeddings from BERT but use a more involved model:

Guo et al. [34] (0.763) uses a Bi-LSTM followed by a transformer layer for classification. As input for the

LSTM, the authors use BERT embeddings concatenated with seven stylometric and linguistic features

(lexical diversity, average sentence length, average word length, the number of grammatical errors,

sentiment tendency, repetition rate, and stop word ratio). Valdez-Valenzuela and Gómez-Adorno [36]

(0.727) use a mixture of co-occurrence graph features embedded with a GNN, stylometric features, and



BERT document embeddings and augment the training data with additional human texts.

Two systems use ensembles based on multiple fine-tuned BERT models: Qin et al. [40] (0.680) use a

voting ensemble of a basic BERT and a BERT with R-Drop regularization, trained on additional data

from Kaggle. Sheykhlan et al. [49] (0.460) use a voting ensemble with BERT, RoBERTa, and Electra.

Finally, five systems use generative LLM as base for a classifier: Gritsai et al. [32] (0.796) use an

ensemble of multiple Mistral models, each fine-tuned via QLoRA on texts generated by different types

of LLMs. Ye et al. [37] (0.722) fine-tune a T5 model with language modeling head to predict the tokens

“positive” (machine text) or “negative” (human text) for a given document. If neither of these tokens is

the most likely, the system outputs “undecided”. Lin et al. [43] (0.565) also fine-tune a T5 to predict

“positive” or “negative” after a new, special token and assign the probability of whichever token is more

likely. Lei et al. [46] (0.504) fine-tune a ChatGLM model for authorship attribution, i.e. the model learns

to predict tokens that indicate either “Human” any one of the particular LLMs. The predicted classes

are then transformed back into a binary AI detection score. Wu and Guan [50] (0.450) use a language

model pre-trained for NLI under the assumption that LLM-generated texts show weaker coherence and

textual entailment between sentences.

2.2.2. Perplexity-based Systems

Miralles et al. [29] (0.806) use an XGBoost classifier with features (mean, stddev, etc.) of the distributions

of next-token probabilities across five current LLMs, in combination with established, stylometric

features.

Huang and Grieve [39] (0.683) use the perplexity of “authorial language models” as features for

an SVM classifier. As authorial language, a GPT-2 is fine-tuned for each known LLM and one for all

humans. For both disputed text, the perplexity of all authorial LMs is measured and provided as feature

vector for the SVM. The SVM is then trained for verification.

Liu and Kong [47] (0.497) use the perplexity of a GPT-2 model as discriminator under the assumption

that the text with the lower GPT-2 perplexity score is AI-generated. The perplexity is calculated as a

sum on a sliding 1,024-token window.

2.2.3. Systems Using Terms and Perplexity

Tavan and Najafi [23], the first-ranked system (0.924), uses an ensemble of two LLMs (Mistral and

Llama2) and the Binoculars baseline. The LLMs (with classification head) were fine-tuned on the training

data via LoRA. The final score is the average decision across all three models. Abburi et al. [28] (0.843)

use a combination of a RoBERTa-based AI detector, token-level probability features from multiple GPT-2

variants and E5 document embeddings to classify AI texts. Finally, Chen and Kong [38] (0.694) use a

voting ensemble of three models: 2× BERT and a GPT-2. The BERT models predict which of two given

texts is written by a human, the first or the second. Trained on different splits of the training data (with

inverted positions and labels). Both models are identical, but the input pairs are flipped to counteract

the truncation of long documents. The GPT-2 model is used to calculate the perplexity of each text (for

ca. 500 character chunks and summed for each text), where text with the higher perplexity is taken as

the human written one. The training data is augmented with the Kaggle DAIGT v2 Train [55] dataset.

3. Datasets

We used two dataset collections in the evaluation of the “Voight-Kampff” task. The first collection, in

accordance with the builder-breaker pattern, collects all datasets submitted by individual ELOQUENT

participants. This collection is described in detail in Section 3.1.

As both labs were ran concurrently, we created a second “bootstrap” dataset collection PAN AI News

2021 in lieu of training data to get participants started. Participants were encouraged to also use

additional data from other sources; Part of this bootstrap collection was held back as a test collection.



Genre and Style:
The text is an informative piece providing a comprehensive overview of Malaysia’s geography, history,
government structure, economy, and cultural diversity. Its tone is neutral and factual, aiming to
educate the reader about various aspects of the country.

Content:

• Malaysia is a federal constitutional monarchy in Southeast Asia, comprising thirteen states
and three federal territories.

• Geographically divided into Peninsular Malaysia and East Malaysia (Malaysian Borneo) by
the South China Sea.

• Shares borders with Thailand, Singapore, Vietnam, Indonesia, Brunei, and maritime borders
with the Philippines.

• Capital city: Kuala Lumpur; federal government seat: Putrajaya.
• Multi-ethnic and multi-cultural country with Islam as the state religion, but freedom of religion

is protected.
• Boasts a strong economy, historically driven by natural resources but expanding into sectors

like science, tourism, commerce, and medical tourism.

Figure 2: A sample summary for the Voight-Kampff breaker task.

The PAN AI News 2021 dataset consists of news articles written by humans or LLMs and its creation is

described in Section 3.2.

3.1. Breaker Submissions to ELOQUENT

ELOQUENT formulated the breaker challenge for this task, with the objective for participants to use

models and systems of their choice to fool classifiers into believing their output is authored by a human.

The organizers selected 29 human authored texts, five sample items for pre-experiment tuning and

testing purposes, and 24 items proper. Each text was of 300 to 600 words length and summaries of each

text were generated by the organizers using OpenAI’s ChatGPT service with the prompt:

Summarize the following text in five to six short bullet points and give an overall

description of the genre and tone of the text.

Those machine-generated summaries were then shared with the participants, so their systems could

generate derivative short texts. A sample summary is given in Figure 2 and a list of all test item titles

are given in Table 2. We suggested the following prompt but the participants were free to formulate

their own prompts as they saw fit.

Write a text of about 500 words which covers the following items:

The task had 35 registered teams. By the deadline three teams participated, with five experimental

conditions submitted. The models used are Poro [56] and Mistral [57] submitted by team Reindeer [58],

GPT-SW3 [59], a RAG-enhanced system based on the Command-R model submitted by team “Verbanex”

from Universidad Tecnológica de Bolívar, and a GPT 3.5-based baseline produced by the organizers.

Poro is a decoder-only model with a parameter count of 34 billion and 54 layers, trained on the LUMI

supercomputer with 1 trillion tokens for Finnish, English, and code. In testing, Poro has been found to be

reasonably competent in several other languages as well, due to the multilinguality of the Finnish data

set. The Mistral model was used as a comparison since it is better instruction trained for conversational

data. Poro and Mistral are open source models, freely available for use in experimentation. GPT-SW3

is based on the GPT-3 architecture and trained on the Berzelius supercomputer with 300B tokens for

Swedish, Norwegian, Danish, Icelandic, English, and code. GPT-SW3 is available for research purposes.

The Command-R series of models, built for RAG with a longer input context than many other models,

are tested for quality in several languages including English and are available for research purposes.



Table 2
Items for the Voight-Kampff breaker task. Those were given to the participants as clues to generate test texts.

ID Title Source

001 Uralic languages Encyclopedia Britannica
002 Taylor and Travis Washington Post
003 Relationships the Good and the Messy Podcast transcript
004 A Day of Very Low Probability Fan fiction
005 How to Cope With Anxiety-Induced Procrastination Lifehack website

006 Malaysia Wikipedia
007 Alps Wikipedia
008 2008 Summer Olympics Wikipedia
009 Peter Higgs Encyclopedia Britannica
010 Richard Serra Encyclopedia Britannica
011 Johann Eck Encyclopedia Britannica
012 1000 Things Worth Knowing That all who read may know Gutenberg
013 Robert Elsmere Gutenberg
014 An Inquiry into the Nature and Causes of the Wealth of Nations Gutenberg
015 Dyslexia Basics International Dyslexia Association
016 Textual stylistic variation: Choices, genres and individuals Arxiv
017 The Fëanorieli by Istarnie Council of Elrond Tolkien appreciation site

018 Star Moors Archive of our own fiction site
019 Spirit of Strife Archive of our own fiction site
020 Eggplant Parmesan Brown Eyed Baker recipe site
021 Easy Homemade Ramen Bowls Killing Thyme recipe site
022 Vegan Tiramisu Lazy Cat Kitchen recipe site
023 HEA Warns of Growing Third Level Funds Crisis Irish Times
024 New Artwork Celebrating 100 years of Women in Law UK Supreme Court
025 ELOQUENT shared tasks for evaluation of generative language model quality ELOQUENT paper
026 3 Baltic Capitals Travel tips newsletter
027 A Guide to the Principles of Animal Nutrition Oregon State University
028 The Great Days of the Clippers Gutenberg
029 The Three Musketeers Gutenberg

3.2. The “PAN AI News 2021” Dataset Collection

For creating the second dataset collection, we first scraped 1,359 articles of major 2021 U.S. news

headlines from Google News, then generated summaries of each article, and finally re-generated

news-alike articles from these using nine large language models.

We scraped Google News using the GNews Python library
2

and Newspaper3k
3

to download the

articles and extract the plain texts. We chose the year 2021 specifically as it predates the release of

GPT-3.5 so that we could be reasonably certain the articles were actually human-authored.

Using the plain texts as input, we instructed GPT-4 Turbo to generate a bulleted summary of each

article as shown in Figure 3. To be able to generate convincing and high-quality articles with a high

similarity to the human texts, we also extracted (1) the article’s type (nine classes), (2) the target audience

(three classes), (3) the authors political stance (three classes), (4) the articles dateline, and (5) the names

and functions of directly quoted spokespersons, if any. The result was to be returned as JSON with

a predefined schema (the output was mostly valid, though some syntax and schema errors had to be

corrected later by hand).

Given the so-generated summaries, we prompted several instruction-tuned downstream LLMs to

assume the role of a journalist from the respective source medium in writing an article of the given

type about the extracted key points. The article should have the same stance, target audience, and start

2
https://github.com/ranahaani/GNews

3
https://github.com/codelucas/newspaper

https://github.com/ranahaani/GNews
https://github.com/codelucas/newspaper


Summary You are a news article and press release summarizer. Given an article, you summarize the key
points in 10 bullet points.

Type You also classify the article type ("breaking news", "press release", "government agency
statement", "financial news", "opinion piece", "fact check", "celebrity news", "general reporting",
"speech transcript").

Dateline Extract the dateline from the beginning of the article if one exists (e.g. "WASHINGTON " or
"May 28 (Reuters)").

Quotes If spokespersons are cited verbatim, list their names, functions, and titles (if any).
Audience Determine the article’s target audience ("general public", "professionals", "children").

Stance Classify whether the article’s stance is "left-leaning", "right-leaning", or "neutral".
Structure Answer in structured JSON format (without Markdown formatting) like so:

{
"key_points": ["key point 1", "key point 2", . . . ],
"spokespersons": ["person1 (title, function)", . . . ],
"article_type": "article type",
"dateline": "dateline",
"audience": "audience",
"stance": "stance"

}

Figure 3: Prompt used for “PAN AI News 2021” to generate article summaries and extract style information to
be used in re-generating articles.

with the same dateline. Direct quotations from the originally cited spokespersons were to be included

as well, though we did not prescribe what those spokespersons were alleged to have said.

In particular, we used the following LLMs for generating the articles:

1. GPT-3.5 Turbo [60]

2. GPT-4 Turbo [61]

3. Gemini Pro [62] (with temperatures of 0.6 and 0.9)

4. PaLM2 Text-Bison [63]

5. Meta Llama2 7B / 13B / 70B Chat [64]

6. Mistral 7B Instruct v0.2 [17]

7. Mixtral 8x7B Instruct v0.1 [65]

8. BLOOMZ 7B1 [66]

9. Qwen-1.5 72B Chat [67] (8-bit-quantized).

Unless stated otherwise, we used the API default settings for GPT, Gemini, and PaLM. The remaining

models were retrieved from Huggingface [68] to run on our own infrastructure. Llama2 13B was used

with two different settings for contrastive decoding [69] (𝛼 = 0.1 and 𝛼 = 0.6). We also planned to

include Falcon 7B and 40B Instruct [16], but were unable to get sensible articles out of it.

In addition to the LLMs above, we also used a GPT-2 model fine-tuned on the Open-Instruct

dataset [70] and two Alpaca models [71] based on Llama2 7B and 13B as lower-quality baselines

(with a shortened prompt to fit the smaller input sizes).

Text Pre- and Post-Processing

We manually reviewed all of the extracted plain text from the human-written articles that we scraped

from Google News and removed any remaining artifacts, such as page footers, navigation fragments, or

figure captions.

Similarly, we manually reviewed all LLM responses and thoroughly removed all obvious artifacts that

might give away the LLM authorship too easily. We removed typical LLM chat phrases such as “Sure, I’d



Table 3
Overview of the 65 variants of the “PAN AI News 2021” test set. All variants are seeded from the same 272
human texts from the Google News 2021 holdout set. The “main” and “cross-topic” variants contain all 13 × 272
possible human-LLM pairs minus a few failed generations (e.g., due to moderation guardrails or insufficient
output length). Unicode substitutions and short texts are random 600-pair subsets of these. Contrastive decoding,
German texts, and the Kaggle prompt variant make use of only one or two LLMs each, resulting in fewer pairs.
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Test Set Variant Pairs 7B 7B1 0.6 0.9 002 2-OI 3.5 4 7B 13B 70B 7B 8x7B 72B

Main 3,411 x x x x x x x x x x x x x
Unicode substitution (machine) 600 x x x x x x x
Unicode substitution (both) 600 x x x x x x x
Cross-topic 3,411 x x x x x x x x x x x x x
Short text (35 words) 600 x x x x x x x x x x x x x
German text (machine) 543 x x
Contrastive decoding (α = 0.1) 272 x
Contrastive decoding (α = 0.6) 272 x
Kaggle prompt 542 x x

be happy to help.”, “Sorry, I cannot. . . ”, “Here’s your article:”, “Here are 10 paragraphs:” or “In this article, I will. . . ”,
markers and placeholders such as “[your name]”, ”[email]” or “[end of article]”, but also more complex

structural artifacts. Typical structural artifacts included numbering of individual paragraphs, excessive

use of bulleted lists, or newlines after the dateline. A very peculiar artifact many LLMs exhibited was

to append a bulleted list of “quotations” from the spokespersons to the end of the article instead of

incorporating them into the article itself. Some LLMs also liked giving (very “approximate”) word or

paragraph counts at the end. With the exception of Llama2, the open-source LLMs tended to produce

more such artifacts than the closed-source LLMs.

As a final post-processing step, we truncated the (generally longer) human texts in the bootstrap

dataset to approximately the same length as the average LLM text. We did this by fitting a log-normal

distribution to the LLM text lengths and truncated the human texts accordingly by drawing from this

distribution. To avoid cutting texts in the middle of sentences, we used the drawn text lengths only as a

starting point to search for the nearest paragraph ending within a window of at most 200 characters.

Bootstrap and Main Test Split

We initially published 1,087 of the original 1,359 human-authored articles, together with the re-generated

counterparts from 13 of the 16 LLMs. This “bootstrap” (i.e., training) dataset was released so the

participants could calibrate their systems. The texts from each LLM were collected in a separate

newline-delimited JSON files together with one file for all human texts.

The remaining 272 human-authored articles and their counterparts were kept back for testing. This

resulted in 3,984 test cases (pairs of human and generated texts), which together form the main
(sub-)collection of the test set. The test set is formatted also as newline-delimited JSON, but in a single

file. Each line contains one of the original human texts and its corresponding machine generations as

a random-order pair. Texts within a pair were cut to the same number of words within a window of

65 words, trying to preserve full sentences if possible.

Notably, all generated text variants from Llama2 13B with contrastive decoding and the higher-

temperature variant of Gemini Pro were excluded completely from the “bootstrap” data to test how

robust detectors are to unseen models. In contrast, all variants from Alpaca 13B were added only to the

bootstrap dataset.



Test Data Variations for Robustness Evaluation

To further test the robustness of the submitted systems against certain text modifications, we generated

multiple, unknown variants of the original test cases:

1. For German Text, we amended the prompt to generate German instead of English texts. This

was already part of the Main Test set but not of the initially published bootstrap dataset.

2. For Unicode, we replaced 15 % of the characters in (a) the machine texts and (b) both the human

and machine texts with Unicode lookalike characters.

3. For Cross-topic, we shuffled the test case pairings to break the topic coherence.

4. For Contrastive Decoding, we used contrastive decoding [72] instead of top-𝑘 / top-𝑝 sampling;

5. For Short Text, we cropped the texts to 35 words; and

6. For Kaggle Paraphrase, we used the prompt from a previous Kaggle competition on LLM

detection [2] to generate more faithful and direct paraphrases of the original articles:

The following is a human-written article. Now, please rewrite this article in

your writing style, also optimize sentence structures and correct grammatical

errors. You can appropriately add or remove content associated with the

article, but should keep the general meaning unchanged. Just return the

modified article.

It is followed by the original text instead of the bullet-point summary.

In total, we created 65 test set variants from the 13 source LLMs and the eight conditions given above.

Table 3 shows a systematic overview of all variants.

4. Evaluation

At test time, participants were given pairs of human and LLM texts and had to calculate a score between

0 and 1 indicating which text was more likely to be human. Scores below 0.5 indicate that the left text

is human, and scores above 0.5 indicate that the right text is human. A score of exactly 0.5 could be

given to signal a non-decision. We borrowed this scoring scheme from previous iterations of the PAN

authorship verification task.

We evaluate the overall effectiveness of the systems on each dataset variant as the arithmetic mean of

the following five metrics, which have also been used for evaluation in previous PAN shared tasks on

authorship verification (all with comparable 0–1 scales):

• Roc-Auc: The area under the Receiver Operating Characteristic curve.

• Brier: The complement of the Brier score, which is in our case equivalent to the mean squared

loss.

• C@1: A modified accuracy score that assigns non-answers (score = 0.5) the average accuracy of

the remaining cases.

• F1: The harmonic mean of precision and recall.

• F0.5u: A modified F0.5 measure (precision-weighted F measure) that treats non-answers (score =

0.5) as false negatives.

All metrics were corrected by discounting half a standard deviation, estimated on each dataset

individually, from the system’s scores with 𝑛− 1 degrees of freedom. This penalizes unstable systems

with widely varying scores on the individual dataset variants, and promotes systems that are more

robust to text obfuscation or other text modifications (even if their mean performance may be slightly

worse than that of other systems). We decided to use the macro average across all datasets because, even

though the datasets have different numbers of examples, we consider all datasets equally important as

performance indicators.



Table 4
Final PAN leader board. Systems are ranked by the mean of all evaluation measures across all other metrics on
the main dataset discounted by half a standard deviation to correct for spread.

Team ROC-AUC Brier C@1 F1 F0.5u Mean

1 Tavan [23] 0.961 0.928 0.912 0.884 0.932 0.924
2 J. Huang [24] 0.931 0.926 0.928 0.905 0.913 0.921
3 Lorenz [25] 0.925 0.869 0.882 0.875 0.869 0.886
4 M. Guo [26] 0.889 0.875 0.887 0.884 0.884 0.884
5 Zi. Lin [27] 0.851 0.850 0.850 0.852 0.849 0.851
6 Abburi [28] 0.866 0.863 0.834 0.825 0.820 0.843
7 Miralles [29] 0.831 0.825 0.795 0.788 0.782 0.806
8 Yadagiri [30] 0.844 0.793 0.805 0.789 0.792 0.806
9 Lv [31] 0.833 0.867 0.799 0.748 0.767 0.804

10 Gritsai [32] 0.853 0.862 0.795 0.718 0.742 0.796
11 Cao [33] 0.777 0.777 0.777 0.780 0.777 0.778
12 L. Guo [34] 0.799 0.788 0.740 0.740 0.741 0.763

Baseline Binoculars (Falcon 7B) [12] 0.751 0.780 0.734 0.720 0.720 0.741
13 B. Huang [35] 0.756* 0.782* 0.726* 0.706* 0.703* 0.735*
14 Valdez-Valenzuela [36] 0.741* 0.760* 0.718* 0.711* 0.695* 0.727*
15 Ye [37] 0.901 0.758 0.733 0.549 0.653 0.722
16 Chen [38] 0.692 0.678 0.678 0.732 0.680 0.694
17 W. Huang [39] 0.736 0.731 0.731 0.590 0.614 0.683
18 Qin [40] 0.689* 0.730* 0.672* 0.652* 0.652* 0.680*

Baseline Binoculars (Mistral 7B) [12] 0.676 0.711 0.663 0.654 0.648 0.671
Baseline DetectLLM LRR (Mistral 7B) [13] 0.656 0.758 0.617 0.618 0.618 0.654

19 Petropoulos [41] 0.594 0.694 0.670 0.631 0.590 0.641
Baseline Fast-DetectGPT (Mistral 7B) [15] 0.637 0.710 0.616 0.611 0.608 0.638

20 Z. Wu [42] 0.645 0.649 0.587 0.578 0.577 0.608
Baseline Text Length 0.608 0.607 0.607 0.596 0.596 0.604

21 gra† 0.500 0.750 0.467 0.634 0.521 0.574
22 Zh. Lin [43] 0.593 0.598 0.598 0.458 0.565 0.565
23 Zhu [44] 0.627 0.660 0.590 0.442 0.433 0.555

Baseline PPMd Compression-based Cosine [19, 20] 0.555 0.622 0.523 0.508 0.507 0.544
24 Sun [45] 0.525 0.622 0.506 0.499 0.498 0.531

Baseline DetectLLM NPR (Mistral 7B) [13] 0.497 0.602 0.494 0.481 0.481 0.512
25 Lei [46] 0.598 0.604 0.604 0.318 0.378 0.504

Baseline Fast-DetectGPT (Falcon 7B) [15] 0.480 0.626 0.474 0.457 0.458 0.500
26 Liu [47] 0.464 0.660 0.462 0.448 0.448 0.497
27 e-comm-tech† 0.463 0.651 0.467 0.445 0.446 0.497

Baseline DetectGPT (Mistral 7B) [14] 0.472 0.552 0.476 0.468 0.465 0.488
28 K. Huang [48] 0.645 0.798 0.325 0.307 0.323 0.480

Baseline DetectLLM NPR (Falcon 7B) [13] 0.445 0.575 0.449 0.432 0.433 0.468
Baseline Authorship Unmasking [21, 22] 0.586 0.749 0.337 0.323 0.328 0.467

29 Sheykhlan [49] 0.627 0.789 0.304 0.282 0.296 0.460
Baseline DetectLLM LRR (Falcon 7B) [13] 0.441 0.600 0.428 0.413 0.413 0.460

30 G. Wu [50] 0.493 0.586 0.409 0.366 0.382 0.450
Baseline DetectGPT (Falcon 7B) [14] 0.409 0.526 0.425 0.413 0.412 0.439

* Scores estimated due to run failures on short texts. † No notebook submitted.

4.1. PAN Submission Ranking

We determined the final rank of each system by its macro-average mean effectiveness across all 𝑛 = 70
dataset variants (including the five ELOQUENT submissions). Table 4 lists all systems sorted by their

rank. Twelve of the systems beat the best baseline (Binoculars with Falcon 7B). Six more beat the

second-best baseline (Binoculars with Mistral 7B). Figure 4 visualizes the mean score distribution of the

systems as a boxplot. It can be seen that weaker systems not only have a lower mean score, but also a

much higher variance over the different dataset variants. The bottom half of the systems even have

worse-than-random scores on some variants, while performing quite well on others.



Table 5
PAN leader board considering only the unobfuscated main test collection. Systems are ranked by the mean of all
evaluation measures across all other metrics discounted by half a standard deviation to correct for spread. The
final ranking on all dataset variants is given in Table 4.

Team ROC-AUC Brier C@1 F1 F0.5u Mean

1 Tavan [23] 0.999 0.990 0.993 0.993 0.997 0.995
2 Valdez-Valenzuela [36] 0.985 0.985 0.985 0.985 0.983 0.985
3 Zi. Lin [27] 0.979 0.979 0.979 0.979 0.980 0.979
4 J. Huang [24] 0.980 0.980 0.980 0.979 0.977 0.979
5 L. Guo [34] 0.979 0.963 0.947 0.947 0.945 0.957
6 W. Huang [39] 0.955 0.955 0.955 0.954 0.954 0.955
7 Miralles [29] 0.972 0.929 0.955 0.954 0.954 0.953
8 Abburi [28] 0.979 0.945 0.943 0.940 0.943 0.950
9 Lorenz [25] 0.973 0.898 0.952 0.951 0.950 0.946

Baseline Binoculars (Falcon 7B) [12] 0.943 0.928 0.926 0.920 0.922 0.928
10 Gritsai [32] 0.935 0.925 0.933 0.905 0.909 0.921
11 M. Guo [26] 0.915 0.911 0.920 0.919 0.916 0.916
12 Yadagiri [30] 0.961 0.871 0.916 0.893 0.899 0.908
13 Ye [37] 0.966 0.887 0.874 0.851 0.929 0.904
14 Chen [38] 0.885 0.886 0.886 0.898 0.856 0.882

Baseline Binoculars (Mistral 7B) [12] 0.886 0.884 0.866 0.866 0.860 0.873
15 B. Huang [35] 0.866 0.878 0.861 0.856 0.856 0.863
16 Z. Wu [42] 0.907 0.854 0.809 0.807 0.813 0.838
17 Lv [31] 0.820 0.899 0.793 0.781 0.787 0.816

Baseline Fast-DetectGPT (Mistral 7B) [15] 0.806 0.783 0.807 0.805 0.806 0.802
18 Cao [33] 0.798 0.798 0.798 0.796 0.797 0.797
19 Qin [40] 0.782 0.819 0.793 0.786 0.785 0.793
20 Zhu [44] 0.853 0.794 0.730 0.772 0.744 0.782
21 Sheykhlan [49] 0.807 0.858 0.674 0.641 0.656 0.727

Baseline PPMd Compression-based Cosine [19, 20] 0.750 0.753 0.695 0.696 0.692 0.718
22 K. Huang 0.789 0.865 0.646 0.610 0.625 0.707
23 Petropoulos [41] 0.731 0.749 0.738 0.616 0.585 0.684
24 Sun [45] 0.646 0.744 0.649 0.646 0.647 0.667

Baseline Authorship Unmasking [21, 22] 0.655 0.757 0.632 0.595 0.608 0.651
Baseline DetectLLM-NPR (Mistral 7B) [13] 0.635 0.701 0.598 0.597 0.599 0.626
Baseline Fast-DetectGPT (Falcon 7B) [15] 0.576 0.722 0.593 0.579 0.582 0.611

25 Zh. Lin [43] 0.624 0.624 0.624 0.548 0.628 0.610
26 Liu [47] 0.587 0.720 0.583 0.566 0.572 0.606

Baseline DetectLLM-LRR (Mistral 7B) [13] 0.593 0.742 0.558 0.561 0.562 0.604
27 Lei [46] 0.631 0.630 0.630 0.508 0.612 0.602

Baseline Text Length 0.601 0.600 0.600 0.604 0.603 0.602
28 gra† 0.500 0.750 0.488 0.656 0.544 0.587

Baseline DetectLLM-NPR (Falcon 7B) [13] 0.584 0.680 0.559 0.551 0.550 0.585
Baseline DetectLLM-LRR (Falcon 7B) [13] 0.558 0.704 0.539 0.533 0.536 0.575
Baseline DetectGPT (Mistral 7B) [14] 0.550 0.671 0.532 0.533 0.532 0.564
Baseline DetectGPT (Falcon 7B) [14] 0.493 0.663 0.489 0.487 0.487 0.525

29 e-comm-tech† 0.476 0.654 0.473 0.458 0.461 0.505
30 G. Wu [50] 0.487 0.574 0.427 0.384 0.402 0.456

† No notebook submitted.

In comparison, Table 5 shows the system rankings only on the more homogeneous and thus easier

main test collection (without obfuscations and length restrictions, but with two German variants). In

both rankings, Tavan and Najafi [23] ranks first, but the middle and lower ranks differ substantially,

leading to an overall moderate to strong mean score rank correlation coefficient (Kendall’s 𝜏 = .661,

𝑝 ≪ .001). When measuring the main collection only, more systems outperform the lower baselines,

but not the Binoculars baseline, which is actually beaten by fewer systems. Larger rank differences

can also be seen among the top ranks. A notable example are Lorenz et al. [25], who rank ninth place

on the main collection, but third place on all dataset variants. Conversely, Valdez-Valenzuela and

Gómez-Adorno [36], who rank second on the main collection, rank only 14th on all dataset variants
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Figure 4: Mean score of all systems on each dataset variant in order of their rank (see Table 4). Baselines are
marked in gray. Weaker systems tend to have not only a smal ler mean score, but also a much larger variance
across different dataset variants.
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Figure 5: Left: Detection difficulty of all individual PAN test collections and the mean of all ELOQUENT
submissions in comparison. Right: Detection difficulty of individual ELOQUENT submissions. The difficulty of a
dataset is the inverse mean detection score of either the 10 best-performing systems or all systems. German texts
are not shown separately, as they were part of the main collection. A more detailed comparison of individual
dataset variants is given in Figure 6.

(although it should be noted that their short-text performance had to be estimated due to run failures).

This shows that the top performance of many systems does not generalize well to unexpected or

out-of-domain test cases. The top three systems [23, 24, 25], on the other hand, defy this trend and

generalize quite well. Interestingly, all three use different approaches. Tavan and Najafi [23] built an

ensemble with Binoculars and a fine-tuned Mistral LLM, Huang et al. [24] use a BERT classifier trained

with PU loss [51] on sentence trigrams, and Lorenz et al. [25] employ a TF-IDF-based SVM classifier

with surprisingly strong results.

4.2. PAN Dataset Variant Discussion

Figure 5 visualizes the difficulty of the PAN test collections. We determine the difficulty of a dataset

by the inverse mean effectiveness score of the detection systems. Figure 6 shows in more detail the

difficulty of all individual dataset variants that are part of the collections (in this case, based only on the

scores of the ten best-performing systems).

Which of the other dataset variants was particularly difficult varied from system to system. Truncating

texts to 35 words unsurprisingly yielded the most difficult dataset variant and all systems struggled

with it. Three of systems even failed to run at all on these texts due to hard-coded assumptions in the

software about the minimum length of a text. The effectiveness scores of these systems on the missing

dataset variants was therefore estimated using the mean effectiveness score of all other systems. The

three systems this affects [35, 40, 36] are marked with an asterisk in Table 4 and Figure 4.

Already part of the main test collection, but on its own very challenging for most systems was the

set of German texts. Systems that relied on multilingual LLMs (such as Tavan and Najafi [23]) were

less affected, but many other systems struggled. Interestingly, Lorenz et al. [25], achieved near-perfect

scores on the German variant despite using a term-based SVM classifier with a fixed-length vocabulary

trained on English texts. This suggests that the classifier fitted more on the typical characteristics of a

human text rather than what makes a typical LLM text.

Of course, more difficult than short texts or German texts on their own were short German texts.

Similarly, breaking the topic coherence (“cross-topic”) on its own was not very effective in making the

dataset more difficult, but combining this condition with the German texts produced one of the most

challenging variants (see Table Figure 6).
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Figure 6: Detection difficulty of all individual LLMs and the dataset variants created from them according to the
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Table 6
ELOQUENT leader board. The given scores are the mean inverse detection scores of the 10 best PAN systems.

Team ROC-AUC–1 Brier–1 C@1–1 F1
–1 F0.5u

–1 Mean–1

1 GPT-SW3 0.023 0.064 0.051 0.056 0.051 0.049
Baseline ChatGPT-3.5 0.021 0.056 0.032 0.042 0.034 0.037

2 Verbanex 0.012 0.048 0.024 0.031 0.025 0.028
3 Reindeer Mistral 0.009 0.046 0.020 0.024 0.017 0.023
4 Reindeer Poro 0.001 0.035 0.006 0.013 0.008 0.012

Unicode lookalike character replacements in the machine texts were another difficult obfuscation

even for the best systems, whereas making the same replacements in the human texts as well equalized

the effect to a certain degree. The resulting dataset variant in which both texts of a pair were obfuscated,

was slightly less difficult than if only the machine text was obfuscated, yet still significantly more

difficult than the unobfuscated original texts.

Contrastive decoding emerged as the easiest variant of all, even easier than the main dataset. However,

this should be taken with a large grain of salt, since we used only Llama2 13B with two different settings

for the hyper parameter α for creating these texts and Llama2 itself turned out to be the easiest LLM to

detect (also see Figure 6).

4.3. ELOQUENT Submission Ranking

The ELOQUENT leader board is listed in Table 6. Of the four ELOQUENT submissions, only one

submission (GPT-SW3) managed to beat the GPT-3.5 baseline in terms of dataset difficulty and all five

(including the baseline) rank in the range of the PAN main test collection (see Figure 5 and Figure 6).

None of the submissions proved more effective than any of the other PAN conditions, such as Unicode

obfuscations or shortening the text length. This sobering result only goes to show how difficult to hide

the fingerprints of current-generation LLMs still are without making drastic text modifications.

5. Conclusion

This year’s shared task was designed as a builder-breaker task in collaboration with the ELOQUENT

lab. PAN participants would build systems to detect LLM-generated texts and ELOQUENT participants

would submit datasets trying to break the detectors.

In total, we received LLM detection systems from 30 different participants and evaluated them on

70 different dataset variants, five of which were contributed by ELOQUENT (including one baseline). Of

the systems submitted to PAN, twelve beat the best of the provided baselines, demonstrating a robust

performance across all dataset variants. The dataset variants were designed to test the generalization

capabilities of the systems by exposing them to unseen and possibly unexpected conditions. We

implemented this by replacing characters with Unicode lookalikes, shortening the texts to 35 words,

generating German instead of English texts, and other similar means. Many of these variants proved

quite challenging for the systems, though the best systems were able to handle most of them well.

ELOQUENT received four submissions, one of which beat the provided baseline. Unfortunately, none

of the submissions proved effective enough to reduce the detection performance of the PAN systems.

We conclude that current LLMs are still easy to detect (some more than others) and their stylistic

fingerprints are hard to hide. On the other hand, none of the detection systems managed to classify

all test cases correctly, which means that despite all, there is a margin of error and we can expect this

margin to increase with newer and better LLMs.
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