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Abstract
This paper describes the participation of the HU-WBI team at the BioASQ 12B Phase A shared task for retrieving
the top 10 most relevant PubMed abstracts for a given natural language query. Our approach focuses on using
BM25 for sparse first-stage retrieval and combining a variety of dense, neural models via rank fusion for second-
stage re-ranking. We train our neural models on question-answer pairs from previous editions of the task. The
neural re-rankers consist of (1) two distinct cross-encoders, one trained on a pairwise loss and one trained on
both token-level and document-level features, as well as (2) a large language model, generating synthetic queries
from documents returned by the first-stage retrieval and comparing their similarities to the original test query.
Our systems achieved competitive results placing third in the second official evaluation batch and eleventh both
in the third and forth batch which corresponds to the second best team in the second batch and third best team in
the other ones.
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1. Introduction

BioASQ [1, 2] is a long-running challenge dealing with indexing, classification and question answering
over a corpus of biomedical academic publications. This year is the twelfth edition of the challenge [3]
and we here present the contribution of the HU-WBI group to the task 12B of BioASQ [4]. Task 12B is
about returning a ranked list of PubMed abstracts answering a given biomedical question formulated in
natural language. Further parts of the task are then concerned with identifying relevant text spans in
the retrieved documents and crafting natural language answers to the given questions, we here focus
on the information retrieval and document ranking problem described above.

Information retrieval (IR) is a key field to systematically handle the evergrowing amount of in-
formation and literature available each day. One of the main task in IR is to return a ranked list of
documents over a given document corpus sorted by their relevance according to a given user query.
Classic strong approaches for solving the task are keyword matching and vector-based methods like
BM25 [5]. Recently, IR models based on neural networks have gained popularity with the advent of
Transformers-based architectures [6]. Neural or dense retrievers like DPR [7] encode both query and
documents into 𝑑-dimensional vectors where 𝑑 << |𝑉 |, 𝑉 being the vocabulary of the underlying
corpus. Similarity measures of the query and vector embeddings are computed and the most similar
documents are ranked on top.

In the previous iterations of the task, there has been widespread experimentation with dense retriever
architectures on different kinds of training data: [8] train dense retrievers on PubMed search click logs
whereas approaches like BitUA [9] tinker with BM25 negatives. All these approaches do make use of
the manually annotated query-article relevance pairs from previous editions of the BioASQ challenge.

Our approach focuses on using BM25 for sparse first-stage retrieval and combining a variety of
dense, neural models via rank fusion for second-stage re-ranking. We explored a plethora of dense
retrievers, both pre-trained models and models fine-tuned by us and experimented which combination
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of models performed the best in aggregation using reciprocal rank fusion [10]. The neural re-rankers
we developed consist of (1) two distinct cross-encoders, one trained on a pairwise loss and one trained
on both token-level and document-level features, as well as (2) a large language model, generating
synthetic queries from documents returned by the first-stage retrieval and comparing their similarities
to the original test query.

Our systems achieved competitive results placing third in the second official test batch reaching a
MAP score of 22.23 percent compared to the 22.93 percent MAP score of the best model and eleventh both
in the third and final forth batch (6 percentage points (pp) and 4 pp difference to the best competitor).
These results place us overall as the second best team in the second batch and third best team in the
other ones as each team was allowed to submit up to five systems per batch.

The rest of the paper is structured as follows: In Section 2, we go over the models developed and
used for our experiments. In Section 3, we present the results our models achieved on the official test
batches and in Section 4, we present ablation studies on the models we have considered using. Finally,
we sum up the findings of our experiments in Section 5.

2. Methodology

We here present the pre-trained models we used for initial document retrieval as well as subsequent
re-ranking and the models we fine-tuned ourselves. For the final model predictions, we implemented an
ensemble approach by applying reciprocal rank fusion [11] to consolidate the outputs to a single result.

2.1. Retriever

We tested both sparse and dense approaches for the initial candidate retrieval: BM25 [5], MedCPT [12]
and E5 [13] . For BM25, we set the hyper-parameters 𝑏 = 0.75 and 𝑘 = 1.2 as found to work best for
BioASQ training data by [9] and store the indexed documents in ElasticSearch1. For MedCPT and E5,
we store and retrieve the dense document embeddings via FAISS [14]. Document retrieval is performed
over the PubMed 2024 baseline and returns the top 𝑘 ∈ {100, 1000} documents as results.

2.2. Re-ranker

After retrieving the top 𝑘 documents from the retriever, the document re-rankers assign new scores to
the documents via vector similarity or cross-encoder attention. The new updated ranking based on
the re-ranker scores is then returned as the output. We now present the pre-trained and fine-tuned
approaches we have considered for our experiments.

Pre-trained Dense Rerankers Regarding dense-retrieval, we experimented with the MedCPT
retriever (MedCPT), the MedCPT cross-encoder (MedCPT CE) and the E5 cross-encoder (E5 CE). We
also fine-tuned a version of the MedCPT cross-encoder (MedCPT CE v2) on the BioASQ training data
continuing from their publicly available checkpoint.

Cross-encoder with sequence-level loss and token-level loss (SeqTok) For our first fine-tuned
model, we train a cross-encoder on both sequence-level and token-level features from the BioASQ
training data. Our aim is to make use of the annotation of the exact text spans relevant in a retrieved
document which are of importance for the subsequent snippet identification task of Phase A. We
calculate two separate losses for each document: The sequence-level loss is a cross entropy loss based
on the binary relevance of a given query-document pair, i.e. the document was marked as relevant to
the question. The token-level loss is a token level cross entropy loss for whether the token answers the
query, i.e. token is part of the answer span as provided in the training data. We use IOB-notation to
denote the labels for each tokens.

1https://www.elastic.co/



During model training, we combine both losses via a weighted sum

Loss = 𝜆𝑆𝑒𝑞 · SeqLoss + 𝜆𝑇𝑜𝑘 · TokLoss,

where we set 𝜆𝑆𝑒𝑞 = 𝜆𝑇𝑜𝑘 = 1. As additional training signal, we make use of hard negatives provided
by BM25 [9].

When we calculate re-ranking scores we calculate two independent document relevance scores, one
for sequence level and one for token level features. The token score is the average logit score of all the
tokens that have been predicted as part of the answer span (Seq). The sequence score is just the logit
score of the whole document given by the BERT [𝐶𝐿𝑆] token (Tok). We include both scores as separate
models to be considered for the rank fusion.

Cross-encoder with pairwise loss (Pair) For our second fine-tuned dense retriever, we are training
a neural network using pairs of documents given an input query. Instead of assigning a binary relevance
label relevant/not relevant to the input query, we are ranking the relevance of an input pair (𝑑𝑜𝑐1, 𝑑𝑜𝑐2)
relative to each other, i.e., either 𝑑𝑜𝑐1 is more relevant than 𝑑𝑜𝑐2 or vice versa.

Let 𝑑𝑜𝑐1 be a relevant document and 𝑑𝑜𝑐2 be an irrelevant document for a given query 𝑞. We create
training pairs (𝑑𝑜𝑐1, 𝑑𝑜𝑐2) in two variants as follows:

• Pair v1: For each relevant 𝑑𝑜𝑐1, we randomly sample one BM25 negatives from the same query.
• Pair v2: For each relevant 𝑑𝑜𝑐1, we randomly sample two BM25 negatives from the same query

and one relevant document from another query as our negative documents 𝑑𝑜𝑐2s. Then for each
query 𝑞, we sample negative documents 𝑑𝑜𝑐2s up to the number 𝑚𝑎𝑥𝑛𝑒𝑔 = 20 and pair them
with at least one relevant document 𝑑𝑜𝑐1 for the query 𝑞. This ensures that we see a minimum
amount of 𝑚𝑎𝑥𝑛𝑒𝑔 training pairs for each query instead of potentially only having one example
as in Pair v1.

To implement the pairwise loss, we then use a sigmoid function to force all document logits to be in the
range of [0, 1]. Afterwards, we use the torch.nn.MarginRankingLoss2 loss function with a margin
of 0.1 to ensure that the relevant document 𝑑𝑜𝑐1 receives a higher score than the irrelevant 𝑑𝑜𝑐2.

Model parameters of all our custom re-rankers are initialized based on the BioLink-BERT base
checkpoint [15].

GPT Re-ranker with query generation (GPT and GPT-CoT) For each document retrieved, we use
GPT-3.5 [16] to generate queries that the title and the abstract answers. We use one model with chain-
of-thought prompting [17] (GPT-CoT) and one without (GPT), asking the model to answer the query
and to finally discriminate whether the query is answered by the document. We show an example with
the prompt in Figure 1. After generating the questions for each document, we re-rank the documents
using the average of the top two similarities between generated queries and the query from the task. To
calculate the similarities we use the MedCPT-Query-Encoder [12].

2.3. Reciprocal Rank Fusion

In order to aggregate the predictions of our various models we use reciprocal rank fusion (RRF) [10]. The
final ranking score of a given document 𝑑 in the whole corpus 𝐷 is then calculated over its individuals
ranks 𝑟(𝑑) in the set of all rankings 𝑅 we take into account by

𝑅𝑅𝐹 (𝑑 ∈ 𝐷) =
∑︁
𝑟∈𝑅

1

𝑘 + 𝑟(𝑑)
,

where the constant 𝑘 helps reducing the influence of outlier rankings significantly differing from the
other one and is determined empirically on our training data.

In our preliminary studies, we have also considered other rank fusion methods like Min-Max Norm,
combsum and combmnz with z/zmuv normalization [18, 19] that did not perform as well as RRF however.
2https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html



Please write at least 10 different search queries that a clinician might need answers to that are answered in
the abstract of the peer-reviewed academic paper provided. For each search query, provide a short and concise
answer using only the abstract provided. After you have answered the search query, make a final correction as
to whether the abstract provided actually answers the query using the following labels: "ANSWERS", "DOES
NOT ANSWER". Be careful not to refer directly to the abstract or study provided in the search queries. We are
only interested in general search queries that a clinician would look for answers to before seeing the abstract
and the details provided. The search queries are answered by the abstract coincidentally.
Use following structure:
QUESTION: [QUESTION OR QUERY]
ANSWER: [SHORT BUT SOUND ANSWER]
CORRECTION: [ANSWERS|DOES NOT ANSWER]
For example, consider following abstracts and corresponding question and answer pairs:
ABSTRACT
# In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: a phase 1 and 2 trial
Recessive dystrophic epidermolysis bullosa (RDEB) is a lifelong genodermatosis associated with blistering,
wounding, and scarring caused by mutations in COL7A1, the gene encoding the anchoring fibril component,
collagen VII (C7). Here, we evaluated beremagene geperpavec (B-VEC), an engineered, non-replicating COL7A1
containing herpes simplex virus type 1 (HSV-1) vector, to treat RDEB skin. B-VEC restored C7 expression
in RDEB keratinocytes, fibroblasts, RDEB mice and human RDEB xenografts. Subsequently, a randomized,
placebo-controlled, phase 1 and 2 clinical trial (NCT03536143) evaluated matched wounds from nine RDEB
patients receiving topical B-VEC or placebo repeatedly over 12 weeks. No grade 2 or above B-VEC-related
adverse events or vector shedding or tissue-bound skin immunoreactants were noted. HSV-1 and C7 antibodies
sometimes presented at baseline or increased after B-VEC treatment without an apparent impact on safety or
efficacy. Primary and secondary objectives of C7 expression, anchoring fibril assembly, wound surface area
reduction, duration of wound closure, and time to wound closure following B-VEC treatment were met. A
patient-reported pain-severity secondary outcome was not assessed given the small proportion of wounds
treated. A global assessment secondary endpoint was not pursued due to redundancy with regard to other
endpoints. These studies show that B-VEC is an easily administered, safely tolerated, topical molecular corrective
therapy promoting wound healing in patients with RDEB.
QUESTION: Beremagene Geperpavec is tested for which disease?
ANSWER: Beremagene Geperpavec was tested for recessive dystrophic epidermolysis bullosa.
DECISION: ANSWERS
ABSTRACT
{. . . EXAMPLE #2 . . . }
Here is the provided abstract for an academic paper and the question:
ABSTRACT

Figure 1: Prompt for the GPT re-ranker. Few-shot example is shown in color (blue).

3. Results

In this section, we present the final systems that we submitted for each batch and report the performance
they achieved. An overview of the results can be found in Table 1. We experimented with the output
of single models only but found out that an aggregation of model rankings with RRF always worked
best. All the systems submitted using RRF include the following model rankings: BM25, MedCPT CE
and SeqTok. Additionally each system used additional rankings from different models in their RRF. We
present all systems used in our test submission in Table 1 whereas the model abbreviatons correspond
to the model names introduced above.

Each team could submit up to five systems for each test batch. The results for all our systems
and the best overall competitor are shown in Table 1. In the first batch, we only submitted our base
𝑅𝑅𝐹 . In the individual system ranking, it reached the 20th place with a MAP score of 10.94 around 10
percentage points (pp) behind the top competitor system. However, for this batch we had not updated
the document corpus to the PubMed 2024 baseline so the model operated on the 2023 baseline. Two
third of the relevant documents in first batch originated from the 2024 PubMed baseline, making our
model underperform. We fixed this for all model rankings in the second batch, except for the GPT
re-ranker, which negatively affected the results for the respective systems 2-5 of that batch.



System using RRF
Batch 1 Batch 2 Batch 3 Batch 4

F1 MAP Rank F1 MAP Rank F1 MAP Rank F1 MAP Rank

BM25, MedCPT CE, SeqTok 07.12 10.94 20 13.97 22.23 3 11.80 16.55 17 13.86 33.88 13
+ GPT – 12.00 15.53 18 – –
+ GPT, MedCPT – 10.89 13.57 23 – –
+ GPT, Pair v1 – 13.61 18.78 12 – –
+ GPT-CoT, MedCPT, Pair v1 – 12.05 16.99 14 – –
+ Pair v2 – – 12.85 18.63 13 14.06 32.74 15
+ GPT-CoT, Pair v2 – – 12.87 19.28 11 13.91 34.87 12
+ GPT-CoT, Pair v2, MedCPT, E5 – – 11.16 14.18 19 –
+ GPT-CoT, Pair v2, MedCPT, E5, E5 RR – – 11.22 15.26 18 –
+ Pair v2, MedCPT CE v2 – – – 13.89 33.39 14
+ Pair v2, MedCPT CE v2, GPT-CoT – – – 13.88 35.06 11

Top competitor 14.85 20.67 1 14.28 22.93 1 13.09 25.49 1 16.09 39.30 1

Median 9.51 10.73 20.5 10.29 11.51 26 9.09 12.50 29.5 11.02 17.69 24

Table 1
Overview of retriever and re-ranker models used for the reciprocal rank fusion (RRF) and their corresponding
results for BioASQ-task 12B on the official evaluation batches for phase A. Each team was allowed to submit up
to five systems for each batch.

In the second batch, our base RRF model reached the third place from all submitted systems with a
MAP of 22.23, around 0.7 pp behind the top competitor and second place considering the team rankings
showing a strong result for the proposed Seq-Tok training objective.

In the third and forth batches, our best models ranked the eleventh out of all submitted systems
and third in the team rankings. Here, the pairwise cross-encoder, the fine-tuning of the MedCPT
cross-encoder and the GPT re-ranker proved to mostly improve the base system, where as including
E5 dense embeddings for initial retrieval (E5) and re-ranking of the BM25 results (E5 RR) performed
significantly worse.

4. Discussion

4.1. Individual model performance

To determine which models to include in the RRF, we examine the results of our individual models
without RRF on our development set, test batch 2 of the BioASQ edition 11B, in Table 2. We observe that
dense retrievers like MedCPT Ret and E5 Ret perform much worse for initial retrieval than BM25. That

System Individual
Batch 1

F1 MAP

BM25 16.73 25.36
SeqTok (k=100) 18.75 22.96
SeqTok (k=1000) 14.34 20.02
MedCPT Ret 7.22 10.17
MedCPT CE v2 (k=100) 20.25 29.12
MedCPT CE v2 (k=1000) 20.29 28.75
GPT 18.75 22.96
Pair v2 (k=100) 21.98 34.53
Pair v2 (k=1000) 19.77 32.98
E5 CE (k=100) 19.25 19.93
E5 CE (k=1000) 16.93 17.10
E5 Ret 13.61 13.21

Table 2
Evaluation results on the test batch 2 of BioASQ-task 11B for our explored models. k=100 denotes that the
top-100 BM25 documents were fed into the re-ranker and k=1000 denotes the top-1000 documents respectively.



is why all our subsequent re-rankers use BM25 for the initial retrieval step instead of the output of the
dense retrievers. Regarding the top-k documents to be extracted by BM25, we see that only re-ranking
the top 100 documents instead of 1000 performs consistently better on our development set, so we only
re-rank the top 100 BM25 documents in our submitted systems.

Regarding individual re-ranker performance, we find that most of our re-rankers do not surpass
BM25 performance alone. However, using RRF, their inclusion improves the performance of the overall
ensemble. Only the fine-tuned MedCPT CE and the Pairwise v2 model consistently outperformed
BM25. The Pairwise v2 performed better than the first pairwise model in our preliminary experiments
therefore we omitted the first pairwise model from the batches three and four. However, it showed that
the addition of other models like GPT-CoT still benefitted the overall RRF results.

4.2. Model selection

Model selection of the rankings to be included in each RRF was conducted semi-automatically. For each
combination of initial retriever models and subsequent re-rankers, we calculated their RRF score on our
development sets and then decided which combination to submit.

In our experiments, we found that including the BM25 results in the RRF along with the re-rankings
separately is essential for good ensemble performance. In addition, both sequence and token scores
seemed to be important, so we always use both as separate models in the fusion. They added two pp
in our evaluations with a previous test batch. The MedCPT cross-encoder also consistently improved
the rank fusion results, so we included it in our base RRF system. However, including a version of the
MedCPT cross-encoder fine-tuned to the BioASQ training data only showed a 0.2 pp improvement.

4.3. Using LLM-generated queries

Th query matching approach with GPT represents an interpretable, reviewable approach which is
expandable by humans and needs to be only computed once. One interesting expansion on this idea for
future work is to actually store the queries that lead to a paper as metadata, which can be utilized as we
just did. Since we use it just to re-rank, the computation cost is minimal if the associated queries are
already available as metadata on the retrieved documents.

5. Conclusion

In this paper, we presented our contribution to the twelfth edition of the BioASQ challenge Task B Phase
A for document retrieval. We showed how to combine simple baselines like BM25, already pre-trained
neural models and own fine-tuned models via reciprocal rank fusion to achieve competitive results.
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