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Abstract
Generative AI Authorship Verification is a task that is given two pieces of text, one is a human text, and the
other is a text generated by AI, and determines which of them is a human text. In this paper, we accomplish
this task(Generative AI Authorship Verification) by contrastive learning, domain adaptation, and pre-trained
language models. Compared with traditional machine learning methods, we use self-supervised contrastive
learning and unsupervised domain adaptation methods to effectively utilize labeled source domain and unlabeled
target domain data, obtain features in human texts and AI texts, and use these Features to classify the text. It can
be seen from our experiments that on the validation set we constructed by ourselves, the average score of our
model in ROC-AUC, Brier, F1, c@1, and F0.5U reached 0.994, and the average score in the PAN test data was the
score reached 0.480.
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1. Introduction

As large language models (LLMs) improve and become more widely adopted, distinguishing between
human and machine-written text becomes increasingly challenging. Many classification methods exist
to help with this differentiation, but the fundamental feasibility of the task is rarely questioned. Drawing
on many years of experience in a related but broader field (authorship verification), we set out to answer
whether this task can be solved. The goal of the PAN@CLEF 2024 generative AI author verification
task [1] [2] is: given two texts, one written by a human and one written by a machine, pick out the
human.

In recent years, pre-trained language models have gradually matured and can be adapted to more
and more tasks, one of which is author identification. With contrastive learning and domain adaptation
methods being steadily developed, in order to understand the source of the text, such as ConDA [3],
a framework that use self-supervised contrastive learning and unsupervised text detection to label
through labeled data sets—unlabeled text to detect whether AI generates text from different sources.
In this paper, we will use the ConDA framework and the pre-trained language model RoBERTa [4] to
complete the AI text recognition task and discuss its effectiveness.

2. Background

The birth of generative text detection is mainly due to the increasing capabilities of LLMs. Without
specific training or guidance, the authenticity of the content generated by these LLMs is uncontrollable,
such as generating false news, patents, etc. Content harmful to society may be misleading or politically
incorrect to readers without good subjective judgment. To verify whether the text is human-written or
generated by AI, combined with Generative AI Authorship Verification @ PAN, we will explore this
work through different features generated by human writing and AI.
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Since AI-generated texts are difficult to distinguish by manual comparison alone, many methods
have been proposed in recent years for AI detection work in order to detect whether text is generated
by AI. For example, from simple feature-based classifiers to fine-tuned language model detectors to
distinguish whether the input text is written by humans or generated by AI [5], including detection
methods specifically for AI-generated news [6]; a related research direction is author attribution (AA).
Although early AA methods focused on human authors, recent studies have built models to identify
specific input text generators [7]. There is also the framework ConDA designed for AI text detection
based on self-supervised contrastive learning and unsupervised language adaptation used in this article.

Contrastive learning [8] focuses on comparing similar and dissimilar samples to learn data represen-
tations, creating high-quality features without explicit labels. This enhances generalization, which is
crucial for transfer learning across various tasks and data distributions.

Domain adaptation [9] helps machine learning models generalize from a source domain to a different
target domain, addressing performance degradation due to distribution differences. By fitting the model
to the target domain’s data distribution, domain adaptation improves the model’s performance on new
data.

Self-supervised contrastive learning leverages the inherent structural information of data to learn high-
quality feature representations without labels. When combined with unsupervised domain adaptation,
this approach enhances the model’s ability to accurately detect AI-generated text across various
generators without relying on extensive labeled data. This combination allows the model to learn
robustly in both source and target domains, acquiring universal features that improve performance in
the target domain.

3. Model Framework

In this paper, we adopt the contrastive learning domain adaptation framework and use the RoBERTa
model to obtain text features. The framework consists of a Source Domain(S) and a Target Domain(T).
During training, we input two texts into S and T respectively. The text input into the S is labeled,
whereas the text input into the T is unlabeled. For the S part, this part mainly inputs the labeled data
set. The data set can be expressed as 𝑆 = {𝑥𝑆𝑖 , 𝑦𝑆𝑖 }, 𝑥𝑆𝑖 represents the input article, and 𝑦𝑆𝑖 is the label
of 𝑥𝑆𝑖 , marking whether 𝑥𝑆𝑖 was written manually or by AI-generated. For the T part, this part mainly
inputs unlabeled data sets. The data set is represented as 𝑇 = {𝑥𝑇𝑖 }. The loss of T tags is mainly for S to
predict in T through model adaptation. The input articles from the source (𝑥𝑆𝑖 ) and target (𝑥𝑇𝑖 ) domains
undergo a text transformation to generate transformed samples 𝑥𝑆𝑗 and 𝑥𝑇𝑗 . This transformation helps
in aligning the representations of source and target domain texts.

To enable the original samples and the converted samples to be input at the same time and share
the weights of RoBERTa, we use a Siamese network. Through RoBERTa, use the [CLS] tag to obtain
the hidden layers of the input text: ℎ𝑆𝑖[CLS] and ℎ𝑆𝑗[CLS], and pass these embeddings into a projection
layer composed of MLP and hidden layers, and calculate the contrastive loss in their low-dimensional
projection space. The contrastive loss for the source is denoted by:

ℒ𝑆
𝑐𝑡𝑟 = −
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(𝑖,𝑗)∈𝑏

log
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𝑡

)︂ (1)

where 𝑧𝑆𝑖 and 𝑧𝑆𝑗 denote the projection layer embeddings for the original and the transformed text, 𝑡 is
the temperature, 𝑏 is the current mini-batch, 𝑠𝑖𝑚(·, ·) is a similarity metric which is cosine similarity in
our case. In the target, the contrastive loss is represented by 𝐿𝑐𝑡𝑟

𝑇 , and the equation is the same as (1).
For both the original text and the transformed text in the source domain, the CE loss is computed to

train the model to classify the text instances as either human-written or AI-generated correctly. The



transformation performed on the original text preserves the semantics of the text and hence is label-
preserving. In this case, we hope the classifier can also detect text with such small, semantic-preserving
perturbations. This not only improves the robustness of the classifier but also increases the versatility
of the detector. This binary classification task helps in learning to differentiate between the two types
of text. The CE loss for the source is denoted by:

ℒ𝑆
𝐶𝐸 = −1

𝑏

𝑏∑︁
𝑖=1

[︁
𝑦𝑖 log 𝑝

(︁
𝑦𝑖 | ℎ𝑆𝑖[𝐶𝐿𝑆]

)︁
+ (1− 𝑦𝑖) log

(︁
1− 𝑝

(︁
𝑦𝑖 | ℎ𝑆𝑖[𝐶𝐿𝑆]

)︁)︁]︁
(2)

where 𝐿𝑆
𝐶𝐸 denotes the CE loss for the original text, 𝑏 denotes the batch size. The CE loss of the

transformed text is represented by 𝐿𝑆′
𝐶𝐸 , and the equation is the same as (2).

MMD [10] is utilized to align the distributions of text embeddings between the source domain
(labeled data) and the target domain (unlabeled data). By minimizing the MMD, the model aims to reduce
the distributional dissonance between the two domains, ensuring that the learned representations are
domain-invariant. This encourages the model to learn domain-invariant features that effectively detect
AI-generated text across different generators. The MMD is denoted by:

𝑀𝑀𝐷(𝒮, 𝒯 ) = || 1
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where 𝑆 = {𝑥𝑆1 , 𝑥𝑆2 , 𝑥𝑆3 . . . , 𝑥𝑆𝑁} and 𝑇 = {𝑥𝑇1 , 𝑥𝑇2 , 𝑥𝑇3 . . . , 𝑥𝑇𝑁} are two samples drawn from the
distributions 𝒮 and 𝒯 . 𝜑 : 𝒮 ↦→ ℋ and H represents the RKHS space [11]. The RKHS mapping helps in
aligning the feature representations of the source and target domains in a higher-dimensional space. By
mapping the samples to a common RKHS, the MMD calculation aims to minimize the distributional
dissonance between the domains and learn domain-invariant representations that are effective for
domain adaptation.

The final training objective for our main framework is:
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where 𝜆1 and 𝜆2 are hyper-parameters.

Figure 1: Model Framework. The PLM refers to the pre-train language model (In this paper, it means roberta-
base); the PLM and MLP weights are shared across all four instances. The weights of S and T are independent of
each other to adapt to the specific characteristics and distribution of each domain. The final classes are derived
in the model during inference by passing the extracted features to the classification head



4. Experiment and Result

4.1. Experiment Setting

This paper chooses RoBERTa-base as an encoder with 12-layer, 768-hidden, 12-heads, and 110M pa-
rameters. The vocab size is 50,265. The maximum length of the encoder is set to 512. We used Adam
optimizer with the learning rate set to 2e-5. Our experiment was conducted on an A800 server. The
best performance is achieved through 10 epoch models.

4.2. Dataset

4.2.1. PAN Dataset

PAN@CLEF 2024 generative AI author verification task provides a bootstrap dataset of real and fake
news articles containing multiple 2021 US news headlines. The test set which includes contributions
from ELOQUENT participants, encompasses a variety of text types such as news articles, Wikipedia
intro texts, and fanfiction.The bootstrap dataset contains human text and text generated by multiple
large language models. There are 1,087 news topics, and each topic has human text and text generated
by various Ais, such as Alpaca, ChatGPT, LLaMA, etc.

4.2.2. External Dataset

For comparative learning, we also added an external dataset, TT-Grover-mega [12]. This dataset is made
for fake news detection. It contains text and labels. The labels are divided into human and grover_mega.
Human corresponding to human text, grover_mega is text generated by the Grover generation model.
This dataset has a strong correlation with the AI author recognition task. The types and number of
labels of the training set, validation set, and test set of this dataset are shown in Table 1.

Table 1
The types and number of labels of TT-Grover-mega

TT-Grover-mega Dataset Human number Grover number

Train 5964 5507

Validation 975 894

Test 1915 1763

4.3. Data Preprocessing

To allow the dataset to be used smoothly in experiments, we split the bootstrapping data set into a
training set, a verification set, and a test set. According to the human category and AI category, we
split these two types of datasets into training sets, verification sets, and test sets in a ratio of 9:1:2. For
the TT-Grover-mega Dataset, we retain its original quantity and modify its data format to the same
JSONL format as the bootstrap dataset.

4.4. Data Augmentation

To expand the dataset and improve the model’s generalization ability, we performed data enhancement
on the bootstrap dataset and TT-Grover-mega Dataset. Through sentence segmentation, we traversed
each article in the data set and extracted 10% of the words in the original article. Replace them with their
synonyms, and then recombine the enhanced sentences into articles. The enhanced data is combined
with the original data and their labels to generate an improved dataset.



4.5. Evaluation

When evaluating the model, we separate two sentences from the test set and make predictions. If the
model can accurately identify the types of both texts, we output a label in the range of (0, 1) as required.
If the two texts are recognized as the same category, indicating that the model is confused, we assign a
label of 0.5. To evaluate the performance of our model, we used the evaluation platform provided by
PAN, which includes the following metrics:
• ROC-AUC: the conventional area under the curve score.
• c@1: rewards systems that leave complicated problems unanswered [13].
• F_0.5u: focus on deciding same-author cases correctly [14].
• F1-score: harmonic way of combining the precision and recall of the model [15].
• Brier: Brier Score evaluates the accuracy of probabilistic predictions [16].

4.6. Results

Table 2 shows our experimental results.We conducted two experiments. Initially, we used TT-Grover-
mega as the source and the bootstrap data set as the target. However, this approach yielded suboptimal
results. Subsequently, we reversed the positions of the two samples. We hypothesize that this phe-
nomenon can be attributed to the minimal distributional disparity between the experimental test set and
the provided training set, thereby hindering our model’s domain adaptation capabilities. We observed a
significant improvement in our results after switching the data sets.

The first row is the bootstrap dataset as Source and the TT-Grover-mega Dataset as Target. The
second row is the results when the TT-Grover-mega Dataset is used as the Source and the bootstrap
dataset is used as the Target. We found that using the bootstrap dataset as the source and the TT-
grover-mega dataset as the target led to a significant improvement compared to swapping the two
datasets.

Table 3 demonstrates the performance of our model(PANSource, TTTarget) evaluated on the TIRA [17]
environment for PAN@CLEF 2024.

Table 4 demonstrates the final results obtained by our model in PAN@CLEF 2024

Table 2
The results of the test set

Approach ROC-AUC Brier C@1 F1 F0.5𝑢 Mean

Robert(TT𝑆𝑜𝑢𝑟𝑐𝑒,PAN𝑇𝑎𝑟𝑔𝑒𝑡) 0.658 0.778 1 0.359 0.41 0.641
Robert(PAN𝑆𝑜𝑢𝑟𝑐𝑒,TT𝑇𝑎𝑟𝑔𝑒𝑡) 1 0.994 1 0.987 0.99 0.994

Table 3
Results on pan24-authorship-verification-test

Approach ROC-AUC Brier C@1 F1 F0.5𝑢 Mean

current-boutique 0.951 0.924 0.922 0.844 0.868 0.902

Baseline Binoculars 0.972 0.957 0.966 0.964 0.965 0.965
Baseline Fast-DetectGPT (Mistral) 0.876 0.8 0.886 0.883 0.883 0.866
Baseline PPMd 0.795 0.798 0.754 0.753 0.749 0.77
Baseline Unmasking 0.697 0.774 0.691 0.658 0.666 0.697
Baseline Fast-DetectGPT 0.668 0.776 0.695 0.69 0.691 0.704



Table 4
Final results on pan24-authorship-verification

Approach ROC-AUC Brier C@1 F1 F0.5𝑢 Mean

current-boutique 0.645 0.798 0.325 0.307 0.323 0.480

5. Conclusion

We successfully completed the PAN@CLEF2024 generative AI authorship verification task in this
benchmark task through self-supervised contrastive learning and unsupervised domain adaptation.
Our results surpassed four baselines and achieved a mean score of 0.902, effectively distinguishing most
human-written texts from AI-generated texts. We found that if there are more text source generators
(referred to as LLMs), our method can capture the characteristics of the text more accurately and can
judge more texts of unknown origin, thereby determining whether the text is manually written or
generated by AI. We will take multi-language into consideration to achieve higher adaptability in the
future.
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