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Abstract
Team IUCL used a fine-tuned DeBERTa [1] with a sequence classification head as its basis. DeBERTa was
finetuned on an augmented dataset comprising the PAN24 [2] training set and the LOCO corpus [3]. LOCO is a
corpus consisting of conspiracy and mainstream texts for a range of conspiracy topics, including COVID related
narratives. By adding all LOCO texts, the training set increased by five times to around 20,000 texts. The team
utilized a balanced subset of 400 samples from the original dataset as the development set. Data augmentation
led to a significant improvement in model convergence, resulting in DeBERTa’s performance equaling that of a
Llama-2-7B model on the original dataset. The augmented DeBERTA model was evaluated on the PAN24 test set
and achieved an MCC score of 0.8388, achieving the best result out of 83 teams.
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1. Introduction

Team IUCL participated in the shared task on distinguishing between conspiracy and critical texts [2] at
PAN-CLEF [4]. The classification of critical and conspiracy texts presents a multifaceted challenge since
conspiracy theories are generally conveyed by insinuation rather than spelling them out. Thus, this
task requires a complex understanding of language and context, as well as sophisticated computational
methods capable of discerning subtle patterns and rhetorical strategies.

In our work, we explore different types of classifier, including statistical models, smaller and large
language models1. We investigate the classification of critical and conspiracy texts by leveraging data
augmentation of the training data. We use additional data from the LOCO corpus [3], an automatically
collected corpus of conspiracy websites and mainstream documents on the same topics. We also
investigate different strategies for data pre-processing and feature extraction, along with the different
machine learners and ensembles. We focus on subtask 1, binary classification, and on the English data
only. Our best system ranked 1st out of the 83 submissions for this subtask.

The remainder of this paper is structured as follows: Section 2 gives a brief overview of related work,
section 3 provides an overview of the data we used. Section 4 describes our methodology, and section 5
discusses our results. We conclude in section 6.

2. Related Work

The surge of conspiracy theories spread over social media and elsewhere has resulted in a renewed
interest among scholars to understand how conspiracy theories spread [5], who is susceptible to believing
conspiracy theories [6], to determine characteristics of conspiracy language [7], and to determine how
to detect conspiracy theory content automatically [8].
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Ethics professor fired for having ethics . ‚Äú My school implores me to be an authority on ethics and I ’m
here to tell you it ’s ethically wrong to coerce someone to take a vaccine . ‚Äù Fight back . AFLDS . org /
legal

Figure 1: Sample text from the training data.

In terms of computational approaches to conspiracy theory detection, Peskine et al. [9] used finetuned
large language models, to detect COVID-19 related conspiracy theories. Fort et al. [8] developed
methodology to robustly detect conspiracy theories out of domain. They argue that conspiracy theories
are not monolithic, and adherents believe in individual sets of factoids, generally of a range of conspiracy
theories. This necessitates a domain independent methodology. They show that by bleaching words
typical for individual conspiracy theories, an SVM becomes more robust out of domain. Reiter-Haas et al.
[10] investigate the use of semantic analyses in the form of Augmented Feature Representation (AMR)
graphs to analyze the framing used in health related conspiracy theories. They find that health-related
narratives in conspiracy media are mostly framed as beliefs while mainstream media generally use
terms of science.

3. Data and Data Augmentation

3.1. Data

Since we are participating in subtask 1, the binary classification, and on the English data, we describe
only that dataset here. The datasets provided by the shared task organizers were collected from the
Telegram platform, specifically addressing discussions surrounding the COVID-19 pandemic. The
training set comprises approximately 4 000 texts, each annotated as either CRITICAL or CONSPIRACY.
The training set is imbalanced, with 66% of the texts being critical and 33% conspiracy texts.

To assess the performance of our models, we partitioned the original training set and created a
development set, randomly choosing 200 texts per category. This balanced distribution ensured a
robust evaluation across both the categories. Furthermore, a test set consisting of 1 000 texts was made
available by the shared task organizers.

3.2. Data Augmentation

To provide more data to our language model (LM) approach, we augmented the data and used the all
the texts (mainstream and conspiracy) from the LOCO [3] corpus. LOCO is a corpus consisting of
conspiracy and mainstream texts for a range of conspiracy topics, including COVID related narratives.
The corpus was collected automatically, using the conspiracy score by factCheck.org to find websites
with conspiracy content, and using a google search of the same seed terms for finding mainstream texts.
The corpus covers 47 seeds, including COVID19 and coronavirus, but also 5G, Elvis death, or Illuminati.
We assigned the conspiracy texts the label CONSPIRACY and the mainstream texts CRITICAL. This
changes the class distribution in the training data to 25.1% conspiracy texts and 74.9% critical texts.

The reason for choosing conspiracy texts across all conspiracy theories present in LOCO was to
develop a more generalized LM based system capable of capturing a wide range of conspiracy texts,
rather than focusing specifically on COVID-related texts.

4. Methodology

4.1. Data Exploration

After a brief skimming of the training data, we found that the URLs were tokenized, with spaces
separating the URL path within the domain. Some of the URLs were shortened, and certain texts
contained a combination of both standard URLs and shortened URLs.



Figure 2: Distribution of URLs in the PAN dataset.

For example, consider the text in Figure 1. This text shows a split URL and incorrectly rendered
quotes. Cleaning such a dataset proved to be a challenging task in itself. We used regular expressions
to cover as many of the URLs as possible, but there are some that our method did not identify.

4.2. Data Preprocessing

For the statistical models we initiated data preprocessing by converting all text to lowercase. Subse-
quently, we replaced URLs with the token ’URL’ to mitigate their influence and enhance the dataset
quality, using regular expressions. A frequency investigation of the words in the classes shows a higher
prevalence of URLs in the conspiracy texts. However, upon examination, we found that both categories
contained URLs, as depicted in Figure 2.

Utilizing the ’en_core_web_sm’ pipeline from spaCy2, we then removed stopwords to evaluate their
impact on traditional models. Additionally, we extracted metadata such as sentence lengths and word
counts. We performed part of speech tagging using the POS tagger provided in spaCy. Each word was
then replaced with its corresponding POS tag.

We also investigated content word bleaching, in the assumption that words that are very specific for
a given conspiracy theory will be detrimental to detecting other conspiracy theories. Following Fort et
al. [8], we used Latent Dirichlet Allocation (LDA) [11] from the gensim library3 to cluster the training
texts and extract the words that are most closely related to a topic. We clustered the texts into a single
cluster as we knew that all texts were related to COVID-19. We then retrieved the top 25 topic words
and replaced those words in the training data by the word TOPIC.

These preprocessing steps resulted in the creation of different types of texts, namely:

1. text: raw text
2. POS tagged: words replaced by their corresponding POS tags
3. preprocessed: lower cased text with URLs replaced
4. no stopwords: stop words removed
5. bleached: top 25 words replaced in the preprocessed text.

Due to time limitations and the size of the LOCO corpus, we only performed the experiments using
preprocessed data on the original training set for statistical models.
2https://spacy.io
3https://radimrehurek.com/gensim/
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Table 1
Individual statistical models and techniques used to create the best performing ensembles; evaluated on the
development set.

Text Features Model MCC
bleached TF-IDF SVC 0.7407
no stopwords BOW LR 0.7350
no stopwords TF-IDF SVC 0.7144
text TF-IDF SVC 0.7143
text BOW LR 0.7115
no stopwords BOW XGBoost 0.7072
text BOW Naïve Bayes 0.7050
no stopwords TF-IDF LR 0.7014
bleached BOW Naïve Bayes 0.7008
no stopwords BOW Random Forest 0.6998
bleached TF-IDF Random Forest 0.6980

4.3. Statistical Models

We used the enriched texts and word embeddings to train Multinomial Naïve Bayes, Random Forest,
XGBoost, Logistic Regression, and SVC models.

We chose the Naïve Bayes classifier for its simplicity and ability to handle missing data values.
The Support Vector Classifier (SVC) excels at handling high-dimensional spaces and is robust against
overfitting. Random Forest, an ensemble learning method, is also robust to overfitting and provides
feature importance ranking, which helps identify the most influential features. Logistic Regression and
Multinomial Naïve Bayes classifiers are both easy to interpret and computationally efficient. XGBoost
offers a highly efficient and scalable approach to handle data. All models, except for XGBoost, were
implemented using scikit-learn. For XGBoost, we used the Python XGBoost module to train our systems.
We optimized the classifiers using grid search and 5-fold cross-validation.

We also trained an ensemble of the top 15 models that performed best on our development set. This
process resulted in the creation of seven different ensembles, trained on the top 3, 5, 7, 9, 11, 13, and 15
models. Among these, the ensemble of the top 11 models achieved the highest MCC score.

To create the best performing ensemble, we used the experiments reported in section 5.2. We show
the models selected for the best performing ensemble of 11 models in Table 1.

4.4. Feature Extraction for the Statistical Models

We employed traditional features, using TF-IDF with the maximum feature parameter varied at 1000,
5000, and 10000, and bag of words with 𝑛-gram ranges from 1 to 5, as well as modern embedding-based
approaches to create features for the statistical models.

Initially, we employed BERT-based embeddings to train our statistical models. However, BERT
models can handle a maximum sequence length of 512 tokens, which was insufficient for our needs
[12]. Therefore, we transitioned to the Longformer model, which supports sequences up to 4096 tokens
in length without requiring extensive memory and computational resources [13]. To extract word
embeddings, we processed the text with the Longformer model and utilized the output from the final
hidden layer as our embeddings. We applied these feature extraction techniques to the five types of
texts generated during data preprocessing to train the statistical models.

While training the statistical models, we found that using the POS-tagged text led to significant
information loss. Therefore, we discontinued the POS based models early on. The experiments included
the four remaining text representations, three feature extraction techniques, and six types of models.



Table 2
Official competition results, evaluated on the test data.

System MCC macro F1 F1 conspiracy F1 critical Rank
IUCL 0.8388 0.9194 0.8947 0.9441 1
AI_Fusion 0.8303 0.9147 0.8866 0.9429 2
baseline-BERT 0.7964 0.8975 0.8632 0.9318 (17-18)
IUCL 2 0.7845 0.8896 0.8610 0.9181 (27-28)

4.5. Finetuned Language Models

We used the transformers library by Hugging Face [14] to finetune our language models. The language
models were loaded in 4 bit precision to reduce memory usage and speed up training. We used the
Parameter Efficient Finetuning (PEFT) [15] library to load the models. Our experiments focused primarily
on the DeBERTa [1] and Llama-2-7b [16] models. DeBERTAa is a transformer-based model developed
by Microsoft, which builds on the BERT architecture by introducing a new attention mechanism. Llama-
2-7b is a transformer-based LM developed by Meta AI, which is trained on a large corpus of text. Both
language models were finetuned for three epochs.

Both language models were trained on the first 512 tokens per text. DeBERTa also predicted on
the first 512 tokens while Llama-2-7b performed best when predicting on the first 2048 tokens. Both
language models were first trained only on the PAN24 corpus, followed, where applicable, by training
on an augmented training set that included the LOCO corpus.

Although the LMs can handle longer sequences, computational constraints limited the sequence
length to 512 tokens for training. However, we conducted one experiment using 2048 tokens for training,
which did not yield better performance compared to 512 tokens. Even with this limitation of training on
512 tokens, we performed inference on 2048 tokens for the models based on Llama-2-7b and Llama-3-8b
architectures to capture a much larger context. This led to a significant increase in the performance of
the LMs.

The hyperparameters used for the submitted system using DeBERTa were as follows: learning rate
of 5e-5, token length of 512, gradient accumulation steps of 8, and a batch size of 1. The Low-Rank
Adaptation parameters used for the PEFT library were as follows: Rank (r) of 64, alpha of 16, a dropout
of 0.1 and a task type of Sequence Classification. All linear layers were updated during training. No
bias was used.

4.6. Evaluation

The organizers used the Matthews Correlation Coefficient (MCC) [17] as the evaluation metric to assess
the systems. We adopted the same metric to perform internal evaluation of our statistical models,
language models, and ensembles.

5. Results

Here, we first provide an overview of the official results of our two systems then we will discuss results
of our internal experiments with the statistical models, the LMs, and the ensembles, on our development
data.

5.1. Official Results

We were allowed to submit two systems. For the first system, we chose a DeBERTa model finetuned
on the entire PAN and LOCO datasets. Fr the second system, we chose an ensemble that includes the
augmented DeBERTa system plus Llama2 finetuned on the PAN dataset, plus the statistical models of
the best ensemble of traditional models. The latter was chosen since it performed best in our internal
evaluation (see next section).



Table 3
The best results from the statistical models, evaluated on our development set. The best results for each model
are highlighted in bold.

Model Preprocessing Features MCC
Logistic Regression text BOW 0.7115

TF-IDF 0.6812
embeddings 0.6652

preprocessed BOW 0.6957
TF-IDF 0.6843
embeddings 0.6372

no stopw. BOW 0.7350
TF-IDF 0.7014
embeddings 0.6372

bleached BOW 0.6945
TF-IDF 0.6832
embeddings 0.6041

SVC text BOW 0.5634
TF-IDF 0.7143
embeddings 0.6539

preprocessed BOW 0.6024
TF-IDF 0.6754
embeddings 0.6547

no stopw. BOW 0.5078
TF-IDF 0.7144
embeddings 0.6201

bleached BOW 0.6030
TF-IDF 0.7407
embeddings 0.6043

The official results in Table 2 show that our system using DeBERTa with the augmented training set
reached an MCC of 0.8388, and was ranked the best system in the competition, out of 83 teams. Our
second submitted system reached an MCC of 0.7845. It was not officially ranked but places between
ranks 27 and 28 on the official ranking4, thus not reaching the baseline BERT system.

5.2. Results on Development Data

5.2.1. Statistical Models

The results for the two best performing models among the statistical models, SVC and Logistic Regression,
are shown in Table 3. The best result is reached by using the SVC with TF-IDF and bleached topic words.
The second highest result is reached by Logistic Regression when using a standard bag of words after
bleaching topic words.

Overall, we find that the best performing settings depend on the model choice. For Logistic Regression,
the bag of words outperforms TF-IDF features as well as word embeddings, and stopword removal
works well. For SVC, TF-IDF features are best, followed by word embeddings. Here, bleaching topics
improves results, while the other preprocessing strategies have a mixed influence, depending on the
feature representation.

Our preliminary results showed that the removal of URLs has an overall negative impact on statistical
classifiers. There are exceptions (e.g., when using the SVC with embeddings or using Logistic Regression
with TF-IDF features), but there are no consistent trends.

The MCC results mostly depend on the model’s success on the conspiracy class. This makes sense as
the conspiracy is the minority class, and thus harder to predict. However, the F-scores for this class

4https://pan.webis.de/clef24/pan24-web/oppositional-thinking-analysis.html
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Table 4
Results of the experiments using LMs.

Model Augmentation MCC
Llama2-7b No 0.8601
Llama-2-7b (no stopwords) No 0.8051
Llama2-7b Yes 0.8607
Llama3-8b Yes 0.8253
DeBERTa Large No 0.7951
DeBERTa Large Yes 0.8358

Table 5
Results of the ensembles.

Type of models number of models MCC
Llama2-7b (non-augm.) + DeBERTa (augm.) 2 0.8955
IUCL2 3 0.9000
Statistical 1 0.7407

3 0.7333
5 0.7452
7 0.7553
9 0.7496
11 0.7686
13 0.7630
15 0.7630

tend to be around 2-3 points lower that the corresponding F-scores for the critical class. Thus, the data
imbalance does not hamper the systems much.

5.2.2. Language Models

The results of our experiments using LMs, evaluated on the development data, are shown in Table 4.
They show that the best results are reached by using Llama 2. For this model, augmenting the training
data results in a minor improvement from an MCC of 0.8601 to 0.8607. For DeBERTa, in contrast,
augmenting the training data results in a sizable increase from an MCC of 0.7951 to 0.8358. Additionally,
we found that augmenting the language models with the LOCO data accelerates convergence and
improves results.

The increase for DeBERTa when using the augmented training data is surprising in that the LOCO
data used for augmenting the training data differ from the training data in the text type (websites vs.
Telegram), they cover a wider range of conspiracy theories, and the texts were sampled to highlight the
distinction between conspiracy and mainstream content, rather than conspiracy and critical thinking.
The fact that DeBERTa can successfully use the additional training data leads us to the assumption that
there is a language of conspiracy theories, with a distinct style that this LM can learn to recognize.

5.2.3. Ensembles

The results of the ensembles, either combining LMs with statistical models or statistical models only, are
shown in Table 5. These results show that the best ensemble of 11 classifiers gains about 2.6 points on
the best performing single classifier. However, this combination does not reach the ensemble including
LMs. Our second submission system, IUCL2, reaches an MCC of 0.90 on our development set. Note that
this is about 4 points higher than the results of the augmented Llama 2 and about 6.5 points higher
than the augmented DeBERTa model. This trend is in contrast to the results on the test data, where the
single DeBERTa model performed significantly better.



Critical:

Conspiracy:

Figure 3: Example of the saliency of words in a critical and a conspiracy text.

Figure 4: Example of a text falsely classified as critical.

5.3. Post-result Analysis and Model Interpretation

We conducted a post-result analysis to interpret the model performance of our winning model and
check the saliency of individual words. We utilize the Integrated Gradients method [18] to calculate the
importance of each word in the text. We then visualize the importance of each word in the text using
the Transformers-Interpret and Captum libraries.

Our analysis shows that the model pays attention to words in the text that are often interpretable.
We show two examples from the development set visualizing the saliency in the text in Figure 3. The
critical example shows that the tokens “New” and ”on_Private” are highly indicative of the critical class
while ‘No” would point to conspiracy. In the conspiracy text, the term “Illuminati” is the best indicator
of the conspiracy class.

Figure 4 shows an example from the test set where our system classified a text as critical. This is an
example where there are no solid indicators as to whether a conspiracy belief is present, and the only
token receiving attention is the period, showing that this is a difficult example to classify.

6. Conclusion and Future Work

We conducted an extensive analysis of various statistical and language models, evaluating their individual
performance, and the effectiveness of their ensembles, to classify texts into conspiracy and critical
texts. We found that statistical models tend to underperform in comparison to LMs: the best statistical
model is about 10 points below the best LM, and ensembling them increases results by about 2 points.
However, this ensemble is only 3 points below the non-augmented DeBERTa.

On the official test set, our best performing model is a DeBERTa model with augmented training
data. Our findings also indicate that ensembles combining traditional models with LMs outperformed
individual LM results on the development set but not on the test set. This disparity suggests that
finetuning sensitivity to data characteristics may have influenced performance, as gains observed in the
development set did not fully generalize to the test set.

For future work, we plan to further explore and interpret the model results to gain insights into



how the language of conspiracy theories differs from that of critical texts. Another avenue of research
involves investigating the uniformity of labeling and annotations, as well as the impact of this on the
classification results.
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