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Abstract
The advent of LLMs has revolutionized the way we produce text, greatly increasing our productivity. However,
dual uses such as misinformation generation or human impersonation have also become a concern, making it
desirable to be able to automatically distinguish between human and AI-generated text. In this paper, we present
an ensemble method to detect AI-generated based on how suprising the text is for a group of open LLMs.
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1. Introduction

The rise of Large Language Models (LLMs) is a new technological revolution, offering the ability to
generate human-like text at an unprecedented scale. While this promises great increases in productivity,
it also raises concerns about the potential for misuse. In particular, LLMs can be used to generate fake
news, impersonate people, or spread misinformation. As a result, there is a growing need for tools that
can detect AI-generated text. In this paper, we propose an approach to detect AI-generated text based
on the distribution of token probabilities of multiple open LLMs. This approach is submitted to the
Voight-Kampff Generative AI Authorship Verification 2024 task [1] at PAN [2].

2. Background

It is well-known that LLMs generate text one token at a time, predicting the next token based on the
previous ones. To do this, the model outputs a distribution of probabilities over the vocabulary and the
next token is sampled from this distribution using a fixed strategy.

Applying an LLM to a full text results in a sequence of probability distributions, one for each token.
If the text is generated by that LLM, we expect the following token to have a high probability in the
conditional distribution generated by all the previous ones. On the other hand, human text is expected
to contain more statistical outliers, and be more “surprising” to the model on average. This idea has
been used in the past, in works such as Ippolito et al. [3] and Gehrmann et al. [4]. They used the raw
probabilities of the LLMs as well as the rank of the target token in the probability distribution.

This method presents a series of problems.

1. First, we do not know or do not have access to the exact model that generated the text. Although
we expect most models to be pretrained on a similar large corpus of text, the choice of vocabulary
or fine-tuning data and procedure might affect the probabilities.

2. Second, we do not have access to the prompt that was used, which strongly conditions the
generation of the text. Without the prompt, the perplexity of the text will naturally be higher, as
the model does not see the context that conditioned it. This is especially the case if the prompt
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forces the model to generate text about an unusual topic or in an unusual style. This problem
was already pointed out by Hans et al. [5].

3. Third, some parts of the text allow for more randomness than others. For example, the beginning
of a text or a sentence allows for more variability than finishing a word that was started in the
previous token. As another example, the sentence “My favorite color is” allows any color to be
the next token, and the model will have to distribute the probability across several tokens.

Using the rank of the target token in the probability distribution already hinted at the third problem,
although very unconditioned tokens might still yield high ranks.

Hans et al. [5] try to solve this problem by normalizing the log-probabilities. First, they used an LLM
𝑀1 to calculate the mean log-probabilities across all tokens of the text. Then, they used a second LLM
𝑀2 to calculate the mean cross-entropy of the distributions given by 𝑀1 and 𝑀2 for each token of the
text. Finally, they normalize the mean log-probabilities by the mean cross-entropy.

If we consider using the same LLM𝑀1 = 𝑀2, then the entropy values measure how much randomness
there is in the distribution that generated the token. Normalizing by this value reduces the importance
of having a low probability in a high entropy distribution, helping with the second and third problem.
In practice, the authors used very similar LLMs, such as the foundation and instruct versions of the
same model—perhaps because the tokenizer needed to be identical—. We expect distributions to be
close and this interpretation to be valid.

Another similar idea is that of Bao et al. [6]. They compare the mean log-probabilities with the
mean log-probabilities of a large number of resampled texts. New texts are generated by sampling each
token from the distributions of the original text, independently. This can be seen as a Monte Carlo
approximation of the Shannon entropy of the distribution.

3. System Overview

3.1. Conceptual approach

Our method consists of three main steps. First, we compute a metric derived from the log-probabilities
output by an LLM, trying to solve the second and third problems discussed in the background. For
each LLM, we get a distribution of this metric across the full sequence. Second, we extract a set of
features from these distributions, as well as some classic NLP features from the text. Finally, we use
these features to train a classifier that predicts whether the text was generated by an LLM or not.

3.1.1. Normalized log-probability

We use a metric that takes into account both the probability of the next token and how randomly the
probability is distributed. Consider a sequence of tokens 𝑡1, . . . , 𝑡𝑀 . After passing through an LLM, we
get a matrix of logits 𝐿 ∈ R𝑀×𝑉 , where 𝑉 is the vocabulary size. Then, for all 𝑚 from 1 to 𝑀 − 1, we
can compute a normalized log-probability

NLP𝑚 =

(︂
max

𝑣∈{1,...,𝑉 }
𝐿𝑚,𝑣

)︂
− 𝐿𝑚,𝑡𝑚+1 .

This metric compares the likelihood of the token 𝑡𝑚+1 with the likelihood of the most likely token. If
the token is the most likely one, then the value will be zero. If the token is very unlikely, then it will
only be penalized if there are tokens that are much more likely.

3.1.2. Extracting features

The previous procedure yields, for a given text and LLM, a sequence of normalized log-probability
values NLP1, . . . ,NLP𝑀−1. We propose to model it as a set of observations from a distribution. We can
then extract features such as the mean, the variance, or the quantiles of this distribution. We also extract
some features from seeing it as an ordered sequence. After getting these features, we concatenate them



for several LLMs. Further, we add some classic NLP features such as the ratio of stop words, the ratio of
punctuation, the ratio of each syntactic category...

3.1.3. Modeling

Finally, we use an XGBoost classifier to predict whether the text was generated by an LLM or not based
on the features.

3.2. Submission hyperparameters and features

We use the following models, given their relevance in the state-of-the-art literature and our computa-
tional resources:

• google/gemma-2b-it [7]
• meta-llama/Llama-2-7b-chat-hf [8]
• mistralai/Mistral-7B-Instruct-v0.2 [9]
• databricks/dolly-v2-3b [10]
• stabilityai/stablelm-zephyr-3b [11]
• microsoft/phi-1_5 [12]

For each model and its respective values NLP1, . . . ,NLP𝑀−1, we extract the following features: the
mean, the standard deviation, the minimum value, the ratio of values that are close to zero, and the
ratio of values where the sequence is increasing.

We also extract the following classic NLP features:

• Ratio of verbs, nouns, adjectives, adverbs, personal pronouns, prepositions or subordinating con-
junctions, coordinating conjunctions, determiners, interjections, particles, and cardinal numbers.

• Ratio of words of other types.
• Number of words.
• Mean sentence length.

We tune the XGBoost hyperparameters using cross-validation, and train using only the given dataset.
As the dataset is unbalanced, we use oversampling for training and balanced accuracy as validation
metric.

3.3. Task predictions

Finally, we train for raw classification, but TIRA [13] submissions require distinguishing, for a given pair
of texts, which text is AI-generated. Thus, we need to transform our predictions. If we get probabilities
of being human 𝑝1 and 𝑝2 from the first and second texts, respectively, we output 𝑝2−𝑝1+1

2 .

4. Results

We present the results of our model across cross-validation sets in the binary classification task of detect-
ing if a given text is AI-generated or not. We compare our model against two baselines: Binoculars [5]
and Fast-DetectGPT [6]. The results are shown in table 1. We can see that our model outperforms both
baselines in terms of balanced accuracy, with a good margin.

Table 2 shows the results, initially pre-filled with the official baselines provided by the PAN organizers
and summary statistics of all submissions to the task (i.e., the maximum, median, minimum, and 95-th,
75-th, and 25-th percentiles over all submissions to the task). In this case, the task is to distinguish
which of two given texts is generated by AI. The results show that our model outperforms the baselines,
although with a small margin. Our model appears to be outperformed by other solutions, except in the



ROC-AUC metric. Further discussion could be provided with more knowledge of the test sets and other
solutions.

Table 3 shows the summarized results averaged (arithmetic mean) over 10 variants of the test
dataset. Each dataset variant applies one potential technique to measure the robustness of authorship
verification approaches, e.g., switching the text encoding, translating the text, switchign the domain,
manual obfuscation by humans, etc.

Table 1
Balanced accuracy of our method against two baselines in the validation set. In this case, we consider a binary
classification problem where the model predicts if the text is AI-generated or not. For Binoculars, we use
tiiuae/falcon-7b as the observer model, and tiiuae/falcon-7b-instruct as the performer model. For Fast-
DetectGPT, we use the model tiiuae/falcon-7b. Total accuracy is calculated through cross-validation, except
for Binoculars which was pretrained.

Aproach Balanced accuracy

Our method 0.957
Binoculars [5] 0.852
Fast-DetectGPT [6] 0.423

Table 2
Overview of the accuracy in detecting if a text is written by an human in task 4 on PAN 2024 (Voight-Kampff
Generative AI Authorship Verification). We report ROC-AUC, Brier, C@1, F1, F0.5𝑢 and their mean.

Approach ROC-AUC Brier C@1 F1 F0.5𝑢 Mean

vicious-artifact 0.995 0.954 0.976 0.976 0.975 0.975
corporate-burn 0.995 0.954 0.976 0.976 0.976 0.976

Baseline Binoculars 0.972 0.957 0.966 0.964 0.965 0.965
Baseline Fast-DetectGPT (Mistral) 0.876 0.8 0.886 0.883 0.883 0.866
Baseline PPMd 0.795 0.798 0.754 0.753 0.749 0.77
Baseline Unmasking 0.697 0.774 0.691 0.658 0.666 0.697
Baseline Fast-DetectGPT 0.668 0.776 0.695 0.69 0.691 0.704

95-th quantile 0.994 0.987 0.989 0.989 0.989 0.990
75-th quantile 0.969 0.925 0.950 0.933 0.939 0.941
Median 0.909 0.890 0.887 0.871 0.867 0.889
25-th quantile 0.701 0.768 0.683 0.657 0.670 0.689
Min 0.131 0.265 0.005 0.006 0.007 0.224

Figure 1 shows the feature importances of the model. We can see that the LLM characteristics are
the most relevant, with all NLTK features having an importance lower than 0.05. The most used
LLM is phi-1_5, although this varies greatly when rotating different LLMs. In general, any given LLM
gets a good accuracy on its own. The statistics of the normalized log-probabilities that appear to be
the most important are the median, the mean and the standard deviation, followed by the ratio of
zero values—that is, the ratio of times where the most probable token was selected—, and the ratio of
positively sloped values. This last statistic could be interesting: it measures how often the text becomes
more or less predictable after one token.

5. Conclusions

We present a method to detect AI-generated text based on a small improvement to the log-probability
metric. We ensemble the predictions from several LLMs, as well as classic NLP features. Our method
achieves promising results, but further study on the generalization of the method is needed, as well as a
proper ablation study.



Table 3
Overview of the mean accuracy over 9 variants of the test set. We report the minumum, median, the maximum,
the 25-th, and the 75-th quantile, of the mean per the 9 datasets.

Approach Minimum 25-th Quantile Median 75-th Quantile Max

vicious-artifact 0.696 0.837 0.931 0.975 0.994
corporate-burn 0.697 0.837 0.931 0.976 0.994

Baseline Binoculars 0.342 0.818 0.844 0.965 0.996
Baseline Fast-DetectGPT (Mistral) 0.095 0.793 0.842 0.931 0.958
Baseline PPMd 0.270 0.546 0.750 0.770 0.863
Baseline Unmasking 0.250 0.662 0.696 0.697 0.762
Baseline Fast-DetectGPT 0.159 0.579 0.704 0.719 0.982

95-th quantile 0.863 0.971 0.978 0.990 1.000
75-th quantile 0.758 0.865 0.933 0.959 0.991
Median 0.605 0.645 0.875 0.889 0.936
25-th quantile 0.353 0.496 0.658 0.675 0.711
Min 0.015 0.038 0.231 0.244 0.252

(a) LLM feature importances by model. (b) LLM feature importances by statistic.

(c) Non-LLM feature importances.

Figure 1: Feature importances of the model.

Future work is needed to study the best way to normalize the log-probabilities to account for the
problems we have discussed. Further, we should also take into account that human text is more likely



to take the LLM into unchartered territory, statistically speaking. This problem and the previously
discussed ones conflict, and balancing them might be needed.

Finally, one can also study the interaction between the predictions of different LLMs. We believe that
having many LLMs with a diversity of training data, training procedures and vocabularies is helpful.
Studying which LLMs are more likely to agree could help selecting a minimal ensemble of models,
reducing the computational cost of the method.
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