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Abstract

This paper presents a method leveraging Next Token Prediction as Implicit Classification for Voight-Kampff
Generative Al Authorship Verification. The rationale behind this approach is that token prediction can effectively
perform text classification tasks. Consequently, we utilize the Token Prediction method to directly identify
whether the input text was authored by a specific AI model or by a human. We assessed the effectiveness
of our method using the Generative Al Authorship Verification datasets provided by PAN. We then selected
model weights that demonstrated the best performance on the dataset given by PAN. Finally, on the test set, our
performance metrics at the Minimum, 25-th Quantile, Median, 75-th Quantile, and Max were 0.527, 0.896, 0.922,
0.926, and 0.947 respectively.
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1. Introduction

In recent years, generative LLMs have gained recognition for their impressive ability to produce coherent
language across different domains. Consequently, detecting machine-generated text has become increas-
ingly vital. The Generative Al Authorship Verification task regarded as detecting machine-generated
text task involves two texts, one authored by a human and one by a machine. The primary objective is
to determine which of the two texts was written by a human and which was generated by a machine.
Furthermore, the Generative Al Authorship Verification task can aid in ensuring the authenticity of
information is critical, such as legal proceedings.

Research [1] utilizes Token Prediction as an Implicit Classification for Generative Al Authorship Verifi-
cation. By assigning distinct tokens to different labels and reformulating the multi-class classification
task into a next-token prediction task, this method identifies whether the input sentence was generated
by a particular model or authored by a human [1]. The purpose of this approach is to leverage the
model’s next-token prediction capability for this specific task.

Recent studies [2] have employed the fine-tune transformer-based method, which achieved the LLMs-
generated text detection task by training transformer-based classifiers. However, one of the biggest
challenges in fine-tuning transformer-based methods is not to directly leverage the next-token pre-
diction capability of the model for this particular task [1]. Fine-tune transformer-based method will
increase the gap between downstream tasks and pre-training tasks compared to next-token prediction
[3]. Hence here are better solutions than simply fine-tuning transformer-based methods.

In this paper, we leverage research [1] to predict whether a given sample text is authored by a human
or paraphrased by a machine. Unlike the fine-tuning transformer-based method, we employ the Token
Prediction as an Implicit Classification approach. This involves establishing a bijection f:Y — ),
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where Y C X. ) serves as proxy labels such as human’, ’'GPT-3.5, etc. Y represents the ground truth
label. The model then predicts the corresponding proxy labels based on the input text.

We have established two sets of proxy labels which are proxy labels in method 1 and proxy labels in
method 2.

In method 1, the proxy labels can be translated into three outcomes: one indicating human authorship,
one indicating Al model rewrites, and one indicating undecidable.

Method 2, proxy labels are translated into two outcomes: one for human authorship and one for
Al model rewrites. This differentiation allows us to determine whether the text is human-authored,
machine-generated, or falls into another category.

In detail, the model comprises two parts. The first part is the long-T5 [4] model, which encodes the
input text. The second part is a linear layer designed to project the output of long-T5 onto a dimension
equivalent to the vocabulary size. This projects the probabilities of the proxy labels, thereby deter-
mining whether the input text under examination was generated by a model, authored by a human or
undecidable.

2. Network Architecture

First, the language model is presented with a series of sentences to be tested, each consisting of tokens
from E; to E,, and E.,~. The goal is to utilize the longT5 model to implement the Generative Al
Authorship Verification task. The core feature of the model is the method of next-token prediction.
After inputting the tokens from E; to ), and F - into longT5, it obtains the probabilities of the proxy
labels. The predicted proxy labels for each sentence are then determined by selecting the label with the
highest probability. Then, we convert the proxy labels into the final result, determining whether the
text was authored by a human or paraphrased by a machine. According to the model shown in Figure 1,
it comprises a longT5 backbone, a next-token prediction layer, and a filter. The first component is the
longT5 backbone, which is used to encode the sentences under examination. Following the next-token
prediction layer in method 2, where linear layers map the output of longT5 to a dimension equivalent
to the vocabulary size, enabling the calculation of probabilities for each proxy label.

In method 2, the filter selects the probabilities corresponding to the proxy labels from the output of the
next-token prediction layer, which are then processed through a softmax layer. Finally, the proxy labels
with the highest probability are chosen, which is then translated into one of two outcomes: whether
the text under examination was generated by a specific model or authored by a human.

Returning to method 1, it is similar to method 2 but it identifies the text by obtaining the probabilities
corresponding to the proxy labels from the next-token prediction layer. In method 1, after obtaining
the proxy labels, we translate them into two outcomes: one indicating human authorship and the other
Al model rewrites. For method 1, in addition to these two outcomes, we include an additional result
labeled as undecidable, making three possible outcomes. The detailed process is described in section 2.1.
Overall, the primary loss function £ can be defined as follows.

L= Lnrr = —logP(Y;|S;;0) (1)

The loss L1, is negative log-likelihood to optimize the longT5 and next-token prediction layer, S;
means the sentence under examination,  mean the whole model’s parameters, and y means the ground
truth labels.
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Figure 1: Figure1l Model Architecture

2.1. next-token prediction

For method 2, we assign a special token "<extra_id_0>" as the proxy label for human-authored text. For
other models we designate similar tokens such as "<extra_id_1>", "<extra_id_2>", .."<extra_id_n>",
where n < k and k represents the number of models involved in PAN dataset [5, 6].

In method 1, human-authored texts are tagged with the word "positive" as the proxy label, while all texts
rewritten by Al models are labeled "negative". If the highest probability in the next token probability
distribution does not fall on either "positive" or "negative", the result is deemed "undecidable".

Both methods involve the model predicting the probabilities of the proxy labels and then converting
proxy labels into the actual prediction results.

Next, we measure the token length of each human-authored or model-generated text. Our statistical
analysis reveals that the vast majority of text lengths are within 2048 tokens.

Firstly, the PAN organization has provided datasets for Generative Al Authorship Verification, which
include multiple texts authored by humans and subsequently rewritten by various models.

Give a batch name as B. The contents of B can define as {(S1, V1), (S2, Y2)...(Si, Vi) } € B, where S;
means the sentence under examination, and ); is the proxy label.

During training, we feed the B into the pre-training model which is composed of the transformer
[7] block to get the corresponding hidden state ;. After obtaining the hidden state H; we use the
next-token prediction layer and softmax layer to obtain the probabilities for all tokens in the vocabulary.
That is,

€(¢(Hz)1) €(¢(H1)2) €(¢(HZ)V)
SV e@H)V) SV e(o(H)Y) T SV (i)Y

i = LV = ( ) (2)
where ; is the soft label of sample i, v indicates the position of a token within the vocabulary,
V represents the total number of tokens in vocabulary, )/ represents the probability of the V-th
word in vocabulary and ); means proxy label. Then we calculate the negative log-likelihood loss for
classification.



Ly = —logP(Vil¢i, 0) (3)

In the inference phase, for method 1, after obtaining ; , we convert ; into three predictive outcomes.

1 arg max @; = a
yeyy

7=<0 arg max @; =b 4)
yeyy

0.5 otherwise

In method 1, a represents the position of the word “positive” in the vocabulary, while b represents the
position of the word "negative". { represent predict label. § = 1 indicates text authored by humans, § =
0 indicates text rewritten by a machine, and ¢ = 0.5 indicates "undecidable’ when a clear determination
cannot be made.

For method 2, we initially obtain the output from the next-token prediction layer.

O() = ((Hi)', p(Hi)?, oo o(Hi)Y) ()

where ¢(-) indicates the output of the next-token prediction layer and V is vocabulary size. We then
use a filter to select the outputs associated with all the special tokens(proxy label tokens).

B() = (B(Hi)', d(Hi)?, ... B(H)) (6)

where ¢(-)’ indicates the output of the filter and k represents the number of all special tokens. After
passing through the softmax layer, we obtain the probability distribution of proxy label tokens.

e(@(H))! e($(H:)')? e($(H:))*
S @) TSR e(6(H))IT T SR e(6(Hi))] )

(p;:(y}?yz??yzk):( (7)
where j € k and ) represent probability distribution of proxy label tokens. Finally, we convert ¢;’ into
two predictive outcomes:

0 arg max ; = c
i = yey) 8)
1 otherwise

where ¢ € {1...k} indicates the special tokens, 7 = 1 indicates text authored by humans, and 0 indicates
text rewritten by a machine.

3. Experiments and Result

3.1. Experience setting

In this work, we utilize the longT5 model for classification, which consists of 12 transformer layers,
with a hidden size of 768. As for the next-token prediction layer, we use randomly initialized parameters
before training. For method 1, the training parameters are set with 10 epochs, a batch size of 64, and a
learning rate of 5e-4. For method 2, the settings are 15 epochs, a batch size of 16, and a learning rate
of 8e-4. Both method’s maximum token length is set to 2048. All experiments are conducted on an
NVIDIA A800 GPU with 80GB of memory.



3.2. Results

We will conduct two experiments using token prediction as an implicit classification for both method 1
and method 2. After training with these methods, the resulting model weights from both experiments
will be submitted to the TIRA platform [8] to obtain scores. Table 1 and 2 displays our test set results
reported to the TIRA platform.

Table 1 shows the summarized results averaged (arithmetic mean) over 10 variants of the test dataset.
Each dataset variant applies one potential technique to measure the robustness of authorship verification
approaches, e.g., switching the text encoding, translating the text, switching the domain, manual
obfuscation by humans, etc.

Table 2 shows the results, initially pre-filled with the official baselines provided by the PAN organizers
and summary statistics of all submissions to the task (i.e., the maximum, median, minimum, and 95-th,
75-th, and 25-th percentiles over all submissions to the task).

Table 1
Overview of the accuracy in detecting if a text is written by an human in task 4 on PAN 2024 (Voight-Kampff
Generative Al Authorship Verification). We report ROC-AUC, Brier, C@1, F1, Fg 5, and their mean.

Approach ROC-AUC Brier C@1 F; Fys5, Mean
method1 0.501 0.744 0.501 0.624 0.544 0.583
method?2 0.984 0.918 0.907 0.898 0.954 0.932
Baseline Binoculars 0.972 0.957 0.966 0.964 0.965 0.965
Baseline Fast-DetectGPT (Mistral) 0.876 0.8 0.886 0.883 0.883 0.866
Baseline PPMd 0.795 0.798 0.754 0.753 0.749 0.77

Baseline Unmasking 0.697 0.774 0.691 0.658 0.666 0.697
Baseline Fast-DetectGPT 0.668 0.776  0.695 0.69 0.691 0.704
95-th quantile 0.994 0.987 0.989 0.989 0.989 0.990
75-th quantile 0.969 0.925 0.950 0.933 0.939 0.941

Median 0.909 0.890 0.887 0.871 0.867 0.889
25-th quantile 0.701 0.768 0.683 0.657 0.670 0.689
Min 0.131 0.265 0.005 0.006 0.007 0.224

Table 2
Overview of the mean accuracy over 9 variants of the test set. We report the minumum, median, the maximum,
the 25-th, and the 75-th quantile, of the mean per the 9 datasets.

Approach Minimum 25-th Quantile Median 75-th Quantile Max
method1 0.513 0.561 0.571 0.582 0.583
method?2 0.527 0.896 0.922 0.926 0.947
Baseline Binoculars 0.342 0.818 0.844 0.965 0.996
Baseline Fast-DetectGPT (Mistral) 0.095 0.793 0.842 0.931 0.958
Baseline PPMd 0.270 0.546 0.750 0.770 0.863
Baseline Unmasking 0.250 0.662 0.696 0.697 0.762
Baseline Fast-DetectGPT 0.159 0.579 0.704 0.719 0.982
95-th quantile 0.863 0.971 0.978 0.990 1.000
75-th quantile 0.758 0.865 0.933 0.959 0.991
Median 0.605 0.645 0.875 0.889 0.936
25-th quantile 0.353 0.496 0.658 0.675 0.711

Min 0.015 0.038 0.231 0.244 0.252




3.3. Conclusion

In this paper, we have completed the tasks set by PAN and have employed the next-token prediction
method to tackle the Generative AI Authorship Verification task. Instead of using fine-tuned transformer-
based method techniques, we utilize the next-token prediction method to narrow the gap between
downstream tasks and pre-training tasks. Finally, on the test set, our performance metrics at the
Minimum, 25-th Quantile, Median, 75-th Quantile, and Max were 0.527, 0.896, 0.922, 0.926, and 0.947
respectively. These results certify the effectiveness of our proposed method in performing the Generative
Al Authorship Verification task.

Limitations

Firstly, the method proposed in this paper does not involve any prompts in the current LLMs-generated
text detection task. Using prompts can better leverage the internal knowledge of language models.
Therefore, in future work, we plan to incorporate prompts to complete this task.

Additionally, transforming the task into a binary Al detection task, rather than judging which Al
-authored the text, is another method to accomplish Al detection tasks. However, this approach can
easily lead to data imbalance issues, where the amount of human-authored data is not equivalent to
that of Al-generated data. To address this, data augmentation techniques could be employed to increase
the quantity of human-authored data.
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