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Abstract
Feature selection is a crucial step in Learning to Rank systems, focused on identifying the most relevant fea-
tures to either maintain or enhance model effectiveness while minimizing computational costs. Traditional
methods frequently struggle with the NP-Hard nature of feature selection. In response, Quantum Computing,
especially Quantum Annealing, has emerged as a promising alternative by recasting the problem as a Quadratic
Unconstrained Binary Optimization problem.

This paper presents the participation of the University of Aveiro Biomedical Informatics and Technologies
(BIT.UA) group in Task 1A of the QuantumCLEF challenge, focusing on feature selection for training LambdaMART
models on the MQ2007 and ISTELLA datasets. In this work, we propose a hyperparameter-free QUBO formulation
that automatically balances redundancy and relevance. Our validation on MQ2007 demonstrates competitive
performance compared to traditional methods, and our application to ISTELLA shows the robustness of our
approach.
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1. Introduction

In the landscape of Information Retrieval (IR), machine learning (ML) has become instrumental in
the development of Learning to Rank (LTR) systems. These systems automatically learn a ranking
model, using training data, enabling them to sort new objects based on their relevance to a user query.
However, the effectiveness and efficiency of these models is often closely linked to the number and
quality of features they utilize. Consequently, when the feature space increases, the computational
complexity also grows, often rendering these systems impractical.

Feature selection thus becomes an important step in LTR systems, aiming to identify the most
relevant subset of features that maintain or enhance the model’s effectiveness while reducing its
computational cost. Despite its promise, feature selection is recognized as an NP-Hard problem [1] due
to the exponential number of feature combinations that must be evaluated to find the optimal subset. As
such, traditional methods of feature selection struggle to scale effectively with the size and complexity
of modern datasets. In this context, Quantum Computing (QC) emerges as a promising alternative to
explore these large search spaces. More precisely, Milne et al. [2] demonstrated that feature selection
can be reformulated as a quadratic unconstrained binary optimization (QUBO) problem, making it
ideally suited for execution on a Quantum Annealer (QA).

Although Milne et al. [2] have paved the way for exploring quantum solutions for feature selection,
QC remains a relatively unexplored topic. In this context, the QuantumCLEF [3, 4] challenge serves as
a platform to deepen the understanding of QC, with a particular focus on quantum annealers, through
a series of tasks. More precisely, the challenge organizers have proposed two main tasks: Task 1, which
focuses on feature selection and is further divided into feature selection for IR (1A) and feature selection
for Recommender Systems (1B), and Task 2, which is centred on clustering.
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In this paper, we outline the participation of the University of Aveiro Biomedical Informatics and
Technologies (BIT.UA) group in Task 1A. Specifically, this task required participants to select the most
appropriate features for training a LambdaMART [5] model on the MQ2007 and ISTELLA datasets. Our
approach enhances the foundational QUBO optimization framework established by Rodriguez-Lujan
et al. [6] by automatically adjusting the redundancy and relevance components of the original equation.
This refinement makes our method hyperparameter-free, improving its applicability.

2. Related Work

The exploration of Quantum Computing (QC) in feature selection, specially through quantum annealing,
has gained momentum due to the limitations of traditional methods in handling high-dimensional
datasets [7]. Traditional feature selection approaches, such as Recursive Feature Elimination (RFE)
[8] and LASSO [9], often struggle with scalability and efficiency, especially in the context of high-
dimensional datasets used in Learning to Rank (LTR) systems.

Early explorations in this area include a notable work by Milne et al. [2], who utilized a quantum
annealer for optimal feature selection in credit prediction, marking one of the initial applications
of quantum annealers to solve QUBO problems. Subsequent research expanded the use of quantum
annealers across various domains: Nath et al. [10] for automated feature selection in stress detection,
Otgonbaatar and Datcu [11] for feature selection and classification in hyperspectral imaging, and Qiao
et al. [12] for optimizing feature selection in predicting building energy consumption, highlighting the
versatility of quantum annealing.

In the context of information retrieval, Ferrari Dacrema et al. [13] have introduced three distinct
QUBO formulations for feature selection: MI-QUBO, QUBO-Correlation, and QUBO-Boosting. Each
model is tailored to optimize the selection process by utilizing different strategies: mutual information
for MI-QUBO, Pearson correlation for QUBO-Correlation, and boosting techniques for QUBO-Boosting.
Specifically, MI-QUBO enhances the feature selection process by maximizing both mutual and condi-
tional mutual information between features and the target. QUBO-Correlation focuses on maximizing
feature relevance and minimizing redundancy, whereas QUBO-Boosting assesses feature importance
through classifier predictions. These methods, according to the author, showcase the potential of
quantum annealing to equal or potentially exceed the performance of traditional solvers.

Despite these advances, most QUBO formulations rely on some form of hyperparameter, requiring
extra experimental steps to determine optimal settings. Following this, Rodriguez-Lujan et al. [6]
proposed a method to estimate the hyperparameter 𝛼 used for balancing the linear and quadratic terms
of the QUBO equation. Consequently, our work closely aligns with this approach, which we refer to as
Auto-𝛼 throughout this paper.

3. Methodology

3.1. Feature selection as QUBO problem

Feature selection can be defined as a combinatorial optimization problem where the goal is to identify
the most beneficial subset of features from a broader set. This task can be effectively modelled using
Quadratic Unconstrained Binary Optimization (QUBO), a method that focuses on minimizing a quadratic
objective function comprised of binary variables. In the context of feature selection, each binary variable
directly corresponds to the inclusion or exclusion of a feature, where the aim is to minimize the overall
cost associated with various combinations of features, thereby determining the optimal selection
according to specific criteria.

More precisely, consider 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛) as a vector of binary variables, where each 𝑥𝑖 indicates
whether a feature 𝑖 is selected (1) or not selected (0). Additionally, let 𝑄 be a 𝑛× 𝑛 symmetric matrix
of coefficients that quantifies the impact of including each feature and their interactions. Then the
objective function is given as,



𝑌 (𝑥) =
𝑛∑︁

𝑖=1

𝑄𝑖,𝑖𝑥𝑖 +
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1,𝑗 ̸=𝑖

𝑄𝑖,𝑗𝑥𝑖𝑥𝑗 , (1)

by leveraging the property that 𝑥𝑗𝑥𝑗 = 𝑥𝑗 for binary variables, this allows to rewrite the summation in
a vectorized form:

𝑌 (𝑥) = 𝑥𝑇𝑄𝑥, (2)

where the QUBO model is formalized by the following optimization problem:

min
𝑥
𝑌 (𝑥) = 𝑥𝑇𝑄𝑥. (3)

In practice, solving the QUBO problem effectively, especially for large datasets, requires advanced
computational techniques. We focus on the use of annealers, including both simulated annealing and
quantum annealing, both provided by the challenge organizers. Simulated annealing is a probabilistic
technique inspired by the physical process of annealing in materials science [14]. It uses a cooling
schedule to minimize energy states and find an optimal solution, allowing significant changes at
high temperatures and smaller adjustments as the temperature decreases. Conversely, QA navigates
a problem-encoded energy landscape to locate the minimal energy state, representing the optimal
solution. In other words, while SA is based on the physical process of thermal fluctuations, QA uses the
concept of quantum fluctuations which enables quantum tunnelling between states [15], resulting in
faster and greater movements [16].

Regarding the definition of the coefficients of the matrix 𝑄, Rodriguez-Lujan et al. [6], Milne et al.
[2], Ferrari Dacrema et al. [13] have suggested a model-independent approach of selecting features
based on their relevance and redundancy. Essentially, the goal is to include features that are highly
relevant for making predictions while excluding those that are redundant. This can be achieved by
employing correlation-based measures, denoted as 𝑟, both between each feature and the target variable,
and among the features themselves. The former assesses the relevance of each feature in relation to
the target, while the latter helps identify redundant features. Consequently, the coefficients of 𝑄 can
naturally be defined as:

𝑄 =

{︂
−𝑟(𝑓𝑖, 𝑡) 𝑖𝑓 𝑖 = 𝑗
𝑟(𝑓𝑖, 𝑓𝑗) 𝑖𝑓 𝑖 ̸= 𝑗

(4)

Note that in this formulation, the relevant terms correspond to the linear components in Equation 1,
while the redundancy terms make up the quadratic components. Due to the typically high number of
quadratic terms compared to linear ones, the redundancy component tends to dominate the relevant
component. This dominance results in an imbalance in Equation 1, leading to feature selection solutions
that include only a small number of features. To address this issue, a common strategy involves
introducing a hyperparameter to balance both components. The most typical method is a linear
weighting with 𝛼:

𝑌 (𝑥) = 𝛼

𝑛∑︁
𝑖=1

𝑄𝑖,𝑖𝑥𝑖 + (1− 𝛼)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1,𝑗 ̸=𝑖

𝑄𝑖,𝑗𝑥𝑖𝑥𝑗 . (5)

Another widely used alternative involves adding a penalty term to Equation 1:

𝑌 (𝑥) =
𝑛∑︁

𝑖=1

𝑄𝑖,𝑖𝑥𝑖 +
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1,𝑗 ̸=𝑖

𝑄𝑖,𝑗𝑥𝑖𝑥𝑗 + 𝛾penalty(𝑥), (6)

where, in the case of feature selection, the penalty is typically defined as (
∑︀𝑛

𝑖=1 𝑥𝑖 − 𝑘)2. This term
constrains the objective function to solutions that contain exactly 𝑘 features, penalizing any deviation
from this count.



3.2. Hyperparameter-Free QUBO

In this work, we focus on exploring a complete model-independent and hyperparameter-free QUBO for-
mulation. We build on the methodologies of Rodriguez-Lujan et al. [6], Milne et al. [2], Ferrari Dacrema
et al. [13], leveraging the notion of relevance and redundancy in the construction of 𝑄 to achieve a
model-independent solution. To circumvent the need for hyperparameters, which typically address the
imbalance between linear and quadratic terms, we define coefficients that are transformed and scaled
to counter this imbalance. As a result, we utilize Equation 1 as our objective function and propose the
following generic definition for the coefficients of 𝑄:

𝑄 =

{︂
𝜑(𝑟(𝑓𝑖, 𝑡))× 𝑠 𝑖𝑓 𝑖 = 𝑗
𝜓(𝑟(𝑓𝑖, 𝑓𝑗))× 1

𝑠 𝑖𝑓 𝑖 ̸= 𝑗,
(7)

where 𝜑 and 𝜓 represent non-linear transformations applied to the relevance of individual features and
the redundancy between feature pairs, respectively, enabling us to modify the impact of the correlation
coefficients for relevance and redundancy. For instance, they can be used to diminish the effects of
lower correlation values while amplifying higher ones. On the other hand, the scalar 𝑠 is a scaling factor
designed to balance the weights of the linear and quadratic components within the QUBO framework.
This adjustment is crucial because, in QUBO models, the redundancy (quadratic) terms often outnumber
the relevance (linear) terms, potentially causing the model to overlook important features. Thus, we
define our scaling factor based on the ratio of the number of quadratic pairs to linear terms, as shown
in the equation:

𝑠 =
|{𝑄𝑖,𝑗 | 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 > 𝑗}|

|{𝑄𝑖,𝑖 | 𝑖 = 1, . . . , 𝑛}|
=

𝑛2−𝑛
2

𝑛
=
𝑛− 1

2
. (8)

The choice of non-linear transformation is contingent upon the specific correlation measure used, and
as such, we conduct experiments, described below, to gauge the effectiveness of different transformations.

4. Experimental Setup

In this section, we begin by outlining the datasets adopted by the QuantumCLEF [3, 4] challenge. Next,
we detail our validation experiments and present our initial findings.

4.1. Datasets

For Task 1A, the organizers selected two well-established datasets in the field of Information Retrieval
(IR): MQ2007 [17] and ISTELLA [18]. Both are Learning to Rank datasets, which are specifically designed
to develop and test ranking algorithms through a collection of features. MQ2007 is a smaller dataset,
comprising 41,955 samples and 46 features, while ISTELLA presents a more significant challenge with
its 2,043,304 samples and 220 features.

4.2. Validation results

Due to severe time constraints and limited availability of quantum computing resources, we confined
our validation to using only the MQ2007 dataset and simulated annealing. The smaller size of MQ2007
allowed us to efficiently test various configurations, making it a practical choice under these constraints.
In terms of experimental setup, we performed feature selection, using simulation annealing, over the
MQ2007 dataset using our hyperparameter-free QUBO formulation under different configurations.
Subsequently, we ran a LambdaMART model with the selected features on the validation set of the
MQ2007 dataset to obtain the ndcg@10 metric. This was compared to the metric achieved using all
features. The objective was to achieve similar or better results while utilizing fewer features.



Regarding the configurations, we retained the scaling factor as presented in Equation 8, which
corresponds to 22.5 for the MQ2007 dataset. In terms of the correlation function, 𝑟, the literature
predominantly employs statistical-based measures such as Pearson and Spearman correlations, in
addition to information theory measures like Mutual Information [13]. The former are fundamentally
used for measuring linear and rank-based relationships, respectively. In the realm of information
theory, Mutual Information is commonly utilized to quantify the amount of shared information between
variables. In this work, we opted to exclusively use statistical-based measures. This decision was
influenced by the well-defined nature of these measures, which are confined within the [−1, 1] range.
This bounded range facilitates its interpretability, where a value of 1 indicates a positive correlation, -1
indicates a negative correlation, and 0 signifies no correlation. Additionally, this range also facilitates
the understanding of the behaviour of the coefficient when non-linear transformation are applied.

Lastly, we explored three specific non-linear transformations to enhance the synergy between
correlation measures and the scaling factor in our model. Importantly, in our analysis, both positive
and negative correlations are equally significant. To align with this approach, each transformation
we selected maps negative values to positive, thereby treating all correlations with the same weight
regardless of their direction:

• Quadratic: 𝑥2 - This transformation dampens lower values, ensuring a smooth escalation in influ-
ence as correlations become stronger. By squaring the correlation coefficient, smaller correlations
yield significantly smaller values, progressively enhancing the weight as the correlation strength
approaches 1 or -1. It is important to note that the values produced by this transformation are
lower than those from a linear transformation, which should harmonize effectively with the
scaling factor, 𝑠.

• Log-Quadratic: 𝑙𝑜𝑔(−𝑥2 + 1 + 𝜖) - This function applies a more aggressive dampening effect
at lower correlation values, while sharply increasing as the correlation approaches 1/-1. This is
particularly useful in emphasizing features that have very strong correlations, either positive or
negative.

• Absolute value: |𝑥| - This linear function acts as a control to see the importance of using
non-linear functions.

We present the results of our validation experiments in Table 1, which outlines the performance of
various non-linear transformations and correlation measures, with a focus on the ndcg@10 metric and
the number of features selected. Additionally, for further context, we included comparisons against an
automated method for selecting the value of 𝛼 in Equation 5, proposed by Rodriguez-Lujan et al. [6], as
well as against a baseline model that uses all available features.

Table 1
Validation experiments. Note: The symbol “(-)” indicates the inversion of the signal of the function when
integrated into matrix 𝑄. This inversion is employed because we desire 𝜑 to reduce our objective, whereas 𝜓 is
intended to increase it.

𝜑 𝜓 𝑟 ndcg@10 Number of Features

(-) Quadratic Quadratic Pearson 0.5876 19
(-) Quadratic Quadratic Spearman 0.5864 21

Log-Quadratic (-) Log-Quadratic Pearson 0.5897 13
Log-Quadratic (-) Log-Quadratic Spearman 0.5895 15
Log-Quadratic Quadratic Pearson 0.5934 16
Log-Quadratic Quadratic Spearman 0.5864 19

(-) Absolute Absolute Pearson 0.5870 38
(-) Absolute Absolute Spearman 0.5882 38

Auto-𝛼 [6] 0.5761 7

All features 0.5870 46



As shown, all configurations outperformed the Auto-𝛼 approach, suggesting that the scaling factor,
𝑠, serves as a more effective mechanism to balance both relevance and redundancy components.
Furthermore, when examining the number of features, it appears that the Auto-𝛼 method is more
biased towards controlling redundancy, which may explain its inferior results. Pearson correlation
demonstrates a preferable advantage, especially when combined with non-linear transformations, as
it achieved better scores with fewer selected features. Additionally, non-linear transformations have
demonstrated a positive contribution, as evidenced by their performance compared to the Absolute
transformation. This is noteworthy because non-linear transformations selected fewer features while
achieving comparable results. Notably, the best configuration involved using log-quadratic function as
𝜑 and quadratic function as 𝜓 with Pearson correlation, achieving a ndcg@10 score of 0.5934, even
surpassing the baseline that uses all available features.

To further explore the MQ2007 feature search space, we decided to conduct an additional experiment,
which consisted of performing a linear search using the MI-QUBO [13] model with a penalty-𝑘 to try
and identify the optimal set of features for different values of 𝑘. We varied 𝑘 from 2 to 45 in single
incremental steps, resulting in 44 unique runs. For each run, we trained a LambdaMART model and
computed the ndcg@10 score. The best result obtained was 0.5916, using 18 features. This result
was surprising, as our method was able to identify a shorter yet more effective set of features that
contributed to a slightly higher score on ndcg@10, while using less resources since we do not need to
perform any linear search.

5. Results

In this section, we mainly focus on describing our submission to the QuantumCLEF [3, 4] challenge, as
well as the analysis of its results.

5.1. Submissions

We leveraged insights from our previous experiments to construct our submission runs. Notably, for
all submissions, we defined 𝜑 as Log-Quadratic function, 𝜓 as Quadratic function, 𝑠 = 𝑛−1

2
and 𝑟

as Pearson correlation. Additionally, when utilizing the Quantum Annealer, we used all the default
parameters from D-Wave.

5.1.1. MQ2007

For MQ2007 we submitted the following four runs:

• Run 0: Utilizes our hyperparameter-free formulation on a quantum annealer.
• Run 1: Utilizes our hyperparameter-free formulation on a simulated annealer.
• Run 2: MI-QUBO [13] with linear search on quantum annealer (best 𝑘 = 20).
• Run 3: MI-QUBO [13] with linear search on simulated annealer (best 𝑘 = 18).

5.1.2. ISTELLA

Due to the higher number of features and their fully connected nature, running on a quantum annealer
presented significant challenges, as there are fewer fully connected variables available in a quantum
annealer than the total number of variables in this dataset. To circumvent this problem, we primarily
divided the runs into two steps: first, a selection step that identifies the best 𝑘 features, followed by the
application of our hyperparameter-free formulation over this subset. Regarding our runs, we submitted
the following five:

• Run 0: Conducted in two stages, our process began with using a simulated annealer that
implemented our hyperparameter-free formulation with a penalty of 𝑘 = 110 to select the top
110 features. Subsequently, from these 110 features, we identified the most important using our
hyperparameter-free formulation on a quantum annealer.



• Run 1: Similar to Run 1, but after the initial selection, the rerun over the top 110 features was
performed using simulated annealing.

• Run 2: Manually eliminated features with an absolute correlation higher than 0.85, then applied
our hyperparameter-free model to the remaining features using a quantum annealer

• Run 3: Similar to Run 3, but after reducing the feature set, the hyperparameter-free model was
run on a simulated annealer.

• Run 4: Utilizes our hyperparameter-free formulation on a simulated annealer.

Note that we did not utilize the MI-QUBO [13] formulation on ISTELLA, since it would be required
to run a linear search for the parameter 𝑘, which becomes unfeasible to do for the 220 features.

5.2. Official results

In the QuantumCLEF [3, 4] challenge, although 25 teams registered, only 7 submitted valid entries
across the different tasks. Specifically, 5 teams submitted results for the MQ2007 dataset, and 3 teams
submitted for the ISTELLA dataset. The primary evaluation metric used for this challenge was ndcg@10,
obtained by the LambdaMART model trained by the organizers over the features selected by each team.

5.2.1. MQ2007

The results for the MQ2007 dataset are shown in the Table 2. The performances of our runs were quite
consistent, with scores hovering around the mid-44s in terms of ndcg@10, except for Run 2, which
slightly outperformed the others.

Table 2
Official results on the MQ2007 dataset.

System ndcg@10 Annealer type Time (us) Number of Features

Run 0 0.4410 QA 273682 18
Run 1 0.4410 SA 1351082 16
Run 2 0.4497 QA 269805 20
Run 3 0.4446 SA 3606880 18

Median 0.4410 QA 273682 18
Top-performing competitor 0.4515 SA 2752363 25

All features 0.4473 - - 46
Auto select 0.4450 - - 23

Furthermore, contrary to our validation results, our best submission was Run 2, which utilized a
MI-QUBO [13] on a quantum annealer. This suggests that employing quantum technology for feature
selection might offer a slight advantage over simulated annealing in certain configurations, especially
when considering time efficiency. However, it is important to note that all our runs fell short of the
top-performing competitor’s score of 0.4515. Nonetheless, our solution managed to stay competitive
while using fewer features.

5.2.2. ISTELLA

For the ISTELLA dataset, we adopted a zero-shot approach, applying the experimental setup refined on
MQ2007 directly to ISTELLA without prior validation. The results from our five runs are summarized
in Table 3.

The ndcg@10 scores for ISTELLA ranged from 0.6699 to 0.7081, with Run 4 achieving the highest
score among our submissions. Impressively, our results significantly surpassed both the median and the
top-performing competitor. However, they still fell short of the baseline that utilizes all features.

Despite this, the performance across both datasets demonstrates the robustness and adaptability of
our proposed hyperparameter-free QUBO method, which consistently delivered highly competitive



Table 3
Official results on the ISTELLA dataset.

System ndcg@10 Annealer type Time (us) Number of Features

Run 0 0.6699 SA + QA 16324680 92
Run 1 0.6814 SA 19071071 90
Run 2 0.6905 QA 551363 82
Run 3 0.7029 SA 5403909 72
Run 4 0.7081 SA 13827390 161

Median 0.6541 SA 3727877 25
Top-performing competitor 0.6566 SA 3874706 25

All features 0.7146 - - 220

scores. Furthermore, the variability in the number of features selected for different datasets accentuates
our method’s ability to dynamically adapts to different sized datasets. This flexibility is likely one of the
key reasons why our results on ISTELLA were considerably higher than those of other competitors.

6. Limitations

This work was conducted under severe time constrains, which naturally resulted in some limitations:

• Lack of Rigorous Mathematical Analysis: The methodologies and transformations used in
this work were selected primarily based on empirical evaluations conducted on the MQ2007
dataset. As a result, the choices were not supported by a rigorous mathematical framework or
analysis. This may limit the generalizability of the findings to other datasets.

• Limited Dataset Testing: The validation and testing of our method were confined to just two
datasets: MQ2007 and ISTELLA. Although these datasets are well-establish within the field of
information retrieval, the limited diversity in test environments restricts our ability to fully assess
the model’s effectiveness and adaptability.

7. Conclusions and Future Work

In this work, we proposed a hyperparameter-free QUBO formulation for feature selection, which
we extensively validated on the MQ2007 dataset and subsequently tested under the QuantumCLEF
challenge. Our approach demonstrated competitive results on both datasets, coupled with the advantage
of not requiring any hyperparameter tuning or prior data knowledge.

For future work, it would be beneficial to pursue a more rigorous mathematical foundation to support
the hyperparameter-free QUBO formulation. Additionally, testing the methodology across a larger
number of datasets would be advantageous to further validate its effectiveness and adaptability.
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