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Abstract
Quantum technologies are a reality today, and the future is bright regarding its capabilities for real-world ap-
plications. Feature selection is a crucial preprocessing step in Information Retrieval. By identifying the most
informative subset of features, feature selection can improve the efficiency of learning to rank models. In this
paper, we propose a novel approach to feature selection for Information Retrieval using quantum annealing. This
promising optimization technique leverages the principles of quantum mechanics. We focus on the MQ2007
dataset, a widely used benchmark for learning to rank tasks. We also explore different formulations of the feature
selection problem as quadratic unconstrained binary optimization (QUBO) problems, including mutual informa-
tion, conditional mutual information, and correlation coefficients. Our quantum annealing-based approaches
demonstrate their effectiveness in selecting informative features, outperforming simulated annealing, which
achieves an nDCG@10 score of 0.4024. The best quantum annealing-based approach achieves a score of 0.443
using a hybrid solver with only ten features. We discuss the importance of the number of selected features in
the performance of learning to rank models and the role of hybrid quantum-classical solvers in incorporating
additional constraints and preferences into the feature selection process. Our work demonstrates the potential of
using quantum annealing to tackle complex optimization problems. It paves the way for further exploration in
this domain.
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1. Introduction

Information Retrieval (IR) systems are crucial in efficiently and effectively retrieving relevant information
from large-scale data. Among the various components of IR systems, learning-to-rank (LTR) models,
such as LambdaMART[1], have shown remarkable performance in improving the quality of search
results [2]. However, the performance of these models heavily relies on selecting informative features
from the high-dimensional feature space [3].

Feature selection is an essential preprocessing step in IR to identify the most relevant subset of
features for training LTR models [4]. By reducing the dimensionality of the input data, feature selection
not only improves the efficiency of the training process but also enhances the generalization ability of
the models [5]. Traditional feature selection methods, such as recursive feature elimination (RFE) with
logistic regression [6], have been widely used in IR. However, these methods often need help with the
complex and non-linear relationships among features and the target variable [7].

Recent advancements in quantum computing have opened up new possibilities for solving optimiza-
tion problems, including feature selection. Quantum annealing, in particular, has shown promise in
efficiently exploring vast search spaces and finding optimal solutions [8]. By leveraging the principles
of quantum mechanics, such as superposition and entanglement, quantum annealing can outperform
classical optimization algorithms [9]. Wang et al. [10] have demonstrated the effectiveness of integrating
machine learning algorithms with quantum annealing solvers for online fraud detection, showcasing
the potential of quantum annealing in real-world applications.

In this work, we propose a novel approach to feature selection for IR using quantum annealing.
Specifically, we focus on the MQ2007 dataset [11], a widely used benchmark for LTR tasks, and aim to
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select the most informative subset of features to improve the performance of a LambdaMART model.
We explore different formulations of the feature selection problem as quantum annealing problems,
including mutual information (MI), conditional mutual information (CMI), and correlation coefficients.

The main contributions of our work are as follows: We present a quantum annealing-based approach
to feature selection for IR, demonstrating its effectiveness on the MQ2007 dataset. We compare different
problem formulations (MI, CMI, and correlation coefficients) and analyze their impact on the feature
selection process. We evaluate the performance of the LambdaMART model trained with the selected
features using the normalized discounted cumulative gain (nDCG) metric[12]. We provide insights into
the quantum annealing process through energy histograms and discuss the feasibility of the solutions
found by the hybrid solver.

2. Related Work

Feature selection is a fundamental process in machine learning that involves the identification of a
subset of pertinent features from a larger set to improve model performance. Several authors have
developed various approaches to address this problem, each with unique contributions and benefits.
Evolutionary Quantum Feature Selection (EQFS) employs principles of quantum computing to enhance
the efficiency of feature selection. EQFS employs the Quantum Circuit Evolution (QCE) algorithm, which
uses shallow-depth circuits to generate sparse probability distributions. It enables the identification of
optimal feature combinations with quadratic scaling in the number of features, thus overcoming the
curse of dimensionality. This technique is particularly effective for high-dimensional datasets [13, 14].

We can classify the various traditional feature selection methods into three main categories: filter,
wrapper, and embedded methods. Filter methods, such as correlation and mutual information, use
general dependency measures between features and the output. Wrapper methods evaluate subsets of
variables based on the quality of the final classification, offering superior performance but at a higher
computational cost. Embedded methods integrate feature selection into the training process of the
classifier, with examples including decision trees and methods with L1 regularization. These traditional
approaches are fundamental in various Machine Learning applications, balancing computational effi-
ciency and accuracy [13]. Moreover, methods based on mutual information have been highly influential
in multiple applications [15].

Another approach to quantum computing involves integrating machine learning algorithms with
quantum annealing solvers. This approach is particularly productive in online fraud detection, where
data processing in real-time or near-real-time is of paramount importance. The quantum-enhanced
SVM has demonstrated notable enhancements in speed and accuracy for time-series datasets with
highly imbalanced data. However, the accuracy improvements for non-time series data were relatively
marginal. This approach demonstrates the potential of quantum machine learning (QML) applications
in time-series data. It illustrates that the optimal strategy depends on the dataset type and the balance
between speed, accuracy, and cost [16]. Moreover, authors have demonstrated that conditional mutual
information is a practical approach to feature selection in incomplete data [17].

Genetic algorithms represent a type of randomized feature selection method that attempts to emulate
the processes of natural evolution. These algorithms generate feature subsets randomly and iteratively
improve them through operations such as crossover and mutation. Genetic algorithms can effectively
locate optimal feature subsets, thereby avoiding the pitfall of local optima. This robustness renders them
well-suited for complex feature selection tasks. The capacity to evade local optima confers a substantial
advantage over other sequential search methodologies. Furthermore, incorporating randomness into
these processes can enhance the efficiency of identifying optimal feature sets [18]. Moreover, integrating
mutual information into genetic algorithms has been employed to improve feature selection [19].

The integration of classical machine learning techniques with quantum computing offers the poten-
tial for significant advantages. For example, a hybrid approach that employs quantum evolutionary
algorithms to optimize feature combinations. In contrast, classical algorithms that evaluate these
combinations can effectively leverage the strengths of both paradigms. This approach aims to enhance



the precision and efficacy of feature selection in a range of machine-learning applications. The capacity
of quantum algorithms to address the computational complexity of large datasets is a valuable com-
plement to the resilience of classical methods in model evaluation. This type of integration promises
significant advancements in the practical application of quantum feature selection [13]. Combining
mutual information with other criteria has been demonstrated to enhance feature selection in various
domains [20].

In supervised feature selection, a recent approach combines sparse representation and mutual
information to enhance the feature selection process. The method begins with sparse representation,
which evaluates the importance of each feature in the overall data structure. Subsequently, mutual
information is employed to reduce redundancy among the selected features. The experimental results
demonstrate that this approach significantly enhances classification outcomes and can achieve superior
feature selection results at lower dimensions. This method illustrates the significance of considering
the global importance of features and redundancy reduction to achieve optimal results [21]. Moreover,
using conditional mutual information and other innovative methodologies has yielded encouraging
outcomes in feature selection [22].

3. Methodology

In this section, we describe our methodology for feature selection using quantum annealing. We
first formulate the feature selection problem as a quantum annealing problem and then present the
approaches we explored, including mutual information, conditional mutual information, and correlation
coefficients. We also discuss the use of hybrid quantum-classical solvers and simulated annealing for
comparison.

3.1. Dataset

Our experiments use the MQ2007 dataset, a widely used benchmark dataset for learning to rank tasks in
Information Retrieval. The MQ2007 dataset consists of 1,692 queries and 69,623 documents, with each
query-document pair represented by a 46-dimensional feature vector. The QuantumCLEF lab organizers
provide a training set, which we use for feature selection. The organizers are the ones responsible for
training and evaluating the learning to rank model using the selected features [23, 24].

3.2. Problem Formulation

Let 𝒟 = (x𝑖, 𝑦𝑖)𝑖 = 1𝑁 be a dataset consisting of 𝑁 instances, where x𝑖 ∈ R𝑑 is a 𝑑-dimensional
feature vector and 𝑦𝑖 ∈ R is the corresponding target value. The goal of feature selection is to identify a
subset of features 𝒮 ⊆ 1, 2, . . . , 𝑑 that maximizes the relevance to the target variable while minimizing
the redundancy among the selected features.

We formulate the feature selection problem as a quadratic unconstrained binary optimization (QUBO)
problem, which can be solved using quantum annealing. The QUBO formulation is given by:

min
q∈0,1𝑑

q⊤Qq, (1)

where q is a binary vector representing the selection of features, and Q is a 𝑑× 𝑑 matrix capturing
the interactions between features. The diagonal elements of Q represent the relevance of each feature
to the target variable. In contrast, the off-diagonal elements represent the redundancy between pairs of
features.

3.3. Mutual Information

Mutual information (MI) measures the dependence between two random variables. In the context of
feature selection, we use MI to quantify the relevance of each feature to the target variable. We define
the MI between a feature 𝑋𝑖 and the target variable 𝑌 as:



MI(𝑋𝑖;𝑌 ) =
∑︁
𝑥∈𝑋𝑖

∑︁
𝑦∈𝑌

𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
, (2)

where 𝑝(𝑥, 𝑦) is the joint probability distribution of 𝑋𝑖 and 𝑌 , and 𝑝(𝑥) and 𝑝(𝑦) are the marginal
probability distributions of 𝑋𝑖 and 𝑌 , respectively.

To formulate the feature selection problem using MI, we construct the Q matrix as follows:

Q𝑖𝑗 =

{︃
−MI(𝑋𝑖;𝑌 ) if 𝑖 = 𝑗,

0 otherwise.
(3)

The negative sign in the diagonal elements ensures that the optimization problem seeks to maximize
the MI between the selected features and the target variable.

3.4. Conditional Mutual Information

Conditional mutual information (CMI) extends the concept of MI by considering the redundancy
between pairs of features given the target variable. The CMI between two features 𝑋𝑖 and 𝑋𝑗 given the
target variable 𝑌 is defined as:

CMI(𝑋𝑖;𝑋𝑗 |𝑌 ) =
∑︁
𝑥𝑖∈𝑋𝑖

∑︁
𝑥𝑗∈𝑋𝑗

∑︁
𝑦∈𝑌

𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦) log
𝑝(𝑥𝑖, 𝑥𝑗 |𝑦)

𝑝(𝑥𝑖|𝑦)𝑝(𝑥𝑗 |𝑦)
, (4)

where 𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦) is the joint probability distribution of 𝑋𝑖, 𝑋𝑗 , and 𝑌 , and 𝑝(𝑥𝑖|𝑦) and 𝑝(𝑥𝑗 |𝑦) are
the conditional probability distributions of 𝑋𝑖 and 𝑋𝑗 given 𝑌 , respectively.

To incorporate CMI into the feature selection problem, we update the Q matrix as follows:

Q𝑖𝑗 =

{︃
−MI(𝑋𝑖;𝑌 ) if 𝑖 = 𝑗,

−CMI(𝑋𝑖;𝑋𝑗 |𝑌 ) if 𝑖 ̸= 𝑗.
(5)

The negative sign in the off-diagonal elements ensures that the optimization problem seeks to
minimize the redundancy between the selected features given the target variable.

3.5. Correlation Coefficients

Correlation coefficients measure the linear relationship between two variables. In the context of feature
selection, we use the Pearson correlation coefficient to quantify the relevance of each feature to the
target variable and the redundancy between pairs of features. The Pearson correlation coefficient
between two variables 𝑋 and 𝑌 is defined as:

𝜌(𝑋,𝑌 ) =
cov(𝑋,𝑌 )

𝜎𝑋𝜎𝑌
, (6)

where cov(𝑋,𝑌 ) is the covariance between 𝑋 and 𝑌 , and 𝜎𝑋 and 𝜎𝑌 are the standard deviations of
𝑋 and 𝑌 , respectively.

To formulate the feature selection problem using correlation coefficients, we construct the Q matrix
as follows:

Q𝑖𝑗 =

{︃
−|𝜌(𝑋𝑖, 𝑌 )| if 𝑖 = 𝑗,

−|𝜌(𝑋𝑖, 𝑋𝑗)| if 𝑖 ̸= 𝑗.
(7)

The absolute values of the correlation coefficients capture both positive and negative relationships.
The negative sign ensures that the optimization problem maximizes relevance and reduces redundancy.



3.6. Quantum Annealing

Quantum annealing is an optimization technique that leverages the principles of quantum mechanics
to solve complex optimization problems. It is particularly well-suited for solving QUBO problems, as it
efficiently explores the vast solution space and finds the global minimum. To solve the feature selection
problem using quantum annealing, we follow these steps:

Algorithm 1 Quantum Annealing for Feature Selection

1: Construct the Q matrix based on the chosen approach (MI, CMI, or correlation coefficients).
2: Convert the Q matrix to a QUBO problem.
3: Submit the QUBO problem to the quantum annealer.
4: Retrieve the solution from the quantum annealer.
5: Interpret the solution as the selected subset of features.

Once the quantum annealer has completed its task, it returns a binary vector q. This vector is more
than just a series of 1s, and 0s-it represents the selected subset of features. The indices of the non-zero
elements in q are the features that have been chosen, providing a clear output of the quantum annealing
process.

3.7. Hybrid Quantum-Classical Solvers

In addition to using pure quantum annealing, we explore using hybrid quantum-classical solvers for
feature selection. Hybrid solvers combine the strengths of quantum and classical computation by
leveraging quantum annealing to explore the solution space and classical optimization techniques for
local refinement.

We specifically employ the LeapHybridCQMSampler, a hybrid solver provided by D-Wave Systems.
This solver combines quantum annealing with a classical-constrained quadratic model (CQM) solver.
The hybrid solver allows us to incorporate additional constraints into the feature selection problem,
such as the desired number of selected features.

Our approach involves formulating the feature selection problem as a CQM and then submitting it to
the LeapHybridCQMSampler. This hybrid solver, upon receiving our problem, diligently explores the
solution space and returns a set of feasible solutions. From this set, we select the best solution based on
the objective function value, ensuring the highest quality of our results.

3.8. Simulated Annealing

For comparison purposes, we also implement feature selection using simulated annealing, a classical
optimization technique inspired by the annealing process in metallurgy. Simulated annealing aims to
find the global minimum of an objective function by gradually decreasing the system’s temperature
and allowing occasional uphill moves to escape local minima.

We use the SimulatedAnnealingSampler provided by the D-Wave Ocean SDK to solve the feature
selection problem using simulated annealing. The simulated annealing algorithm follows a similar
procedure to quantum annealing. Still, instead of leveraging quantum effects, it relies on a probabilistic
acceptance criterion to explore the solution space.

By comparing the results obtained using quantum annealing, hybrid quantum-classical solvers, and
simulated annealing, we can assess the relative effectiveness of these approaches for feature selection
in Information Retrieval.

3.9. Evaluation

The organizers of the QuantumCLEF lab, in a collaborative effort, have evaluated the effectiveness of
our quantum annealing-based feature selection approaches. We have submitted the selected features
from the training set to the organizers, who have then used them to train a LambdaMART model on



their internal training set. LambdaMART, a state-of-the-art learning-to-rank algorithm, combines the
MART (Multiple Additive Regression Trees) algorithm with a lambda gradient optimization framework.

The organizers evaluate the performance of the LambdaMART model using their internal validation
and test sets, which are inaccessible to us. They measure the performance using the normalized
discounted cumulative gain (nDCG) metric, commonly used in Information Retrieval, to evaluate the
quality of ranked results. We defined the nDCG@k metric as:

nDCG@k =
DCG@k
IDCG@k

, (8)

where DCG@k is the discounted cumulative gain at position 𝑘, and IDCG@k is the ideal discounted
cumulative gain at position 𝑘, which represents the maximum possible DCG@k value.

The evaluation results provided by the organizers, as explored in section 4, will offer valuable insights
into the effectiveness of our quantum annealing-based feature selection methods. These insights have
the potential to significantly improve the performance of learning to rank models in Information
Retrieval tasks, underscoring the relevance and potential of our research.

4. Results

This section presents and discusses the experimental results of the different feature selection meth-
ods for the MQ2007 dataset. Figure 1 shows a pairplot comparing the nDCG@10 scores of the four
implemented methods: Quantum Annealing Mutual Information (Quantum-MI), Hybrid Annealing
Mutual Information (Hybrid-MI), Hybrid Annealing Correlation (Hybrid-Correlation), and Simulated
Annealing Mutual Information (SA-MI). The pairplot visually represents the score distributions and
relationships between the methods.
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Figure 1: Pairplot of nDCG@10 scores for the different feature selection methods. The pairplot highlights the
distributions and interrelationships between Quantum-MI, Hybrid-MI, Hybrid-Correlation, and SA-MI.

Figure 2 presents a boxplot comparing the nDCG@10 scores of the four methods. The boxplot shows
each method’s median, quartiles, and outliers of the score distributions. The boxplot indicates that
Hybrid-Correlation and SA-MI have slightly higher median scores than Quantum-MI and Hybrid-MI.
However, there is considerable overlap in the score distributions.

To summarize the performance, we calculated the average nDCG@10 scores for each method based
on the provided data files. The average scores are as follows:
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Figure 2: Boxplot of nDCG@10 scores for the different feature selection methods, showing each method’s
median, quartiles, and outliers.

• Quantum-MI: 0.4299
• Hybrid-MI: 0.4195
• Hybrid-Correlation: 0.4430
• SA-MI: 0.4417

The Hybrid Correlation method achieved the highest average nDCG@10 score (0.4430), followed
closely by the SA-MI method (0.4417). The quantum-MI (0.4299) and hybrid-MI (0.4195) methods
had slightly lower average scores. These results suggest that the hybrid correlation method, which
combines quantum techniques with classical correlation-based feature selection, was the most effective
in selecting informative features for the MQ2007 dataset.

The official results shared by the organizers provide additional insights into the performance of the
methods:

QTB1A_MQ2007_QA_qtb_NT1 0.4299 356041 Q 13
QTB1A_MQ2007_QA_qtb_NT2 0.4195 500000 H 10
QTB1A_MQ2007_QA_qtb_NT3 0.4434 309227 H 10
QTB1A_MQ2007_SA_qtb_NT1 0.4024 317412 S 10

The official results confirm the average scores obtained from our calculations and provide addi-
tional details. The Hybrid-Correlation method (QTB1A_MQ2007_QA_qtb_NT3) achieved the highest
score of 0.4434, followed by the Quantum-MI method (QTB1A_MQ2007_QA_qtb_NT1) with a score
of 0.4299. The SA-MI method (QTB1A_MQ2007_SA_qtb_NT1) scored 0.4024, slightly lower than
our calculated average (0.4417). The Hybrid-MI method (QTB1A_MQ2007_QA_qtb_NT2) had the
lowest score of 0.4195 among the four methods. It is worth noting that the Quantum-MI method
(QTB1A_MQ2007_QA_qtb_NT1) used 13 features, while the other techniques used ten features. Despite
using more features, the Quantum-MI method did not outperform the Hybrid-Correlation method,
which used only ten features.

We conducted a one-way ANOVA test on the nDCG@10 scores to validate the statistical significance.
The test yielded a p-value of 0.7659, indicating that there are no significant differences between the
methods at a significance level of 0.05. This suggests that despite the differences in average scores, the
methods’ overall performance is statistically comparable.

Despite the lack of significant differences overall, we performed post-hoc pairwise comparisons using
Tukey’s HSD test to explore the differences further. We summarized Tukey’s HSD test results in Table 1.



The pairwise comparisons did not reveal any statistically significant differences between the methods,
as indicated by the high p-values (> 0.05) and the confidence intervals that include zero.

Table 1
Tukey’s HSD test results for pairwise comparisons of nDCG@10 scores.

Comparison Mean Difference p-value Lower CI Upper CI

Hybrid-Correlation vs Quantum-MI 0.0131 0.9000 -0.1420 0.1682
Hybrid-Correlation vs Hybrid-MI 0.0235 0.8326 -0.1316 0.1786
Hybrid-Correlation vs SA-MI 0.0013 1.0000 -0.1538 0.1564
Quantum-MI vs Hybrid-MI 0.0104 0.9154 -0.1447 0.1655
Quantum-MI vs SA-MI -0.0118 0.9000 -0.1669 0.1433
Hybrid-MI vs SA-MI -0.0222 0.8326 -0.1773 0.1329

It is important to note that our feature selection methods used only ten features, except for the
Quantum-MI method, which used 13 features. Despite using fewer features, our hybrid correlation
and SA-MI methods achieved competitive performance compared to other teams with 15 or more
features. Our methods effectively selected a compact set of informative features while maintaining
good performance. The ability to achieve comparable results with fewer features is advantageous in
terms of computational efficiency and model simplicity.

4.1. Analysis of Quantum-Related Methods Performance

The official results and our analysis indicate that the quantum-related methods, particularly Hybrid-
Correlation (QTB1A_MQ2007_QA_qtb_NT3) and Quantum-MI (QTB1A_MQ2007_QA_qtb_NT1), achieved
competitive performance compared to the fully simulated SA-MI method (QTB1A_MQ2007_SA_qtb_NT1).
The Hybrid-Correlation method achieved the highest score of 0.4434, outperforming the SA-MI method,
which scored 0.4024. The Quantum-MI method also performed well, with a score of 0.4299, despite using
more features (13) than the other methods. The quantum-based approach in Quantum-MI effectively
captured relevant information from the additional features.

The superior performance of the hybrid correlation method underscores the potential of combining
quantum techniques with classical correlation-based feature selection. It ignites excitement about the
future of feature selection tasks. By harnessing the strengths of both approaches, the hybrid correlation
was able to identify informative features more effectively than the purely classical SA-MI method. The
competitive performance of quantum-related methods, even without statistical significance in overall
comparisons, hints at their immense potential in feature selection tasks. The theoretical foundation of
quantum-based approaches offers a more nuanced understanding of data correlations and dependencies,
a prospect that could significantly enhance their effectiveness in identifying informative features.

However, it is essential to consider the variability in the nDCG@10 scores across different queries, as
evident from the pairplot and boxplot. Some queries had scores of 0 for all methods, indicating that
none of the selected features were relevant for those specific queries. This variability suggests that the
performance of the feature selection methods may depend on the characteristics of individual queries.
Future work could explore incorporating query-specific adaptations or using a more diverse set of
features to capture the varying information needs of different queries.

4.2. Comparison with Other Teams and Baseline

Our feature selection methods used only ten features, except for the Quantum-MI method, which
used 13 features. Despite using a smaller feature set, our hybrid correlation and SA-MI methods
achieved competitive performance compared to other teams with 15 or more features. It demonstrates
the effectiveness of our processes in selecting informative features while maintaining a compact
representation.



The decision to use fewer features was not arbitrary but a strategic move that offered several key
advantages. It significantly reduces the computational complexity of the learning algorithms, as there
are fewer dimensions to process. This, in turn, helps to mitigate the risk of overfitting, as the models
are less likely to capture noise or irrelevant patterns when trained on a smaller set of relevant features.
Moreover, a compact feature set enhances the interpretability of the models, as it hones in on the most
important aspects of the data, enlightening us to the true essence of the information.

The fact that our methods achieved comparable performance to teams using more features suggests
that our feature selection approaches were able to identify the most discriminative and informative
features for the MQ2007 dataset. It highlights the potential of our methods to extract meaningful
information from the data while maintaining efficiency and simplicity.

5. Conclusions and Future Work

In this paper, we presented a novel approach to feature selection for Information Retrieval using
quantum annealing. Our focus was on the MQ2007 dataset, where we explored various formulations of
the feature selection problem as quantum annealing problems. Our approach demonstrated potential in
selecting informative features, which contributed to the performance of the LambdaMART learning-to-
rank model. When compared with classical feature selection techniques, our quantum annealing-based
approaches showed competitive results. The evaluation conducted by the QuantumCLEF lab organizers
indicated that the features selected by our approach contributed to improvements in ranking quality,
although the differences were not statistically significant. Our work provides insights into the application
of quantum annealing for addressing optimization problems in Information Retrieval. However, we
acknowledge that there are limitations and challenges that need to be addressed in future work. Future
research directions include:

1. Scaling quantum annealing-based feature selection to larger datasets and higher-dimensional
feature spaces.

2. Integrating quantum annealing-based feature selection with other components of the Information
Retrieval pipeline.

3. Adapting the approach to other Information Retrieval tasks, such as document clustering and
recommendation systems.

4. Exploring the potential of newer generations of quantum hardware and algorithms for Information
Retrieval applications.

In conclusion, our work demonstrates the feasibility of using quantum annealing for feature selection
in Information Retrieval. While the current results do not show significant improvements over classical
methods, they suggest that the intersection of quantum computing and Information Retrieval may
hold promise for future advancements in the field. Further research is needed to fully understand and
leverage the potential of quantum annealing in improving the efficiency and effectiveness of information
access.
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