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Abstract
The rapid advancements in Large Language Models (LLMs) have opened new avenues for automating complex
tasks in AI research. This paper investigates the efficacy of different LLMs-Mistral 7B, Llama-2, GPT-4-Turbo and
GPT-4.o in extracting leaderboard information from empirical AI research articles. We explore three types of con-
textual inputs to the models: DocTAET (Document Title, Abstract, Experimental Setup, and Tabular Information),
DocREC (Results, Experiments, and Conclusions), and DocFULL (entire document). Our comprehensive study
evaluates the performance of these models in generating (Task, Dataset, Metric, Score) quadruples from research
papers. The findings reveal significant insights into the strengths and limitations of each model and context type,
providing valuable guidance for future AI research automation efforts.
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1. Introduction

The unprecedented expansion of scientific publications [1, 2] in the field of artificial intelligence (AI)
has created a substantial challenge in systematically tracking and assessing advancements. Leader-
boards, which rank AI models based on their performance across various tasks and datasets, serve as a
crucial mechanism for monitoring progress and driving competition. The extraction of state-of-the-art
information, represented by (Task, Dataset, Metric, Score) quadruples, is vital for the maintenance and
accuracy of these leaderboards.

The effectiveness of LLMs in information extraction (IE) tasks is deeply influenced by the context
provided during the input phase. In this context, “context” refers to the segments of the scholarly
articles from which the (Task, Dataset, Metric, Score) data is extracted. Unlike the concept of in-context
learning, where models are primed with examples, our focus is on selecting relevant sections of text
to guide the LLMs toward accurate and relevant information extraction while minimizing the risk of
generating irrelevant or false information (hallucinations).

Existing research has shown that longer contextual inputs can lead to decreased model accuracy and
higher rates of hallucination due to the potential distraction of irrelevant information [3, 4]. Therefore,
identifying the optimal length and specificity of context is crucial [3]. This study explores three distinct
types of contextual inputs to empirically evaluate their impact on the task of extracting leaderboards:
DocTAET (Document Title, Abstract, Experimental Setup, and Tabular Information), DocREC (Results,
Experiments, and Conclusions), and DocFULL (the entire document).

Our primary contributions are twofold. Firstly, we evaluate the performance of the latest LLMs, both
open-sourced Llama-2 and Mistral 7B [5, 6] and proprietary GPT-4-Turbo and GPT-4.o [7], in generating
structured summaries and classifying papers with and without leaderboard data. Our first research
question (RQ1) encapsulates this: Which LLM provides the most accurate performance for generating
structured summaries and for leaderboard/no-leaderboard classification?

CLEF 2024: Conference and Labs of the Evaluation Forum, September 09–12, 2024, Grenoble, France
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open kabenamualu@l3s.de (S. Kabongo); jennifer.dsouza@tib.eu (J. D’Souza); auer@tib.eu (S. Auer)
GLOBE https://skabongo.github.io/ (S. Kabongo)
Orcid 0000-0002-0021-9729 (S. Kabongo); 0000-0002-6616-9509 (J. D’Souza); 0000-0002-0698-28646 (S. Auer)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:kabenamualu@l3s.de
mailto:jennifer.dsouza@tib.eu
mailto:auer@tib.eu
https://skabongo.github.io/
https://orcid.org/0000-0002-0021-9729
https://orcid.org/0000-0002-6616-9509
https://orcid.org/0000-0002-0698-28646
https://creativecommons.org/licenses/by/4.0


Summarizer

Full Paper

DocTEAT

REC

Document
Converter

QLoRA Finetuning

Task ScoreDataset Metric

Data Collector

Prompt Templates

LLMs

Inference

Figure 1: Main process overview

Secondly, we focus on the precise extraction of individual elements, addressing our second research
question (RQ2): Which LLM offers the best trade-off between precision and other performance metrics
in few-shot and zero-shot settings? This question is critical, given the importance of precision in
scholarly communications and the broader implications for the reliability of model outputs.

Additionally, we participate in the “SOTA? Tracking the State-of-the-Art in Scholarly Publications”
shared Task 4 in the SimpleText1 track of CLEF 2024 [8, 9]. The goal of the SOTA? shared task is
to develop systems that, given the full text of an AI paper, can recognize whether the paper reports
model scores on benchmark datasets and, if so, extract all pertinent (Task, Dataset, Metric, Score) tuples
presented within the paper.

2. Related Work

The aspiration for automatically generated leaderboards to monitor advancements in scientific research
has been a notable ambition within the scientific community. This initiative first gained traction through
the analysis of citation networks, employing then-cutting-edge methodologies such as Markov Random
Fields and others [10, 11].

The advent of transformer-based models [12] marked a significant leap forward, setting new bench-
marks across a myriad of machine learning tasks. In this vein, researchers at IBM [13] utilized the Bert
pre-trained model [14] within a Natural Language Inference (NLI) framework to discern entailment
from the complete texts of research papers to their corresponding leaderboards.

In the realm of information extraction, the application of LLMs such as GPT-3.5 and LLAMA has
demonstrated significant promise. A study by [15] highlighted the capabilities of GPT-3.5 and GPT-4
in clinical named entity recognition (NER), showcasing their adeptness at processing intricate clini-
cal datasets with limited prerequisite training. Through strategic prompt engineering, these models
exhibited remarkable improvements in performance for extracting medical entities from clinical docu-
mentation, reinforcing the potential of LLMs in executing complex NER tasks within the healthcare
sector [15].

The emergence of LLMs, including ChatGPT, has sparked a reconsideration of specialized versus
general-purpose training approaches in the context of LLMs. Building upon the foundation of utilizing
LLMs for specialized information extraction tasks, [16] delves into the utilization of these models in
the domain of virology. The study showcases how LLMs, specifically tuned for scientific content, can
efficiently parse and extract virology-related information from a plethora of scientific publications. This
research underlines the importance of fine-tuning and prompt engineering in enhancing the model’s
ability to discern relevant scientific facts, contributing to the development of domain-specific leader-
boards. The approach exemplified in this paper demonstrates an effective strategy for context selection
in LLM-based leaderboard generation, emphasizing the necessity for domain-specific adjustments to
maximize the accuracy and relevance of the extracted information.

In our previous study [17], we expanded on these findings by empirically investigating different

1https://simpletext-project.com/2024/en/
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ways to select context in creating leaderboards. We analyze the impact of tailored context cues and
the integration of domain-specific knowledge on the precision and utility of automatically generated
leaderboards. Our contributions included a thorough assessment of the latest LLMs, both open-source
and proprietary, for assessing the effectiveness of different context selection strategies and the develop-
ment of a novel methodology that significantly enhances the accuracy and relevance of LLM-based
leaderboard generation. This study not only corroborates the pivotal role of context in leveraging
LLMs for information extraction but also introduces innovative techniques that refine the process of
generating insightful and reliable leaderboards in the scientific community.

Table 1
Our DocREC (Documents Result[s], Experimentation[s] and Conclusion) corpora statistics. The “papers
w/o leaderboard” refers to papers that do not report leaderboard.

Our Corpus

Train Test-Few-shot Test Zero-shot

Papers w/ leaderboards 7,987 753 241
Papers w/o leaderboards 4,401 648 548
Total TDM-triples 415,788 34,799 14,800
Distinct TDM-triples 11,998 1,917 1,267
Distinct Tasks 1,374 322 236
Distinct Datasets 4,816 947 647
Distinct Metrics 2,876 654 412
Avg. no. of TDM per paper 5.12 4.81 6.11
Avg. no. of TDMS per paper 6.95 5.81 7.86

3. Methodology

This section details the methodology employed in our study, encompassing data collection, preprocess-
ing, model selection, and evaluation metrics. The goal is to systematically evaluate the performance of
four state-of-the-art LLMs—Mistral 7B, Llama-2, GPT-4-Turbo and GPT-4.o—across different context
types for the task of leaderboard extraction.

3.1. Data Collection and Preprocessing

We utilized data that was previously published by [17] and re-released as the SOTA? shared task training
corpus. The dataset consists of (T, D, M, S) annotations for thousands of AI articles available on PwC (CC
BY-SA). These articles cover various AI domains such as Natural Language Processing, Computer Vision,
Robotics, Graphs, Reasoning, etc., making them representative for empirical AI research. The specific
PwC source was downloaded on December 09, 2023. The corpus comprised over 8,000 articles, with
7,987 used for training and 994 for testing, including 751 in the few-shot setting and 241 in the zero-shot
setting. These articles, originally sourced from arXiv under CC-BY licenses, are available as latex source
code, each accompanied by one or more (T, D, M, S) annotations from PwC. The articles’ metadata
was directly obtained from the PwC data release, and the articles collection had to be reconstructed by
downloading them from arXiv under CC-BY licenses.

After downloading the article’s source code (‘.tex‘), we needed to preprocess it to convert it to plain
text. Sometimes, articles written in LaTeX are split into multiple files. To address this, we first created
and executed a custom script to merge the project source code into a single LaTeX file corresponding
to the arXiv ID of the paper. Next, we used another custom script to extract specific sections of the
paper (DocTEAT or DocREC) from the ‵𝑎𝑟𝑥𝑖𝑣_𝑖𝑑.𝑡𝑒𝑥‵ file, ensuring that the file remained compilable by
LaTeX, which is necessary for our ‵𝑡𝑒𝑥_𝑡𝑜_𝑡𝑒𝑥𝑡‵ parsing process.



To convert the resulting all-in-one ‵𝑎𝑟𝑥𝑖𝑣_𝑖𝑑.𝑡𝑒𝑥‘ file to plain text, we used the command ‵𝑝𝑎𝑛𝑑𝑜𝑐 −
−𝑡𝑜 = 𝑝𝑙𝑎𝑖𝑛‵. Subsequently, each article’s parsed text was annotated with (T, D, M, S) quadruples via
distant labeling. The overall corpus statistics are reported in Table 1.

Another important subset of our data, in addition to our base dataset reported in Table 1, was
the ”no leaderboards papers”. We included a set of approximately 4,401 and 648 articles that do not
report leaderboards into the train and test sets, respectively. These articles were randomly selected
by leveraging the arxiv category feature, then filtering it to papers belonging to domains unrelated to
AI/ML/Stats. These articles were annotated with the unanswerable label to finetune our language model
in recognizing papers without (T,D,M,S) mentions in them.

We phrased the following question to formulate our task objective w.r.t. the (T, D, M, S) extraction
target: What are the values for the following properties to construct a Leaderboard for the model introduced
in this article: task, dataset, metric, and score? In essence, it encapsulates an IE task.

Instruction tuning [18, 19, 20, 21, 22, 23] boosts LLMs by providing specific finetuning instructions,
improving adaptability and performance on new tasks [24, 25]. This method offers a more efficient
approach than traditional unlabeled data methods [26, 27, 28, 29], allowing for versatile task prompting
with single instructions.

In this vein, the “Flan 2022 Collection” [23] was a large-scale open-sourced collection of 62 prior
publicly released datasets in the NLP community clustered as 12 task types, such as reading comprehen-
sion (RC), sentiment, natural language inference (NLI), struct to text, etc. It is the most comprehensive
resource facilitating open-sourced LLM development as generic multi-task models. Importantly, and of
relevance to this work, FLAN was not just a super-amalgamation of datasets encapsulating different
learning objectives, but also included at least 10 human-curated natural instructions per dataset that
described the task for that dataset. As such, we select a set of instructions to guide the LLM for our
complex IE task from the FLAN collection. Specifically, we identified the applicable instructions to our
task were those designed for the SQuAD_v2 [30, 31] and DROP [32] datasets. Specifically, 8 SQuAD
and 7 DROP instructions were found suitable. The general characteristic of the selected instructions is
that they encode a context and the SOTA task objective, and instruct the model to fulfill the objective.
The context, in our case, is a selection from specific sections from the full-text of an article where (T, D,
M, S) information is most likely shared. This is discussed next.

As introduced in our prior work [17], we compared the performances of the four state-of-the-art
LLMs on the following three contexts:

3.2. DocTAET

Delineated in prior work [13], the context to the LLM comprises text selected from the (T)-title, (A)-
abstract, (E)-experimental setup, and (T)-tabular information parts of the full-text. It yields an average
context length of 493 words, ranging from a minimum of 26 words to a maximum of 7,361 words. These
specific selections targeted the areas of the paper where the (T, D, M, S) were most likely to be found.
An example of this context selection is illustrated in Figure 2.

3.3. DocREC

Introduced for the first time in this work, the DocREC context comprises text selected from the sections
named (R)-results, (E)-experiments, and (C)-conclusions with allowances for variations in the three
names. Complementary but still unique to DocTAET, the DocREC context representation aims to distill
the essence of the research findings and conclusions into a succinct format. This context, ended by
being much longer than DocTAET, yielded an average length of 1,586 words, with a minimum length of
27 words and a maximum length of 127,689 words. An example of this context selection is illustrated in
Figure 3.

https://github.com/google-research/FLAN/blob/main/flan/templates.py


Figure 2: DocTAET representation of the paper title ”Deformable Convolutions and LSTM-based Flexible Event
Frame Fusion Network for Motion Deblurring” With Dashed lines representing Task, Dataset, Metrics, and Score
present in the paper but not captured by paper with codes

Figure 3: DocREC representation of the paper title ”Deformable Convolutions and LSTM-based Flexible Event
Frame Fusion Network for Motion Deblurring”. With Dashed lines representing Task, Dataset, Metrics, and Score
present in the paper but not captured by paper with codes

3.4. DocFULL

As a last representation and to test the hypothesis that longer contexts which are not selectively tailored
to suit the desired task objective tends to distract and thereby hinder the LLM performance, we used the
full paper text as context. This approach entailed compiling the LaTeX source code of the document and
translating its entirety into a plain text file. DocFULL ended producing the longest contexts compared
to DocTAET and DocREC, in an average length of 5,948 words.



3.5. Models

In the period following the introduction of Flan-T5 [25], the community has witnessed the emergence
of multiple advanced LLMs that have outperformed it. In this paper, we adopt the Flan-T5 fine-tuning
paradigm and implement it in a comparative experimental setup on two of the latest state-of-the-art
LLMs featured on the public LLM leaderboard.

In this work, we selected two open-sourced models as well as two closed-source models.
Mistral-7B. As the first open-sourced model, we selected Mistral-7B [6]. This model as the name sug-
gested is a 7-billion-parameter language model optimized for performance and efficiency. It introduces
the Grouped-Query Attention (GQA) for rapid inference and reduced memory requirements, and Sliding
Window Attention (SWA) for handling long sequences with lower computational costs. The model
surpasses existing models in benchmarks, including reasoning, mathematics, and code generation tasks.
It also features fine-tuning capabilities for instruction following, achieving superior performance in
human and automated benchmarks. Mistral 7B is designed for real-time applications, supports high
throughput, and its architecture enables effective sequence generation with optimized memory usage.
The model is released under the Apache 2.0 license, with its source code on Github, facilitating broad
accessibility and application in various tasks.
Llama-2 7B. As the second open-sourced model, we selected the LLama-2 model [5]. The Llama-2
model is a collection of LLMs that range from 7 billion to 70 billion parameters, designed for both general
and dialogue-specific applications. From the three available Llama-2 model checkpoints, i.e. 7B, 13B,
and 70B, for comparability with our first select model, i.e. Mistral-7B, we choose the Llama-2 7B model.
The Llama-2 models are fine-tuned for enhanced dialogue use cases and exhibit improved performance
over existing open-source models in terms of helpfulness and safety, based on benchmarks and human
evaluations. The Llama-2 family includes models optimized for different scales and introduces safety
and fine-tuning methodologies to advance the responsible development of LLMs.
GPT-4-Turbo. As the first proprietary model, we leveraged GPT-4-Turbo, developed by OpenAI. GPT-
4-Turbo is designed to offer enhanced performance and efficiency, providing faster response times and
reduced computational costs. This model excels in various natural language processing tasks, including
text generation, translation, summarization, and question answering. Optimized for high-throughput
applications, GPT-4-Turbo maintains a high level of accuracy and consistency, making it suitable for
real-time AI applications. Additionally, the model incorporates improvements in handling extensive
contextual inputs, which enhances its capability in generating coherent and contextually relevant
outputs.
GPT-4.o. For the proprietary model, we leveraged GPT-4.o, developed by OpenAI. GPT-4.o (“o” for
“omni”) is designed to enable more natural human-computer interactions, accepting a wide range of
input types including text, audio, image, and video, and generating outputs in text, audio, and image
formats. The model is optimized for multimodal tasks, offering a significant advancement in vision and
audio understanding compared to previous models.

We employed the QLORA (Quantum-enhanced Learning Optimization for Robust AI) [33] framework
for fine-tuning our open-sourced models, leveraging its advanced optimization capabilities to enhance
model performance. QLORA has been recognized for its innovative approach to integrating quantum
computing principles with machine learning, offering a novel pathway to overcoming traditional
optimization challenges.

4. Evaluations

Experimental setup. For training, we had one main experimental setting based on the 15 instructions.
As elicited earlier in subsection 3.1, each of the 15 instruction were instantiated with the 7,987 (T, D,
M, S) data instances and the SOTA question resulting in a total of 119,805 instances to instruction
finetune out LLMs. In this scenario, we hypothesized that this repetition in the data instances across
the instructions would cause the resulting model to overfit the training dataset. Thus to control for
this, we applied the following experimental setup. Each instruction was instantiated with a random

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/mistralai
https://github.com/mistralai/mistral-src
https://huggingface.co/meta-llama


selection of only half the 7,987 (T, D, M, S) data instances resulting in a finetuning dataset of a sizeable
41,340 instances that had leaderboards. The papers w/o leaderboards were also similarly halved. As
shown in Table 1, the few-shot test included 1,401 paper instances, comprising 648 papers without
leaderboards and 735 papers with leaderboards. The zero-shot test set consisted of 789 papers, with 548
papers without leaderboards and 241 papers with leaderboards. Model hyperparameter details are in
Appendix C. In terms of compute, all experiments including inference were run on an NVIDIA 3090
GPU. Training took 20 hours on the 50% sampled dataset, while inference lasted 10 minutes for 2k test
instances.

Table 2
Evaluation results of Llama-2, Mistral, GPT-4-Turbo, and GPT-4.0 for the shared task, reported using the
metrics proposed for the task. The output evaluations are conducted as a structured summary generation
task (reported with ROUGE metrics) and as a binary classification task to distinguish between papers
with and without leaderboards (reported as General Accuracy).

Few-shot Zero-shot

Model Rouge1 Rouge2 RougeL RougeLsum
General
-Accuracy Rouge1 Rouge2 RougeL RougeLsum

General
-Accuracy Context

Llama-2 7B
49.68 10.18 48.91 49.02 83.51 68.15 4.81 67.59 67.78 86.82 DocREC
49.70 17.62 48.81 48.81 83.62 62.75 10.88 62.07 62.18 86.22 DocTAET
5.38 0.79 4.96 5.13 57.54 7.55 0.71 7.24 7.35 37.80 DocFULL

Mistral 7B
55.46 14.11 54.54 54.64 88.44 72.98 6.87 72.42 72.35 92.40 DocREC
57.24 19.67 56.28 56.19 89.68 73.54 12.23 73.01 72.95 95.97 DocTAET
6.73 0.77 6.36 6.49 58.45 9.38 0.59 9.11 9.23 39.28 DocFULL

GPT-4-Turbo
52.64 5.82 51.99 51.76 60.89 72.80 2.66 72.35 72.09 77.06 DocREC
43.14 2.41 42.97 42.91 47.33 59.98 0.48 59.89 59.74 61.18 DocTAET
48.50 3.21 48.06 47.96 52.87 70.10 1.8 69.75 69.73 72.65 DocFULL

GPT-4.o
58.59 16.81 56.37 55.45 83.21 74.94 9.02 73.65 73.02 87.94 DocREC
52.10 13.72 50.77 49.26 80.63 69.59 8.81 68.57 67.43 87.56 DocTAET
55.41 17.82 53.01 51.79 79.56 70.05 10.89 68.42 67.51 78.95 DocFULL

Metrics. We evaluated our models in two main settings. In the first setting, we applied standard
summarization ROUGE metrics [34]. Furthermore, we also tested the models ability to identify papers
with leaderboards and those without. This task was simple. For the papers with leaderboards, the model
replied with a structured summary and for those it identified as without it replied as “unanswerable.”
For these evaluations we applied simple accuracy measure. In the second setting, we evaluated the
model JSON output in a fine-grained manner w.r.t. each of the inidividual (T, D, M, S) elements and
overall for which we reported the results in terms of the standard F1 score and Precision score.

4.1. Results and Discussion

This section analyzes the comparative performance of different contexts provided to LLMs, examining
their impact on model precision and reliability across various tasks and settings. Additionally, we
utilized a matching algorithm, fuzz.ratio, with a threshold of 50% for partial metrics to account for
variations in how tasks, datasets, and metrics are reported in research papers compared to the pwc
code dumps.

Results for RQ1: Performance in Generating Structured Summaries and Classification

1. Few-shot Performance (Table 2):

• Llama-2 7B: Demonstrates consistent performance across different contexts (DocREC,
DocTAET) with high General Accuracy in DocREC (83.51%) and DocTAET (83.62%). It
shows substantial differences in ROUGE scores, especially in the ROUGE-2 and ROUGE-
Lsum metrics, indicating its ability to capture more nuanced information.

• Mistral 7B: Exhibits the highest General Accuracy in DocTAET (89.68%) and competitive
ROUGE scores across all contexts. This model shows significant improvement over Llama-2
7B and GPT-4-Turbo in most metrics, showcasing the strengths of domain-specific fine-tuned
open-source models.



Table 3
Evaluation results of Llama-2, Mistral, GPT-4-Turbo, and GPT-4.0 for the shared task, reported using the
metrics proposed for the task. The evaluation considers the individual (Task, Dataset, Metric, Score)
elements and Overall in the model JSON generated output, reported in terms of F1 score.

Few-shot Zero-shot

Model Mode Task Dataset Metric Score Overall Task Dataset Metric Score Overall Context

Llama-2 7B

Exact 20.93 13.06 13.96 3.04 12.75 13.97 6.83 11.72 2.61 8.78
DocREC

Partial 31.37 22.50 21.99 3.46 19.83 24.05 16.6 18.28 3.10 15.51
Exact 29.53 16.68 20.02 1.14 16.84 21.75 11.26 16.99 0.77 12.69

DocTAET
Partial 43.37 30.36 30.51 1.38 26.40 38.48 23.10 27.09 0.96 22.41
Exact 1.59 1.36 0.94 0.23 1.03 2.06 1.30 1.52 0.33 1.30

DocFULL
Partial 2.29 1.82 1.68 0.37 1.54 3.36 2.49 2.49 0.54 2.22

Mistral 7B

Exact 26.77 15.68 18.70 6.36 16.88 17.99 11.80 15.55 5.04 12.60
DocREC

Partial 39.75 27.28 28.49 7.08 25.65 29.88 21.05 23.16 5.75 19.96
Exact 33.38 18.51 24.23 1.87 19.50 26.99 14.32 22.04 1.20 16.14

DocTAET
Partial 46.35 32.75 34.16 2.25 28.88 44.90 27.29 32.23 1.41 26.46
Exact 0.81 0.57 0.57 0.56 0.63 0.22 0.33 0.33 0.76 0.42

DocFULL
Partial 1.19 0.85 0.81 0.84 0.92 0.56 0.67 0.78 0.87 0.72

GPT-4-Turbo

Exact 7.61 6.19 4.92 4.25 5.74 4.26 5.35 3.86 3.28 4.18
DocREC

Partial 16.48 13.96 11.03 7.03 12.13 13.76 11.09 10.19 5.46 10.13
Exact 2.99 2.69 0.95 0.75 1.84 1.13 0.79 0.34 0.11 0.59

DocTAET
Partial 6.22 5.42 3.03 1.63 4.08 2.72 1.59 1.59 0.11 1.5
Exact 3.38 3.16 1.98 2.48 2.75 2.45 2.98 1.81 2.77 2.5

DocFULL
Partial 7.03 6.41 4.96 4.15 5.64 6.49 5.85 4.47 3.56 5.09

GPT-4.o

Exact 16.14 16.11 15.50 10.76 14.63 16.04 15.05 17.43 10.38 14.72
DocREC

Partial 38.40 32.63 29.35 15.20 28.90 37.23 31.16 29.97 14.96 28.33
Exact 14.10 12.76 9.91 2.11 9.72 13.78 10.25 11.01 2.36 9.35

DocTAET
Partial 31.84 26.65 20.83 4.22 20.92 29.33 23.87 19.50 3.71 19.12
Exact 16.72 14.53 14.67 11.25 14.29 13.08 14.94 16.09 11.17 13.82

DocFULL
Partial 36.56 31.0 27.61 16.50 27.93 35.59 28.28 27.38 14.80 26.52

Table 4
Evaluation results of Llama-2, Mistral, GPT-4-Turbo, and GPT-4.o w.r.t. the individual (Task, Dataset,
Metric, Score) elements and Overall in the model JSON generated output in terms of Precision score.

Few-shot Zero-shot

Model Mode Task Dataset Metric Score Overall Task Dataset Metric Score Overall Context

Llama-2 7B

Exact 34.10 21.27 22.74 4.99 20.78 31.89 15.77 26.77 6.06 20.12
DocREC

Partial 51.13 36.66 35.82 5.59 32.32 54.92 38.32 41.73 7.27 35.56
Exact 30.61 17.29 20.78 1.18 17.46 24.56 12.72 19.19 0.87 14.34

DocTAET
Partial 44.96 31.48 31.66 1.43 27.38 43.46 26.09 30.60 1.09 25.31
Exact 34.69 29.59 20.41 5.10 22.45 32.20 20.34 23.73 5.08 20.34

DocFULL
Partial 50.00 39.80 36.73 8.16 33.67 52.54 38.98 38.98 8.47 34.75

Mistral 7B

Exact 37.65 22.15 26.38 8.94 23.78 35.68 23.40 31.02 9.98 25.02
DocREC

Partial 55.90 38.52 40.18 9.95 36.14 59.25 41.73 46.20 11.46 39.66
Exact 39.48 21.89 28.66 2.21 23.06 38.46 20.41 31.41 1.71 23.00

DocTAET
Partial 54.82 38.73 40.41 2.65 34.15 64.00 38.89 45.94 2.03 37.71
Exact 32.43 32.43 32.43 9.6 30.76 25.00 37.50 37.50 14.00 28.50

DocFULL
Partial 71.43 48.65 45.95 14.52 45.13 62.50 75.00 87.50 21.62 61.66

GPT-4-Turbo

Exact 30.46 24.80 19.67 17.30 23.06 20.57 25.96 18.66 15.94 20.28
DocREC

Partial 65.96 55.95 44.07 23.89 47.47 66.51 53.85 49.28 21.67 47.83
Exact 32.79 29.51 10.27 8.20 20.19 29.41 20.59 8.82 2.94 15.44

DocTAET
Partial 68.31 59.56 32.97 15.64 44.12 70.59 41.18 41.18 4.55 39.37
Exact 28.52 27.56 17.05 21.65 23.70 24.73 30.11 18.28 27.96 25.73

DocFULL
Partial 59.32 55.91 42.64 30.69 47.14 65.59 59.14 45.16 30.91 50.20

GPT-4.o

Exact 17.99 17.96 17.28 12.00 16.31 19.5 18.72 21.67 12.89 18.31
DocREC

Partial 42.82 36.38 32.72 16.09 32.00 46.31 38.5 37.27 18.18 35.13
Exact 19.70 17.83 13.85 2.95 13.58 25.31 18.83 20.22 4.37 17.18

DocTAET
Partial 44.50 37.25 29.11 7.78 29.66 53.86 43.83 35.80 9.07 35.64
Exact 19.18 16.67 16.84 12.90 16.40 15.30 17.48 18.83 12.05 16.17

DocFULL
Partial 41.95 35.56 31.70 18.15 31.84 41.64 33.08 32.03 16.66 30.85

• GPT-4-Turbo: Shows moderate performance with lower General Accuracy in DocTAET
(47.33%). However, it demonstrates notable improvements in ROUGE-L and ROUGE-Lsum,
indicating its potential in capturing detailed summaries.

• GPT-4.o: Shows strong performance in ROUGEmetrics, especially in DocREC andDocTAET



Table 5
Evaluation results of Llama-2, Mistral, GPT-4-Turbo, and GPT-4.o w.r.t. the individual (Task, Dataset,
Metric, Score) elements and Overall in the model JSON generated output in terms of Recall score.

Few-shot Zero-shot

Model Mode Task Dataset Metric Score Overall Task Dataset Metric Score Overall Context

Llama-2 7B

Exact 15.09 9.42 10.07 2.19 9.19 8.94 4.36 7.51 1.66 5.62
DocREC

Partial 2.63 16.23 15.86 2.49 14.30 15.40 10.60 11.70 1.97 9.92
Exact 28.52 16.11 19.32 1.10 16.26 19.52 10.10 15.24 0.69 11.39

DocTAET
Partial 41.89 29.33 29.43 1.33 25.50 34.53 20.73 24.31 0.85 20.10
Exact 0.81 0.69 0.48 0.12 0.53 1.06 0.67 0.78 0.17 0.67

DocFULL
Partial 1.17 0.93 0.86 0.19 0.79 1.74 1.29 1.29 0.28 1.15

Mistral 7B

Exact 20.77 12.14 14.49 4.93 13.08 12.03 7.89 10.38 3.37 8.42
DocREC

Partial 30.84 21.12 22.07 5.49 19.88 19.98 14.07 15.45 3.84 13.33
Exact 28.91 16.03 20.99 1.62 16.89 20.79 11.03 16.97 0.93 12.43

DocTAET
Partial 40.15 28.36 29.59 1.95 25.01 34.58 21.02 24.83 1.08 20.38
Exact 0.41 0.29 0.29 0.29 0.32 0.11 0.17 0.17 0.39 0.21

DocFULL
Partial 0.6 0.43 0.41 0.43 0.47 0.28 0.34 0.39 0.44 0.36

GPT-4-Turbo

Exact 4.35 3.53 2.81 2.42 3.28 2.37 2.98 2.15 1.83 2.33
DocREC

Partial 9.42 7.98 6.30 4.12 6.95 7.67 6.18 5.68 3.12 5.66
Exact 1.56 1.41 0.50 0.39 0.96 0.58 0.40 0.17 0.06 0.30

DocTAET
Partial 3.26 2.84 1.59 0.86 2.14 1.39 0.81 0.81 0.06 0.76
Exact 1.8 1.68 1.05 1.32 1.46 1.29 1.57 0.95 1.46 1.32

DocFULL
Partial 3.73 3.40 2.63 2.23 3.00 3.42 3.08 2.35 1.89 2.68

GPT-4.o

Exact 14.63 14.60 14.05 9.75 13.26 13.41 12.58 14.57 8.68 12.31
DocREC

Partial 34.81 29.58 26.60 14.41 26.35 31.13 26.05 25.06 12.71 23.74
Exact 10.97 9.93 7.72 1.64 7.57 9.47 7.04 7.56 1.62 6.42

DocTAET
Partial 24.79 20.75 16.21 2.89 16.16 20.15 16.40 13.39 2.33 13.07
Exact 14.82 12.88 13.00 9.97 12.66 11.42 13.05 14.05 9.76 12.07

DocFULL
Partial 32.41 27.48 24.46 15.13 24.87 31.08 24.69 23.91 13.32 23.25

contexts, with high General Accuracy in DocREC (83.21%) and DocTAET (80.63%). However,
the DocFULL context results of 79.56% which indicate the robustness of the DocREC context.

2. Zero-shot Performance (Table 2):

• Llama-2 7B: Performs well with notable General Accuracy in DocREC (86.82%) and Doc-
TAET (86.22%). However, there is a significant drop in performance in the DocFULL context
(37.8% General Accuracy), likely due to the long and complex nature of the full document
context which introduces distractions and challenges the model’s ability to maintain focus
and coherence over extended text. This suggests that while the models perform well in
more concise contexts, the added complexity and length in DocFULL can detract from their
overall accuracy and effectiveness.

• Mistral 7B:Outperforms other models in General Accuracy, especially in DocTAET (95.97%)
and DocREC (92.40%). This indicates its robustness in zero-shot settings, making it a reliable
choice for generating structured summaries without prior examples.

• GPT-4-Turbo: Shows lower General Accuracy in zero-shot settings, particularly in DocREC
(77.06%) and DocTAET (61.18%), highlighting the need for further optimization.

• GPT-4.o: Continues to show competitive performance in DocREC (87.94%) and DocTAET
(87.56%) contexts, reinforcing its capability in zero-shot scenarios.

Results for RQ2: Precision and Performance Trade-offs

1. Few-shot F1 Score analysis (Table 3):

• Llama-2 7B: Shows a balanced performance between exact and partial metrics. For example,
it achieves an Overall score of 26.40 in the partial mode under DocTAET context, indicating
its ability to handle partial matches effectively.

• Mistral 7B: Excels in both exact and partial metrics, with the highest Overall score of 28.88
in the partial mode under DocTAET context. This model provides the best trade-off between
precision and other performance metrics.



• GPT-4-Turbo: Shows moderate performance with an Overall score of 12.13 in the partial
mode under DocREC context. It requires further optimization to compete with other models.

• GPT-4.o: Demonstrates strong partial mode performance, with an Overall score of 28.90
under DocREC context.

2. Zero-shot F1 Score analysis (Table 3):

• Llama-2 7B: Shows variability in performance with a notable Overall score of 22.41 in the
partial mode under DocTAET context.

• Mistral 7B: Continues to lead with the highest Overall score of 16.14 in the exact mode
under DocTAET context, reinforcing its capability in zero-shot scenarios.

• GPT-4-Turbo: Provides moderate performance in partial mode with an Overall score of
10.13 under DocFULL context, highlighting areas for improvement.

• GPT-4.o: Provides solid performance in partial mode with an Overall score of 23.87 under
DocTAET context.

3. Precision Scores (Table 4):

• Llama-2 7B: Achieves moderate precision scores, particularly in the partial mode with an
Overall score of 35.56 in zero-shot settings under DocREC context.

• Mistral 7B: Dominates precision metrics with the highest Overall scores in both exact and
partial modes across different contexts, demonstrating its precision and reliability.

• GPT-4-Turbo: Shows competitive precision scores in zero-shot settings, particularly in the
partial mode with an Overall score of 50.20 under DocFULL context.

• GPT-4.o: Achieves moderate precision scores in few-shot settings, particularly in the exact
mode, with an Overall score of 16.40 under DocFULL context.

4. Recall Scores (Table 5):

• Llama-2 7B: Demonstrates notable recall scores in few-shot settings, particularly in the par-
tial mode with an Overall score of 25.50 under DocTAET context. However, its performance
varies significantly across different contexts and modes.

• Mistral 7B: Leads in recall scores, achieving the highest Overall scores in both exact and
partial modes across various contexts. Notably, it achieves an Overall score of 16.89 in the
exact mode in few-shot setting and 12.43 in few-shot under DocTAET context.

• GPT-4-Turbo: Shows moderate recall performance, with room for improvement, partic-
ularly in the zero-shot settings. Its best recall score is in the exact mode under DocREC
context with an Overall score of 3.28.

• GPT-4.o: Excels in recall scores, especially in few-shot settings, achieving an Overall score
of 26.35 in the partial mode under DocREC context. It maintains competitive recall scores
across different contexts and modes.

Score Extraction Analysis

When focusing on the extraction of score entities, GPT models, particularly GPT-4.o, demonstrate
a clear advantage. As shown in Table 3, GPT-4.o outperforms other models in extracting scores with
higher accuracy and precision. For example, in few-shot settings, GPT-4.o achieves an Overall score of
11.25 in the exact mode and 16.50 in the partial mode under the DocFULL context, significantly higher
than Llama-2 7B and Mistral 7B. Similarly, in zero-shot settings, GPT-4.o maintains a competitive edge
with an Overall score of 14.96 in the partial mode under DocREC context, surpassing the performance
of the other models.

This superior performance in score extraction can be attributed to the advanced capabilities
of GPT-4.o and its optimized architecture for handling diverse and long contexts. This makes it
particularly effective in accurately recognizing and extracting numerical and textual data, which is



crucial for generating accurate leaderboard metrics and scores.

Discussion

Open-source models like Mistral 7B demonstrate competitive and sometimes superior performance
compared to proprietary models like GPT-4.o and GPT-4-Turbo. This is evident in both structured
summary generation and classification tasks, particularly in the DocTAET context, where Mistral 7B
consistently outperforms others.

The trade-off between precision and performance is well-balanced in DocREC on Mistral 7B, making
it a reliable choice for applications requiring high precision. This is crucial for scholarly communications
where accuracy and reliability are paramount.

Few-shot settings show that all models, including open-source ones, perform robustly, but Mistral
7B often leads in various metrics. This highlights the potential of fine-tuning open-source models to
achieve high performance that surpasses closed-source models.

5. Conclusions

Our participation in the shared task has demonstrated that fine-tuning open-source models like Mistral
7B and Llama-2 7B can yield competitive, and in some cases superior, results compared to proprietary
models such as GPT-4.o and GPT-4-Turbo. Throughout our experiments, the DocTAET context typically
delivered dependable and accurate performance, while the DocREC context excelled in scenarios where
precision is paramount. The interaction among different context types and their consequent impact
on model performance provided valuable insights into ongoing research and practical deployment of
LLMs.

The implications of our findings within the context of the shared task are substantial. They indicate
that with meticulous context design and implementation, fine-tuned open-source LLMs are well-suited
for tracking and synthesizing scientific progress. This capability enables the provision of current and
nuanced leaderboards for any given academic field. The potential of this technology to support and
augment the efforts of academics and policymakers is significant, heralding novel opportunities for
automated or semi-automated leaderboard construction.

While we have made significant progress in elucidating and enhancing context selection for LLMs,
several avenues for future exploration have emerged. Investigating hybrid context selection methods,
domain-specific adaptations, and the integration of structured data could lead to even more sophisticated
leaderboard generation. As LLMs continue to advance, optimizing their potential remains a dynamic
and impactful field of research.

In conclusion, our involvement in the shared task has not only highlighted the effectiveness of
fine-tuned open-source models but also emphasized the importance of strategic context selection
in maximizing model performance. These insights contribute to the broader understanding of LLM
capabilities and pave the way for future advancements in the field.
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A. Instructions: Qualitative Examples

In this section, we elicit each of the instructions that were considered in this work as formulated in the
FLAN 2022 Collection for the SQuAD_v2 and DROP datasets.

Table 6
Comparative Instructions for the SQuAD_v2 and DROP datasets.

ID SQuAD_v2 Instructions DROP Instructions

1 Please answer a question about this article. If unanswerable, say ”unanswerable”. Answer based on context.
2 {Context} {Question} If unanswerable, say ”unanswerable”. Answer this question based on the article.
3 Try to answer this question if possible (otherwise reply ”unanswerable”). {Context} {Question}
4 Please answer a question about this article, or say ”unanswerable” if not possible. Answer this question: {Question}
5 If possible to answer this question, do so (else, reply ”unanswerable”). Read this article and answer this question.
6 Answer this question, if possible (if impossible, reply ”unanswerable”). Based on the above article, answer a question.
7 What is the answer? (If it cannot be answered, return ”unanswerable”). Context: {Context} Question: {Question} Answer:
8 Now answer this question, if there is an answer (else, ”unanswerable”).

B. ROUGE Evaluation Metrics

The ROUGE metrics [34] are commonly used for evaluating the quality of text summarization systems.
ROUGE-1 measures the overlap of unigram (single word) units between the generated summary and the
reference summary. ROUGE-2 extends this to measure the overlap of bigram (two consecutive word)
units. ROUGE-L calculates the longest common subsequence between the generated and reference
summaries, which takes into account the order of words. ROUGE-LSum is an extension of ROUGE-L
that considers multiple reference summaries by treating them as a single summary.

C. Additional Data statistics and Hyperparameters

Table 7
Full Paper dataset statistics. The “papers w/o leaderboard” refers to papers that do not report leaderboard.

Our Corpus

Train Test-Few-shot Test Zero-shot

Papers w/ leaderboards 7,744 961 630
Papers w/o leaderboards 4,063 604 507
Total TDM-triples 612,709 74,475 76,936
Distinct TDM-triples 62,629 8,748 8,434
Distinct Tasks 1,365 432 339
Distinct Datasets 4,733 1,379 1,077
Distinct Metrics 2,845 850 825
Avg. no. of TDM per paper 5.1 5.1 6.7
Avg. no. of TDMS per paper 6.9 6.3 9.0

We used a context length of 2400 and based on GPU availability, a batch size of 2 and gradient_ac-
cumulation_steps of 4 were used, leading to a final batch size of 8. All experiments were run on five
epochs and we used AdafactorSchedule and Adafactor optimizer [35] with scale_parameter=True,
relative_step=True, warmup_init=True, lr=1e-4.



Table 8
DOCTEAT dataset statistics. The “papers w/o leaderboard” refers to papers that do not report leader-
board.

Our Corpus

Train Test-Few-shot Test Zero-shot

Papers w/ leaderboards 7,025 903 573
Papers w/o leaderboards 3,033 444 353
Total TDM-triples 515,203 63,041 61,474
Distinct TDM-triples 56,486 8,241 7,557
Distinct Tasks 1,232 417 323
Distinct Datasets 4,473 1,317 1,010
Distinct Metrics 2,687 812 778
Avg. no. of TDM per paper 5.0 5.0 6.7
Avg. no. of TDMS per paper 6.8 6.2 8.9
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