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Abstract
This paper presents our participation in the CLEF2024 CheckThat! Lab’s Task-1 which focuses on determining
whether passages from tweets or transcriptions are check-worthy. Task 1 covers three languages including
English, Arabic, and Dutch. We propose utilizing several different instruct-tuned large language models (LLM)
and aggregating their results for the Dutch dataset. In English and Arabic datasets, in addition to LLMs, we also
use a fine-tuned XLM-R classifier. Our proposed method is ranked first in the Dutch dataset, fourth in the Arabic
dataset, and eleventh in the English dataset.
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1. Introduction

To combat misinformation, fact-checking websites like Snopes1 verify claims spread on Internet and
share their findings with their readers. However, this process is slow, taking about a day per claim [1].
Furthermore, false news spread much faster than true news [2], increasing the pressure on fact-checkers.
Therefore, automated systems to help fact-checkers and increase their efficiency and effectiveness are
highly needed.

Within the scope of fight against misinformation, we participate in Task 1 [3] of the CLEF2024
CheckThat! Lab [4]. This task involves identifying check-worthy claims within tweets or transcriptions
in three languages: Arabic, Dutch, and English. Check-worthiness analysis is the first step for fact-
checking systems. Despite its subjective nature [5], check-worthiness can be determined by answering
questions about the content [6].

In this work, we propose a two-step process to detect check-worthy claims: an initial prediction using
a fine-tuned XLM-R based classifier, followed by a more focused analysis using In-Context Learning
(ICL) with various instruct-tuned LLMs. For English, we combine the classifier’s predictions with
those from the instruct-tuned LLMs using an F1-weighted averaging method. In the Arabic track, we
aggregate predictions from the same sources (i.e., fine-tuned classifier and instruct-tuned LLMs) via
majority voting. Finally, for Dutch, we rely solely on ICL with the instruct-tuned LLMs, aggregating
their predictions using majority voting to produce the final label. In the official ranking, we are ranked
first (out of 16) in the Dutch dataset, fourth (out of 14) in the Arabic dataset, and eleventh (out of 27) in
the English dataset.
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2. Related Work

The concept of check-worthiness is thoroughly explained in recent studies [6]. Matwin et al. [7] approach
the problem as a 3-class classification task, categorizing sentences as not check-worthy, unimportant
check-worthy, and important check-worthy, thereby distinguishing between irrelevant and valuable
check-worthy sentences. However, several works define the problem as a binary classification [8] as in
this lab or a ranking problem [9].

In the early studies on check-worthiness, researchers explored various features such as named entities
[10] and syntactic dependency tags [11]. Gencheva et al. [12] study the contextual cues that might
indicate the check-worthiness of a sentence in transcripts. They report that the duration of the speech
and the presence of accusations against political opponents are correlated with check-worthiness.
However, Hansen et al. [13] discuss the flaws of using hand-crafted features for check-worthy claim
detection.

In recent years, several studies report effectiveness of transformer models in detecting check-worthy
claims, exploring various data engineering methods such as cross-lingual training [14], generating data
using LLMs [15], and contextually sensitive lexical augmentation [16]. With the recent developments
in generative models, researchers also explored their impact on detecting check-worthy claims. For
instance, Sawinski et al. [17] conducted a comparative study of GPT and BERT models for the detection
of check-worthy claims. Their findings indicate that fine-tuned BERT models can perform comparably
to large language models such as GPT-3 in identifying check-worthy claims, demonstrating that both
models have significant potential for automated fact-checking systems. In our work, we utilize multiple
LLMs and with in context learning and a fine-tuned XLM-R model and aggregate their results to reach
a final decision.

3. Proposed Approach

For each language, we develop a slightly different method. In the Arabic and English tracks, we propose
a two-stage approach to determine check-worthy statements. Our method combines a fine-tuned
XLM-R classifier with in-context learning (ICL) using multiple different instruct-tuned models. The
aggregation method varies between the Arabic and English datasets. For the Dutch dataset, we opted to
exclude the fine-tuned classifier, relying solely on in-context learning due to the time constraints of the
lab.

Our two-stage approach aims to improve the prediction performance by combining the classification
effectiveness of fine-tuned models with the natural language understanding capabilities of instruct-
tuned LLMs. Firstly, we fine-tune an XLM-R model using the training dataset. Predictions with high
confidence scores are likely to be correct while those with low confidence scores can be considered
nearly random labeling. Figure 1 shows the distribution of correctly and incorrectly classified cases
for the confidence scores of our fine-tuned XLM-R model. We observe that the classifier achieves an
average confidence score of 0.94 for correct classifications, in contrast to an average confidence score of
0.74 for incorrect classifications. To increase the effectiveness of our approach for these challenging
examples, they are passed to our ICL labeler. Here, we devise a specific prompt to directly query
multiple instruct-tuned models, asking whether a given sample is check-worthy. We then aggregate
these models’ outputs to determine if a sample is check-worthy or not.

Now we explain the details of our ICL labeler (Section 3.1) and the differences in our approach across
languages (Section 3.2).

3.1. Labeling with In-Context Learning

In-context learning is a technique where an LLM is prompted to solve a task at inference time without
updating its weights. This is achieved through a carefully curated prompt that includes explanations
or examples of the task. The concept was introduced and defined by Brown et al. [18]. During
unsupervised pre-training, a language model develops a broad set of skills and pattern recognition



Figure 1: The accompanying graph illustrates the distribution of the classifier’s confidence scores (defined as
the probability assigned to the chosen label) for correctly and incorrectly classified instances on the English
dataset. The x-axis represents the confidence scores, while the y-axis indicates the number of instances. Correctly
classified instances are represented by blue bars, whereas incorrectly classified instances are depicted in orange.
For this plot, the training data for English subtask was divided into a 9:1 train-test split, and the reported results
were obtained by fine-tuning on the training set and predicting on the test set.

abilities. At inference time, the model uses these abilities to quickly adapt to or recognize the desired
task. The term “in-context learning” refers to this adaptive process, which occurs within the forward
pass of each sequence.

The prompt developed for this task, illustrated in Figure 2, consists of three distinct sections. The
first section provides an explanation of the task, emphasizing the importance of accurate information.
In the second section, explicit instructions are given to the model to generate a data in JSON format
with three specific labels: "candidate_text," "reasoning," and "label." The requirements for each label are
clearly defined. The final section elaborates on the content to be included under the "reasoning" tag and
the candidate passage to be validated for check-worthiness, stressing adherence to the JSON format.

3.2. Approaches for Different Languages

In this section, we explain our specific approaches for each language.

3.2.1. English

Firstly, we identify the samples to be passed to the ICL labeler. We refer this subset of the data ICL subset,
which includes instances where the confidence score of the fine-tuned classifier is below 90%. We select
90% as threshold because the performance of the model noticeably decreases when its confidence score
is below 90% as seen in Figure 1. This subset is then processed by the ICL labeler. Finally, we combine
the labels from the fine-tuned classifier and the ICL labeler with a weighted averaging aggregation,
where the weights are determined by their F1 scores. The details of this aggregation method are as
follows.

Weighted Average Aggregation with F1 Scores. To determine the labels for the samples in the ICL
subset, we calculate the F1 score for the XLM-R model and the instruct-tuned LLMs on the ICL subset of



Figure 2: Prompt Instructions Provided to the Model

the training set. Afterwards, we compute a weighted average of their output labels, using the F1 scores
as weights. Samples are labeled as check-worthy if this weighted average exceeds a hyperparameter 𝛼.
The F1 scores for the XLM-R model and the instruct-tuned LLMs, along with the hyperparameter 𝛼 are
determined during the development phase and used during testing.

3.2.2. Arabic

For the Arabic task, we aggregate all labels from both the fine-tuned classifier2 and the ICL labels. We
employ a super majority voting system for our aggregation strategy, requiring agreement from four
out of five label sources for a label to be selected. We label the cases we do not reach this threshold, as
not-check-worthy.

3.2.3. Dutch

For the Dutch task, we rely exclusively on the ICL approach due to the time constraints of the lab. We
aggregate the predictions of LLMs based on majority voting to reach a final decision.

2https://huggingface.co/keles/clef1ar



4. Experiments

4.1. Implementation Details

For our pre-trained classifier we used the multilingual "FacebookAI/xlm-roberta-large" [19] model3 as
our base pretrained model. For in-context learning, we employed available APIs for GPT-3.5, GPT-44,
and Gemini 1 Pro5. We also used open-source models including Meta-Llama-3-8B-Instruct67 and Mistral-
7B-Instruct-v0.28. We quantize these open-source models down to 4-bit precision to accommodate the
hardware limitations. We used HuggingFace’s [20] generate API for text generation. Table 1 shows
the specific models we used for each task. We were not able to use some of the models in Arabic and
Dutch due to quota limits and time constraints.

Table 1
Models used for each language.

Models RoBERTa Mistral 7Bv2 Llama3 8B GPT-3.5 GPT-4 Gemini-1.0-pro

English ✓ ✓ ✓ ✓ ✓ ✓
Arabic ✓ ✓ ✓ ✓ ✓ %

Dutch % ✓ ✓ ✓ % %

As our transformer model we used "FacebookAI/xlm-roberta-large," for both English and Arabic
languages. We fine-tuned models for each language separately using HuggingFace’s Trainer API9. We
set the same parameters for both languages: a batch size of 16, a learning rate of 3× 10−5, and 5 epochs.

For the Arabic fine-tuned model, we performed evaluations in every 200 steps using the test partition
and calculated 𝐹1 score at each interval to monitor the model’s performance. The optimal performance
was identified at 2.5 epochs, which corresponds to the 1,000𝑡ℎ step (out of 2,065 steps). Beyond this
point, additional training did not result in any further improvement in the 𝐹1 score on the test set.
Thus, we selected this checkpoint for the remainder of the analysis in this study.

For the English fine-tuned model, evaluations were carried out in every 500 steps. The model
checkpoint with the lowest test set loss was chosen for further analysis, which was observed at the
2500𝑡ℎ step (out of 6,330 steps). Further configuration details and the fine-tuned models we used are
available at Huggingface10,11.

4.2. Dataset

The dataset12 consists of passages derived from tweets or transcriptions. Each passage is annotated
with a binary label indicating its checkworthiness. Table 2 presents statistics about the data. For the
experiments conducted during the development phase of the lab, the training dataset shared by the
organizers of the lab was split into 80% for training and 20% for testing for Arabic while 90% of the
English training dataset was allocated for training and 10% for testing.

3https://huggingface.co/FacebookAI/xlm-roberta-large
4https://openai.com/index/introducing-chatgpt-and-whisper-apis/
5https://ai.google.dev/gemini-api/docs/api-overview
6https://ai.meta.com/blog/meta-llama-3/
7https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
8https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
9https://huggingface.co/docs/transformers/en/main_classes/trainer
10https://huggingface.co/keles/clef1ar
11https://huggingface.co/keles/clef1eng
12https://gitlab.com/checkthat_lab/clef2024-checkthat-lab/-/tree/main/task1/data



Table 2
Statistics about the dataset used in our study. CW: Check-Worthy

English Arabic Dutch

Train
Count 22501 7333 995
%CW %24 %30 %40

Test
Count 341 610 1000
%CW %25 %35 %39

4.3. Experimental Results

4.3.1. Results on the English Dataset

We used the 10% of the training dataset for testing purposes during the development phase, as mentioned
before. We call this subset as evaluation set throughout the paper. In our experiments with English
dataset, we evaluate the impact of our ICL labeler with different aggregation methods. In particular, we
compare the performance of three methods: i) the fine-tuned classifier, ii) fined tuned classifier and ICL
labeler with majority voting, and iii) fined tuned classifier and ICL labeler with 𝐹1 weighted averaging.
Table 3 shows 𝐹1 scores on both evaluation and test sets.

Table 3
𝐹1 Scores of Our Methods for English

Model Evaluation Set Test Set

XLM-R 0.768 0.732
XLM-R & ICL with Majority Voting 0.753 0.716
XLM-R & ICL with 𝐹1 Weighted Averaging 0.767 0.718

The fine-tuned XLM-R achieves the highest 𝐹1 score, showing that ICL has negative impact on the
overall performance. Among the methods that use ICL, 𝐹1 weighted averaging yields a higher score
than the majority voting, highlighting the importance of utilizing sophisticated aggregation techniques.

4.3.2. Results on the Arabic Dataset

Table 4 presents the 𝐹1 scores for each model and results for the aggregated results under both majority
and super-majority voting methods for Arabic dataset. As explained in 3.2.2, for the Arabic task, we
employ super majority voting, which requires four out of five sources to label a claim as check-worthy.
However, as illustrated in Table 4, a basic majority voting approach yields a higher 𝐹1 score. In contrast
to our results for English, aggregation improves the 𝐹1 scores in the Arabic dataset, as both aggregation
approaches outperform all other models.

Table 4
𝐹1 Scores for Various Methods on Arabic Dataset.

XLM-R Mistral 7Bv2 Llama3 8B GPT-3.5 GPT-4 Majority Voting Super-Majority Voting

0.47 0.42 0.47 0.47 0.52 0.552 0.532

4.3.3. Results on the Dutch Dataset

As mentioned in 3.2.3, for the Dutch task, we employ a straightforward in-context learning approach
with label aggregation. We use three models and aggregate their individual predictions via majority
voting. In this experiment, we also assess the impact of inclusive aggregation in which a claim is
labeled as check-worthy if at least one of the models predicted as check-worthy. Table 5 presents the



results of this method on the Dutch training data. We observe that the inclusive aggregation yields the
highest performance. In addition, LLama 3 and GPT3.5 achieve higher scores than the majority voting
aggregation. This might be because of the low performance of Mistral 7Bv2.

Table 5
Comparative F1 Scores for Dutch Task Models

Model Mistral 7Bv2 Llama3 8B GPT-3.5 Inclusive Agg. Majority Voting Agg.

F1 Score 0.310 0.554 0.580 0.587 0.543

4.4. Official Ranking

Due to the time constraints of the lab, we had to pick the models to be submitted based on the results
that we had in the development period. In particular, we selected the following configurations as our
primary model: 𝐹1 weighted averaging for English, super-majority voting for Arabic, and majority
voting for Dutch. However, based on our follow-up experiments after the submission deadline, we
observed that these are not the best performing configurations. Nevertheless, our primary models
achieved notable success. In particular, we are ranked first (out of 16) in the Dutch track, fourth (out of
14) in the Arabic track, and eleventh (out of 27) in the English track.

4.5. Inspecting Difficult Samples

38 English sentences (out of 341) in the test set are classified incorrectly with all of our methods. After
inspecting these sentences, we notice that determining whether these sentences are check-worthy is
difficult even for human evaluators. Some of these samples are shown in Table 6. These results show
that LLMs might be beneficial to detect sentences which might need label correction.

Table 6
Sample cases where all of our methods failed to classify correctly.

Sentence Label

"And it’s not like it was 25 years ago, it was three and three quarters." Not Check-Worthy
"But the Biden administration sends Blinken, Yellen over there." Not Check-Worthy
"We’re skating on thin ice and we cannot set a precedent where the party in power
uses police force to indict its political opponents."

Check-Worthy

5. Conclusion

In this work, we explored utilizing both fine-tuned pretrained transformers and instruct-tuned LLMs
through ICL. Our proposed methods demonstrated considerable success across three languages. Our
first-place ranking in the Dutch track highlights the remarkable zero-shot capabilities of current LLMs,
while our results in Arabic and English underscore the potential of combining traditional fine-tuning
with ICL techniques. In the future work, we plan to extend our work and explore how predictions of
LLMs can be aggregated effectively.
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