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Abstract
The paper presents our participation as Hierocles of Alexandria in Touché at CLEF 2024, which addressed the
Human Value Detection shared task. The objectives of the task was to detect one or more human values (sub-task
1) and their attainment (sub-task 2) in lengthy texts across nine languages, including the automatic translation of
these texts into English. Our methodology involved the fine-tuning of four Transformer language models within a
customized multi-head model architecture for multi-label text classification. The experimental approach comprised
comprehensive data analysis, the utilization of various loss functions, and class positive weights to handle class
imbalance. Additionally, we incorporated previous sentences as context and represented human values as special
tokens in the texts to enhance classification performance. Notably, all our submissions for the multi-lingual data
surpassed the baseline submissions in both sub-tasks 1 and 2. Our top-performing submission secured the 1𝑠𝑡

position among all the participating teams in sub-task 1 in both the multi-lingual and English-translated data.
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1. Introduction

Values motivate our actions [1] and impact all processes of our (moral) behaviour from perception
and judgment to focus and action [2]. Being essentially the driving forces of individuals and societies,
intelligibly identifying them empowers us to understand more profoundly, among others, our cultural
heritage [3], citizen’s political behaviour [4] and human interaction with artificial agents [5]. This
knowledge can be fed back to people through the delivery of sustainable and responsible solutions
from the related duty holders. Naturally, narratives are vessels of values. Historical texts, social media
content, news items, and ChatGPT products are all resources to extract values and inform research,
resolve sociopolitical tensions, deliver responsible AI. In particular, Touché [6] aims to advance our
understanding of decision-making and opinion-forming processes by supporting the development of
related methods and tools based on human values detection.

Human values detection in natural language is a complex task due to diverse perceptions, multi-
lingualism, terminology interpretation, values attainment and actor attribution, among others. These
are challenges that we have encountered through our research [7, 8] and our participation in relevant
projects1,2, and are also reflected in the performance of the models developed as part of SemEval-2023
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Task 4: ValueEval [9]. Touché [6] at CLEF 2024 provides the opportunity to examine many of the afore-
mentioned challenges. The provided dataset is a collection of 3000 human-annotated texts, including
news articles and political texts, chosen to reflect diverse views. Over 70 people, from 9 language teams,
annotated texts (in their mother tongue) for their value content and attainment. Schwartz’s values [1]
were adopted for the annotation vocabulary. In addition to the original files provided in nine languages,
a machine-translated version of them in English was provided.

The current state of the art in Natural Language Processing (NLP) and ML/AI has enabled the
development of methods that identify human values in natural language artifacts [10, 11, 12, 13].
Advanced techniques for text classification, particularly for shorter text sequences, rely on fine-tuning
Transformer-based models [7], Large Language Models (LLMs) [14], ensembles of Transformer-based
models [15, 16], and custom model architectures involving multiple heads with attention mechanisms
[17, 18].

This paper presents the methodology and results of Hierocles of Alexandria team in the Human
Value Detection shared task of the second edition of Touché [6] at CLEF. Motivated by the availability
of longer texts in this Touché edition and the availability of multilingual data, the innovative aspects
of our approach include the modeling of contextual information, and the application of multi-task
learning. Assuming that the value classification of a sentence may depend on earlier sentences and
their classifications, previous sentences and their labels (either from annotated data during training
or from classification of previous sentences during evaluation) are provided as input along with the
sentence under classification. Multi-task learning, in the form of language-specific classification tasks,
has been employed in order to capture potential different value instantiations in different languages.

Our approach leveraged fine-tuning four Transformer-based language models within a custom multi-
task with multiple heads model architecture, specifically tailored for multi-lingual and multi-label
text classification in order to capture the linguistic nuances. Our experimental strategy comprised
a comprehensive data analysis, the application of various loss functions, and the utilization of class
positive weights to mitigate the challenge of class imbalance. Our approach achieved the highest score,
securing the 1𝑠𝑡 place for both multilingual and English submissions in sub-task 1, surpassing all other
participating teams and baselines. The code for our approach is available on the provided GitHub link.3

In the context of Touché, the results from all approaches were submitted through the TIRA platform,
which ensured the reproducibility and reliability of the software employed by participants, thereby
facilitating the comparison of information retrieval experiments [19].

The structure of this paper is as follows: Section 2 explores the background. Several aspects of the
data, including data analysis, pre-processing and an exploratory phase, are presented in Section 3.
Section 4 introduces an overview of the developed system and the experiments. Section 5 presents the
results. Finally, in Section 6 the conclusions are discussed, including limitations and future work.

2. Background

The exploration of human values within Natural Language Processing (NLP) encompasses various
theoretical and empirical endeavors. Central to this exploration is Shalom H. Schwartz’s theory
of basic human values, which identifies nineteen universal values inherent to human behavior and
cultural expression. These values, driven by distinct motivational goals, form a circular structure that
illustrates their dynamic interplay, where pursuing one value may align with or conflict with another [1].
Schwartz’s framework provides valuable insights into the motivational goals driving human actions and
the complex interrelations among different values. In NLP, this framework offers a robust foundation
for identifying and interpreting human values embedded within language.

In a significant research endeavor focused on identifying human values in NLP, a comprehensive
taxonomy comprising 54 human values was crafted, aligning closely with psychological research. The re-
searchers also introduced the initial annotated dataset for studying human values behind arguments [20].
This dataset encompassed 5.270 arguments from four distinct cultures: Africa, China, India, and the

3https://github.com/SotirisLegkas/Touche-ValueEval24-Hierocles-of-Alexandria
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USA. Each argument in the dataset consisted of a premise, a conclusion, and a stance attribute indicating
whether the premise supported or opposed the conclusion. The researchers manually annotated these
arguments for human values. Their methodology has paved the way for automating the classification
of human values, yielding promising results, with F1-scores reaching up to 0,81 and averaging 0,25,
establishing a benchmark for future research in this domain.

To further advance the field of human values detection in argumentative texts, the authors of the
aforementioned research organized the ValueEval: Identification of Human Values Behind Arguments
shared task 4 in SemEval-2023 [9] by mapping the 54 human values from their previous research to a set
of 20 value categories for multi-label classification. The task showcased both the potential and challenges
associated with identifying human values in argumentative texts. A total of 39 teams contributed their
methodologies, utilizing the Touché23-ValueEval Dataset comprising 9.324 arguments sourced from 6
diverse outlets, including religious texts, political forums, free-text arguments, newspaper editorials,
and online democracy platforms in English [21]. Each argument included a premise, a conclusion, and
a stance attribute signifying whether the premise was in favor of or against the conclusion. The teams’
approaches were primarily evaluated on the Macro-F1 score.

The task’s winner, the Adam-Smith team, achieved an F1 score of 0,56 by calculating a global
decision threshold during training that optimizes the F1 score. They mainly employed twelve individual
Transformer-based models that are ensembled in order to perform multi-label classification. [16]. The
second-place John-Arthur team found that it is beneficial to encode the input data by adding tokenizer’s
special token separators, corresponding to low-cardinality values of Stance (in favour of vs against).
Also, they fine-tuned larger Language Models, which performed better. Lastly, they adopted a threshold
of 0,2 at the output of the sigmoid function to get the binary predictions for each human value, achieving
an F1 score of 0,55 [14]. Addressing implicit value discrimination and data imbalance, the PAI team
employed a multi-label classification model with a class-balanced loss function, securing multiple top
positions across task categories with an overall average score of 0,54, placing them third [15]. The
Mao-Zedong team’s introduction of a multi-head attention mechanism and a contrastive learning-
enhanced K-nearest neighbor mechanism resulted in an F1 score of 0,53, placing them fourth [17].
Finally, certain members of the Hierocles of Alexandria team, who participated in that year’s task as part
of the Andronicus of Rhodes team, leveraged a Transformer model with four classification heads and
applied two classification strategies with different activation and loss functions. In addition, they used
two different data partitioning methods to handle class imbalance. Their system, employing majority
voting, achieved an F1 score of 0,48, placing them in the upper half of the competition [7].

Inspired by the best methodologies employed in ValueEval, our approach aimed to tackle class
imbalance and improve the classification performance, through the use of sigmoid threshold, larger
language models, and tokenizer’s special tokens in the encoded input. Nevertheless, Touché’s Human
Value Detection task at CLEF 2024 [6] has extended human value detection by integrating multiple
languages, besides English. The introduction of new languages introduces more challenges, such as
possible differences in annotation styles among languages, which adds complexity to the problem. To
this end, our proposed approach was customised to the dataset features and the task by incorporating
techniques that address the issue of multi-linguality and capture the linguistic nuances. The introduction
of multiple languages and the need to address language-specific phenomena, was the main motivation
behind our proposed approach in this paper, which includes a model architecture with multiple heads that
are specifically tailored to each language, aiming to model more accurately multi-label text classification
across multiple languages.

3. Data

3.1. Data Analysis

The dataset comprises 2.648 complete texts in nine languages: English, Greek, German, French, Bulgarian,
Hebrew, Italian, Dutch, and Turkish. The dataset is split by the shared task organisers into training,
validation and test sets: Of these texts, 1.603 are used for training, 523 for validation, and 522 for testing.



The number of annotated texts per language varies, as illustrated in Table 1. English has the highest
number of texts (408), while French and Hebrew have the fewest (219 and 250, respectively). Each text
is segmented into sentences, resulting in 74.231 sentences: 44.758 for training, 14.904 for validation,
and 14.569 for testing.

The number of labels varies for each language, as shown in Table 1. There is no correlation between
the number of texts and the number of labels. For instance, even though Hebrew texts were among the
fewest, they had the highest number of labels (4.992).

For sub-task 1, the texts are annotated with Schwartz’s 19 personal values [1]. Nearly half of the
sentences (30.662 out of 59.662) are labelled with one or more values. Labels for the test set are not
provided to evaluate participating systems. For sub-task 2, each classified value includes an annotation
indicating whether the value is attained or constrained by the sentence, resulting in a final dataset with
38 classes.

The frequency of human value labels varies quite a bit, as depicted in Figure 1. Security: societal
is the most frequently used value, with over 5.000 labels. Achievement and Conformity: rules are also
quite popular, with over 3.000 labels each. On the other hand, Self-direction: thought, Universalism:
tolerance, and Humility are less commonly used, with fewer than 1.000 labels. In fact, Humility is the
least represented value, with only 151 labels.

All data was provided in the original language and translated using the DeepL API, except for Hebrew,
which was translated using the Google Translate API.

Table 1
Number of texts and labels per language.

All English Greek German French Italian Dutch Bulgarian Turkish Hebrew

No. Texts 2648 408 328 261 219 276 323 260 323 250
No. Labels 27038 2590 3658 3876 1111 3262 3265 3624 4284 4992

Figure 1: Labels’ frequency across all texts. Some labels like “Security societal”, “Conformity: Interpersonal”
and “Achievement” are more frequent within the dataset.



3.2. Data Pre-processing

The dataset provides unique identifiers for each sentence, indicating the source text and its position
within that text. Despite individual sentences being labeled independently, annotators were presented
with the complete text for annotation, potentially influencing their assessments based on the overarching
context.

To address this consideration, our pre-processing approach focuses on adding contextual information
by integrating the previous part of the text and its annotated values. This was achieved through two
main strategies: incorporating previous sentences and adding special tokens.

1. Incorporating Previous Sentences. For each sentence, we appended the two preceding sentences
to each target sentence, thereby providing context from the specific text. If the total number
of tokens exceeded the maximum allowed by our base model (maximum: 512), tokens were
removed starting from the most distant sentence. If the sentence was the first sentence of a text,
no preceding sentences were added. The “</s>” separator token linked the preceding and target
sentences.

2. Adding Special Tokens. We implemented special tokens to represent each class, such as “<Security:
societal>” representing the value “Security: societal”. We used the annotated labels from the
previous two sentences for each sentence and appended them to the end. No special token was
added if there was no annotated label for the previous sentences. This enables the classifier to
interpret the annotator’s perspective for better contextual understanding. These tokens were
added as special tokens in the model’s tokenizer and the token embedding matrix of the model
was resized. They were assigned to attributes in the tokenizer for easy access and to make sure
they were not split during tokenization. For predictions on the validation and test sets, the
predicted classes were used as special tokens to enhance the model’s contextual understanding.

The following is an example of pre-processed English text for the model input:
[CLS] Having spoken to many different left-leaning Hispanics, Avila said, “they are really beginning

to feel like the Democratic party has become too extreme to the point where it’s starting to scare some of
them.” <Security: societal> </s> Many are beginning to turn away from the Democratic party because
“they’re getting vibes of a communist Cuba and socialist Venezuela here in America.” As a result, Avila said
Hispanics are going to be “extremely instrumental” in the upcoming midterm elections. <Self-direction:
action> </s> “They are starting to come to the realization that their conservative values are in opposition to
what the media has been trying to feed them in favor of Biden and the Democrats.” [SEP]

3.3. Exploratory Phase

We carried out several experiments to explore the behaviour of the pre-trained language models in
order to form a baseline for our development process. This phase primarily exploits the language
models to assess how well the collective human values of the mentioned dataset are captured by pre-
trained Transformer models [18], enhanced with classification heads so as to perform multi-label text
classification, given the respective textual inputs. This process ensures that the models are fine-tuned
to adequately fit the dataset with respect to all the language and sentence constraints.

The baseline experiments involved both multi-lingual (all languages together) and mono-lingual
(each language separately) tests in order to record the effect of the special traits of each language on
the human values. In general, we observed that the multi-lingual performance of the baseline models
on the human value classification is higher than the performance on the individual languages in the
mono-lingual experiments, as shown in Table 4 of Appendix A. This outcome could be explained by the
close relation of the several inherent features (e.g context, vocabulary) of each language to the human
value perception.

To further inspect this correlation and to note the bias of each language, we developed a more specific
architecture that is built upon the baseline models, in order to improve the performance.



4. System Overview

4.1. Model Architecture

Based on the findings in Section 3.1, Figure 1 illustrates the imbalance in label distribution across
different languages. This imbalance is partly due to the varying annotation styles among languages.
For instance, some languages, such as English, have a large number of examples but fewer annotations,
while others, like Hebrew, have fewer examples but many annotations. Consequently, similar sentences
in different languages may receive different annotations. Experimental results indicate that a single
out-of-the-box pre-trained Transformer model fails to effectively capture the unique linguistic features
of each language, given the different annotation styles per language. In contrast, models that are
fine-tuned for a specific language outperform those that are fine-tuned across all languages.

To address the multi-lingual nature of the problem and the differences in annotations between each
language, a custom ensemble model was constructed. The architecture, as seen in Figure 2, leverages a
pre-trained Transformer language model as its foundation. On top of this, nine custom Transformer
heads were added, each tailored to a specific language: English, Greek, Dutch, Turkish, French, Bulgarian,
Hebrew, Italian, and German.

Pretrained Base Model

[CLS] 𝑇−2
1

... 𝑇−2
𝑘 [𝑆𝑇−2] 𝑇−1

1
... 𝑇−1

𝑙 [𝑆𝑇−1] 𝑇1 𝑇2
... 𝑇𝑚 [SEP]
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Dropout

Tanh

Linear

Dropout

Transformer Layer 3
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Figure 2: The figure presents the custom architecture that was used for the experiments. The model input
consists of the [CLS] token, the tokens of the two preceding sentences (when available), (𝑇−2

1 to 𝑇−2
𝑘 and 𝑇−1

1

to 𝑇−1
𝑘 , respectively) along with their corresponding special tokens ([𝑆𝑇−2] and [𝑆𝑇−1], respectively), and the

tokens of the sentence to be classified (𝑇1 to 𝑇𝑚). The [ST] token is a special token that corresponds to one of
the 19 (or 38) classes. Each custom Transformer head corresponding to each language had three Transformer
Layers for RoBERTa-large and the corresponding XLM variant, one Transformer layer for XLM-RoBERTa-xlarge,
while DeBERTa-v2-xxl did not have any Transformer layers.

Each custom Transformer head comprises the following components:

1. Three Transformer Layers which incorporate:



a) Self-Attention Mechanism: Allows the model to focus on different parts of the input se-
quence.

b) Layer Normalization: Stabilizes and accelerates the training process.
c) Feed-Forward Neural Network: Introduces non-linearity and complexity.
d) Residual Connection: Helps in mitigating the vanishing gradient problem and allows deeper

networks.
e) Dropout: Prevents overfitting by randomly dropping units during training.

2. Classification Process:
a) The [CLS] token from the last Transformer layer (Transformer Layer 3) is passed through a

dropout layer followed by a linear layer.
b) Finally, the output of the previous linear layer is passed through a Tanh activation function

and then subjected to a dropout and a linear layer. The last linear layer produces logits
corresponding to the number of classes.

Regarding the model training workflow, during each training iteration:

1. The input batch is fed into the pre-trained base model (Transformer).
2. The output of the pre-trained model is passed through the language splitter which splits it

according to the language identifiers within the batch. Each split tensor is directed to the
corresponding custom Transformer head based on its language for further processing.

3. The logits produced by each custom Transformer head are concatenated into a single batch
through the language combiner.

4. The concatenated logits batch is passed through the loss function to compute the training loss.
5. Model performs backpropagation.

This approach allows the model to handle multiple languages effectively by utilizing specialized
components tailored to the linguistic features and annotation styles of each language.

4.2. Experimental Setup

The decision to utilize open-source Transformer-based multi-lingual models, specifically obtained from
the Hugging Face platform, in our research was motivated by the multi-lingual composition of the
data, which encompassed nine distinct languages. These models have been pre-trained across various
languages, rendering them an optimal choice for providing a robust and comprehensive framework
for analyzing and interpreting multi-lingual data. Consequently, we employed such models to ensure
the effective capture of language-specific nuances and contexts, leading to more accurate and reliable
results. For the data that underwent automatic translation into English, we employed open-source
Transformer-based models that were exclusively pre-trained in English. This approach ensured an
optimal understanding and interpretation of the nuances of the English language, thereby bolstering
the accuracy of our analysis.

We utilized the multi-lingual base version of the RoBERTa Transformer-based language model
[22], XLM-RoBERTa-base4 [23], which underwent pre-training on 100 languages with 768 layers.
This model was employed to conduct preliminary experiments for multi-label text classification using
AutoModelForSequenceClassification. Subsequently, baseline scores were obtained during the exploratory
phase (See section 3.3). After analyzing the baseline results for individual languages and all languages
collectively (see Table 4 in Appendix A), we leveraged the larger 1024-layer version, XLM-RoBERTa-
large5 [23], to conduct further experiments involving loss functions, class weights, and different class
thresholds (see sections 4.3 and 4.4). The purpose was to address the challenges of class imbalance and
language disparities. These experiments were primarily facilitated using the Transformers and Hugging
Face libraries, in conjunction with 2 NVIDIA TITAN RTX GPU cards, with 24GB VRAM each.

4https://huggingface.co/FacebookAI/xlm-roberta-base
5https://huggingface.co/FacebookAI/xlm-roberta-large
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For both sub-tasks, we fine-tuned two Transformer-based language models for the multi-lingual
data using the custom model architecture with multiple heads presented in section 4.1, with each head
focusing on a specific language. The employed models were the XLM-RoBERTa-large [23] and the
XLM-RoBERTa-xl6 [24], with 1024 and 2560 layers, respectively. In the case of the English-translated
data, we integrated the RoBERTa-large7 [22] and the DeBERTa-v2-xxl8 [25] models, consisting of 1024
and 1536 layers, respectively, into the custom multi-head architecture, focusing solely on English for
both sub-tasks.

We initially fine-tuned our models using the provided training data and fine-tuned them using the
validation set. During the fine-tuning process, we established the hyperparameters, finalized the loss
function, and determined the best thresholds for our submitted results. Then, we combined the training
and validation data to use as the training set for fine-tuning, without having a separate validation
set, using the previously defined hyperparameters. An overview of the hyperparameters used for our
experiments and submissions is provided in Table 5 of the Appendix A.

As for the custom model architecture, the custom head for RoBERTa-large and XLM-RoBERTa-large
included three Transformer layers, while the custom head for XLM-RoBERTa-xl employed only one. Due
to GPU VRAM memory and time limitations, the DeBERTa-v2-xxl did not incorporate any Transformer
layers in its custom head. The experiments with the custom model architecture, which form the final
submissions, were conducted using 2 NVIDIA H100 PCIe GPU cards, with 80GB VRAM each.

4.3. Loss Functions & Class Weights

Various loss functions, including Binary Cross-Entropy Loss with Logits9, Focal Loss [26], Class-
balanced Loss [27], Distribution-Balanced Loss [28], and Class-balanced Negative Tolerant Regulariza-
tion Loss [29], were tested by modifying the Trainer class from Hugging Face. These loss functions were
employed as they were originally developed for handling data imbalance issues. They have previously
been employed for the detection of human values by the PAI team in SemEval-2023 [15]. Positive weights
were also calculated for each class to give more importance to the under-represented classes during
model training, thereby improving the model’s performance in these classes. The experiments using
the XLM-RoBERTa-large with the standard classification head (AutoModelForSequenceClassification)
showed that the Binary Cross-Entropy Loss with Logits achieved the best results. Therefore, this loss
function was used for all the submitted runs with and without class positive weights.

4.4. Thresholds

Initial experiments were conducted with various thresholds ranging from 0,1 to 0,95. The Macro-F1
score for all classes and each class separately was calculated during fine-tuning and evaluating with the
provided validation set. After applying the sigmoid function to the validation and test set predictions,
the predictions were converted into 1 if they were equal to or higher than the threshold and 0 if they
were lower than the threshold. Consequently, 3 separate prediction files were created based on the 0,5
default threshold, the best general threshold for all classes, and the best threshold for each class. Based
on the results from the validation set, the prediction file utilizing the optimal threshold for each class
demonstrated the highest scores. Therefore, all predictions submitted for the test set were generated by
determining the optimal threshold for each class individually.

6https://huggingface.co/facebook/xlm-roberta-xl
7https://huggingface.co/FacebookAI/roberta-large
8https://huggingface.co/microsoft/deberta-v2-xxlarge
9https://pytorch.org/docs/stable/generated/torch.nn.functional.binary_cross_entropy_with_logits.html
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5. Results

5.1. Sub-task 1

The data presented in Table 2 illustrates that our test set submissions demonstrated significant improve-
ment over the baseline scores in both the multi-lingual and translated English datasets. Among the
multi-lingual multi-label multi-head models, the XLM-RoBERTa-xl model achieved the highest Macro-F1
score (39%) across all 38 classes by utilizing context and special tokens without class positive weights
and being fine-tuned on the combined training and validation data as the training set. Conversely, the
XLM-RoBERTa-large model, employing context, special tokens, class positive weights, and fine-tuned
on 19 classes using only the training data, achieved the lowest score (34%).

In the context of the translated English data, the XLM-RoBERTa-large model, utilizing context and
special tokens without class positive weights and having been fine-tuned on the combined training and
validation data as the training set, produced the lowest Macro-F1 score across all classes (35%). At the
same time, the remaining submissions yielded identical scores (37%).

Upon examining the F1 scores for each class individually, it becomes apparent that the Universalism:
nature class achieved the highest F1 score at 63%, signifying successful detection by the models, as the
remaining scores do not fall below 59%. Conversely, the classes with lower frequency in the texts were
less accurately detected by the models. For instance, values such as Humility received a 0% F1 score
in most submissions, with the highest score reaching only 11%. Furthermore, the models struggled to
accurately classify the Self-direction: thought value, as their scores remained below 20%. Despite being
one of the minority classes, the models correctly detected at least 27% of the annotated labels in the
Universalism: tolerance class. The different model performance in classes is also evident in Figure 3
of the Appendix A, which illustrates the radar plot of the 19 values through the performance of our
top-performing XLM-RoBERTa-xl model compared to the baseline models.

Table 2
Achieved F1-score of each submission on the test dataset for sub-task 1. A ✓ indicates that the submission used
the automatic translation to English. Baseline submissions shown in gray.
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multi-lingual XLM-RoBERTa-large_weights_context_ special tokens_19_only train data 34 13 20 28 28 37 37 45 22 33 46 46 49 21 04 32 32 47 63 21

multi-lingual XLM-RoBERTa-large_context_19 36 15 28 35 35 44 39 47 28 40 48 49 50 20 08 33 32 47 60 24

multi-lingual XLM-RoBERTa-xl_context_special tokens_19 38 15 27 31 36 43 41 51 32 44 49 48 51 23 00 34 35 50 63 24

multi-lingual XLM-RoBERTa-xl_context_special tokens_38 39 15 27 30 37 45 42 49 31 42 49 46 51 24 00 34 33 47 63 27

translated XLM-RoBERTa-large_context_special tokens_19 ✓ 35 14 25 30 28 41 40 46 25 40 48 48 48 20 05 34 30 46 59 25

translated RoBERTa-large_weights_context_special tokens_19_only train data ✓ 37 19 23 31 32 40 41 45 31 43 48 51 48 26 11 34 33 48 60 27

translated RoBERTa-large_context_special tokens_19 ✓ 37 16 28 33 35 43 38 48 28 44 48 51 49 27 05 34 27 48 61 27

translated DeBERTa-v2-xxl_context_special tokens_19_only train data ✓ 37 15 26 32 32 44 40 45 32 41 47 49 50 24 05 34 33 48 62 27

translated RoBERTa-large_context_special tokens_38 ✓ 37 12 24 32 36 42 39 46 28 43 47 49 49 22 00 34 32 47 61 27

valueeval24-bert-baseline-en ✓ 24 00 13 24 16 32 27 35 08 24 40 46 42 00 00 18 22 37 55 02

valueeval24-random-baseline 06 02 07 05 02 11 08 10 04 05 13 03 11 03 00 04 04 09 04 02

valueeval24-random-baseline ✓ 06 02 07 05 02 11 08 10 03 04 14 03 11 03 00 05 04 09 04 02

5.2. Sub-task 2

The data presented in Table 3 illustrates that our submission for the multi-lingual test dataset out-
performed the baseline score. Utilizing the XLM-RoBERTa-xl for the multi-lingual dataset and the



Table 3
Achieved F1-score of each submission on the test dataset for sub-task 2. A ✓ indicates that the submission used
the automatic translation to English. Baseline submissions shown in gray.
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multi-lingual XLM-RoBERTa-xl_context_special tokens_38 77 73 73 77 75 78 77 79 71 78 79 77 78 74 25 74 77 78 84 71

translated RoBERTa-large_context_special tokens_38 ✓ 77 72 72 78 74 78 78 78 73 78 78 78 77 73 22 78 77 78 82 74

valueeval24-bert-baseline-en ✓ 81 83 79 86 88 84 77 80 74 84 81 78 78 79 87 89 86 85 81 78

valueeval24-random-baseline 53 55 49 52 54 52 56 56 50 48 54 50 54 55 61 55 51 48 51 51

valueeval24-random-baseline ✓ 52 51 47 54 52 53 55 53 52 52 50 54 53 49 45 53 56 52 49 56

RoBERTa-large for the English dataset, both leveraging context and special tokens without class positive
weights and having been fine-tuned on the combined training and validation data as the training set,
resulted in identical Macro-F1 scores across all 38 classes (77%). Once again, the class with the lowest
F1 score was Humility, scoring 25% and 22% in the multi-lingual and English test datasets, respectively,
significantly lower than the baselines’ scores. Conversely, the Universalism: nature value yielded the
highest F1 scores in both of our submissions. Finally, the Universalism: tolerance value was once again
successfully detected by the models, despite being underrepresented in the data, achieving 71% and 74%
in the multi-lingual and English test datasets, respectively.

6. Conclusion & Future Work

Our system, developed for Touché at CLEF 2024, addressed the "Human Value Detection" shared task
by participating in both sub-tasks. This involved the fine-tuning of four Transformer language models
within a custom multi-head model architecture for multi-label text classification. Our experimental
approach encompassed the utilization of loss functions and class positive weights, as well as the
incorporation of previous sentences as context and the representation of human values as special tokens.
These measures were implemented to mitigate class imbalance and enhance the models’ capacity to
comprehend and classify texts more effectively.

Our submissions demonstrated superior performance compared to the baseline and other participating
teams’ scores in both the multi-lingual and English-translated test datasets, resulting in achieving the 1𝑠𝑡

place in sub-task 1. Despite scoring lower than the baseline in sub-task 2 in the English test dataset, our
submission for the multilingual test dataset surpassed the baseline score. Notably, the XLM-RoBERTa-
xl model, leveraging context and special tokens without class positive weights and fine-tuned on
the combined training and validation data, exhibited strong performance in both sub-tasks for the
multilingual data. Furthermore, our findings indicated that while class positive weights augmented
the models’ ability to classify under-represented classes, they did not yield an overall performance
improvement. The shared task posed a significant challenge due to the presence of data imbalance
across classes and languages, as well as the existence of low-resource languages in the texts.

To further optimize model performance for multi-label human value detection, future endeavors
should center on exploring additional Transformer layers within the custom multi-head architecture,
with a particular emphasis on even larger Transformer language models such as the XLM-RoBERTa-



xxl10. Additionally, the investigation of alternative loss functions to address data imbalance, the
implementation of data augmentation methods or even an ensemble of various models hold the potential
to further enhance performance.

7. Limitations

The experimentation process in both sub-tasks has revealed a significant issue of class imbalance.
Despite the assignment of higher weights to the minority classes, it has become evident that detecting
one or more human values is a challenging task. This challenge primarily stems from the imbalance in
the annotated human values across languages as well as the general class imbalance among human
values in the multi-lingual training dataset. Moreover, the presence of low-resource languages such as
Hebrew and Greek has posed a further challenge, as the multi-lingual models contain a smaller number
of tokens for these languages in comparison to English. Notwithstanding these challenges, the multi-
lingual models have performed adequately compared to the baseline models. Moreover, in the process
of fine-tuning the XLM-RoBERTa-xl and DeBERTa-v2-xxl models, we encountered challenges stemming
from limitations in GPU VRAM memory and time. Specifically, we modified the fine-tuning approach
for the first model by reducing the number of Transformer layers from three to one. Furthermore, in the
second model’s case, the custom head’s multi-head architecture did not incorporate any Transformer
layers.
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A. Appendix

Table 4
Achieved F1-score of the baseline XLM-RoBERTa-base on the validation dataset for sub-task 1. The model was
fine-tuned using the whole multi-lingual training dataset and evaluated in multi-lingual validation dataset.

Languages
All English Greek German French Italian Dutch Bulgarian Turkish Hebrew

XLM-RoBERTa-base 29,5 22,41 26,16 25,24 2,52 22,71 18,71 23,30 28,03 24,16

Table 5
Models’ Hyperparameters used for experiments and submissions. For the XLM-RoBERTa-xl model, 4 batch size
was used for training, validation and testing as well as bf16 for mixed precision training. For the DeBERTa-v2-xxl
model, 4 batch size was used for training, validation and testing as well as fp16 for mixed precision training.

Hyperparameter Value

Seed 2024
Number of Epochs 20
Early Stopping Patience 5
Sequence Length 512
Train Batch Size 8 / 4
Validation / Test Batch Size 8 / 4
Learning Rate 5e-6
Weight Decay 0.01
Warm-up Ratio 0.01
Optimizer AdamW
AdamW Epsilon 1e-8
LR Scheduler Linear
Mixed Precision fp16 / bf16
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Figure 3: Radar Plot of 19 value categories (sub-task 1) illustrating the different performance per value in F1
score of our best-performing model compared to the baselines.


	1 Introduction
	2 Background
	3 Data
	3.1 Data Analysis
	3.2 Data Pre-processing
	3.3 Exploratory Phase

	4 System Overview
	4.1 Model Architecture
	4.2 Experimental Setup
	4.3 Loss Functions & Class Weights
	4.4 Thresholds

	5 Results
	5.1 Sub-task 1
	5.2 Sub-task 2

	6 Conclusion & Future Work
	7 Limitations
	A Appendix

