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Abstract
Political debates are vital in shaping public opinion and influencing policy decisions. However, understanding
the complex linguistic structures used by politicians to ascertain their orientations and power dynamics can be
challenging. In this paper we explore Natural Language Processing techniques for identifying political orientation
and power structures in parliamentary debates. We introduce a Located Missing Labels-loss in order to train
jointly to predict both power and ideology. Furthermore, our proposed method also trains to predict a third
synthetically generated polarity label. Finally, we combine this training method with pre-processing steps
including back-translation and meta data inclusion. Our results show that our method manages to improve upon
conventional methods of fine-tuning.
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1. Introduction

Parliamentary debates play a vital role in political communication and society [1]. During these debates,
representatives from diverse parties and ideologies share their opinions, arguments, and stances on
issues impacting society. Making debates more accessible and easy to follow not only serves to inform
people but offers a basis for seeking further information and engaging in the democratic process [1].

The ability to detect and classify political motives from speech may also be utilised when the speaker
is not forthcoming with their political agenda. Detecting hidden political motives in media such as
news reporting and advertisements may benefit society by providing transparency [2].

The complex nature of politics makes these debates challenging to understand [3]. According to a
recent survey, 65% of Americans say they always or often feel exhausted when thinking about politics
[4]. In addition, 42% of adults in the U.S. reported to have watched none, or very few, of the presidential
debates in 2020. Moreover, analysing political speeches and making classifications can be challenging
due to complex rhetorical strategies such as metaphors, parallelism, and suggesting answers [5]. Political
context and the speaker’s background influence how messages are conveyed and interpreted.

The challenge of analysing and making classification on political speech may be approached from the
perspective of Natural Language Processing (NLP). NLP is a field in artificial intelligence that focuses on
analysing, understanding, and processing natural language data using computers [6]. Sub-tasks within
NLP involve, among others, text summarisation, machine translation, and sentiment analysis. More
recently, the field of NLP has surged in popularity with the development of chatbots such as ChatGPT.
Besides the massive Large Language Models (LLMs) such as GPT-4, there have also been multiple
other different approaches for NLP such as rule-based and probabilistic approaches [7]. The incredible
performance of these LLM can be applied to the complex political realm with great success [8].

Conference and Labs of the Evaluation Forum (CLEF) [9] hosts an open competition in 2024 called
Touché as part of one of their so called labs [10]. The task, Ideology and Power Identification in Parlia-
mentary Debates, is one of the four competitions as part of Touché’s presence at CLEF 2024 [11]. This
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document is an entry to that competition. It will, therefore, investigate which NLP tools are best suited
for identifying ideology and power in parliamentary debate speeches.

Research goals. The research goals1 for this project are inspired by and correspond to the two
sub-tasks of the Touché competition Ideology and Power Identification in Parliamentary Debates [11, 12].

RQ1 Investigate what the best methods and practices are for identifying the political orientation in a
parliamentary speech.

RQ2 Investigate what the best methods and practices are for identifying whether a parliamentary
speech is made by a speaker in opposition or in power.

Evaluation The results of both research questions are evaluated against a test set provided by Touché
using a macro-averaged F1-score [13], as it is the performance metric of the Touché competition [11].

Paper structure The rest of this document is organised as follows. In Section 2 we discuss a selection
of related work which is closely related to our problem at hand and which influenced our method. We
outline and describe the datasets set in Section 3. We present our full proposed method in Section 4 and
share the results from its application in Section 5. Finally, we discuss and explain these findings in
Section 6 and conclude the document in Section 7.

2. Related Work

Here, we discuss previously explored techniques used for political classification within NLP and their
relevance to our project. We also examine a range of studies showcasing the performance of models
such as RoBERTa and Bidirectional Encoder Representations from Transformers (BERT) in tasks such as
multi-lingual political orientation classification and stance classification of political tweets. Additionally,
we explore domain-specific pre-training, back-translation, multi-label learning with missing labels, and
other methodologies relevant to our research objectives.

2.1. Model and training method

Fine-tuned RoBERTa has demonstrated significant superiority over zero- and few-shot GPT-3 for multi-
lingual political orientation classification [14]. For the task of implicit ideology prediction, fine-tuned
RoBERTa has also been shown to outperform GPT-4, Llama-2-13B and Llama-2-70B using in-context
learning, as well as Llama-2-70B utilising Low Rank Adaptation (LoRA)-fine tuning [15]. Furthermore, it
is noteworthy that in the same study, the only model which beat fine-tuned RoBERTa for Named-Entity
Recognition (NER) was the LoRA fine-tuned Llama-2-70B.

It has been shown that even when only fine-tuning a classification head, BERT has approached the
performance of few-shot GPT-3 models for stance classification of political tweets [16].

In a similar manner, a comparison of the performance of “Small Language Models” and modern LLMs
for sentiment analysis tasks has been performed [17]. The study compares T5𝑙𝑎𝑟𝑔𝑒 (770M parameters)
to Flan-T5, Flan-UL2, text-davinci-003, GPT-3.5-turbo (11B, 20B, 175B, undisclosed, parameters respec-
tively) across 13 different sentiment analysis tasks and 26 datasets. For context, the base version of
BERT has 110M parameters whilst the large version totals 340M parameters. The T5-model was trained
on the entire training dataset whilst the other LLMs utilised zero- or few-shot classification. They divide
their sentiment analysis tasks into three categories, and find that the smaller fully trained T5-model
achieves the best results for all categories, outperforming zero-, one-, five-, and ten-shot classification
versions of the larger models. The authors conclude that whilst the larger LLMs perform adequately in
simpler tasks, they are outperformed in complex tasks which require structured sentiment information
or deeper understanding.
1Also referred to as sub-tasks.



RoBERTa has been shown to be state-of-the-art for propaganda classification [18]. The same RoBERTa-
model outperforms fine-tuned versions of GPT-3 and multiple in-context learning versions of GPT-4
[19], yielding a micro average F1-score of 63.4% as compared to that of the best GPT-model (base GPT-4)
of 58.11%.

New and large decoder-only models have been compared to encoder-only models for the tasks of
intent classification and sentiment analysis [20]. The study reveals that, in general, encoder-only
models provide superior performance, at a fraction of the computational demand, for natural language
understanding tasks.

2.2. Domain-specific pre-training

Domain-specific pre-training refers to the process of training a model on domain-specific texts before
fine-tuning for a specific task within that domain [21]. Domain-specific pre-training has shown great
utility for domains with abundant unlabeled text, such as the biomedical field [22].

For the task of multi-lingual political orientation classification, however, some authors recently
showed that domain-specific pre-training does not greatly impact results [14]. Also, after a threshold
of approximately 10,000 sentences, the general-domain pre-training seems to be sufficient as to not
benefit from additional domain-specific pre-training.

2.3. Back-translation

Back-translation involves the process of translating one text into another language, and then translating
the new text back into the original language [23]. In our case this technique will be used to create
artificial data that is similar to the original data, as further explained in Section 4.1.1. Back-translation
has shown widespread utility for machine translation tasks [24]. Furthermore, using back-translation
to artificially extend datasets has also shown promising results for hate speech detection tasks [25].
Back-translation for classification tasks has also shown itself to be particularly useful when there is less
training data [26].

2.4. Multi-label learning with missing labels

Multi-label Learning with Missing Labels (MLML) has shown great utility for image classification tasks
[27]. In these tasks, a “missing” label most often refers to a false negative, and the challenge is to
differentiate between true negatives and false negatives caused by incomplete or faulty annotation.
Many methods have been proposed to handle these missing labels [28, 29, 30]. As will be shown in
Section 4, our two sub-tasks can be combined into a single multi-label classification problem with
located missing labels. Traditional MLML methods are, however, not suited for our task since the
locations of our missing labels are known and not hidden as false negatives. A study on MLML for
image and facial-expression classification from 2014 shares our definition of MLML where missing
labels are located but the technique is not appropriate for our project since it is tailored for a label-space
magnitudes larger than our own [31].

Our two sub-tasks can be combined into a single multi-label classification problem, as will be shown
in Section 4. Similar approaches of combining tasks have shown to be beneficial. For the task of
peer-assessment evaluation, multi-task learning BERT has been shown to outperform its single-task
counterparts [32]. For the multi-task learning BERT, three separate classification heads were added to
the same base BERT model and the loss for fine-tuning was the sum of the Cross Entropy (CE)-loss
from each classification task.

2.5. Performance of models in similar contemporary competitions

In 2021, amongst other years, CLEF organised a competition called EXIST [33]. The two task for the
competition were:
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Ai-UPV 1 1 1 x x x
SINAI-TL 2 3 2,5 x x
AIT FHSTP 3 5 4 x
Multiaztertest 4 4 x x
LHZ 8 2 5 x
nlp uned team 5 9 7 x
QMUL-SDS 11 4 7,5 x
Alclatos 10 6 8 x x
ZK 9 8 8,5 x x x
GuillemGSubies 7 14 10,5 x x
IREL hatespeech group 14 7 10,5 x
Codec 12 12 x x
S_exist 12 13 12,5 x x
MiniTrue 13 13 x x x
UMUTeam 16 11 13,5 x x
Free 6 24 15 x x
ZZW 15 18 16,5 x
Zimtstern 17 16 16,5 x
LaSTUS 18 15 16,5 x
Recognai 26 10 18 x
Andrea Lisa 21 17 19 x
CIC 19 19 19 x x x
MessGroupELL 20 20 x x
MB-Courage 22 22 22 x
Nerin 24 20 22 x x
Soumya 23 23 23 x x
UNEDBiasTeam 25 21 23 x
BilaUnwanPk1 27 25 26 x
Almuoes3 27 27 x x x
ORDS_CLAN 29 26 27,5 x
Uja 28 28 x x

Table 1
Results and techniques used in the EXIST 2021 competition [33] sorted in order of average ranking. Random
Forest (RF) stands for Random Forest, Logistic Regression (LR) stands for Logistic Regression.

• Task 1: Identifying Sexist Content In this task, the system is supposed to perform binary
classification. It must determine whether a given text (tweet or gab) exhibits sexism, whether
directly, by describing a sexist scenario, or by criticising sexist behaviour.

• Task 2: Categorising Sexist Content Following the identification of sexist content, the subse-
quent task involves categorising the content based on the type of sexism present.

The results, and techniques used in the two sub-tasks in the competition are compiled in Table 1.
Some takeaways from the approaches in the competition comes from the datasets including Spanish
and English text. When participants used Beto (Spanish version of BERT), it was exclusively used to
analyse the Spanish texts which means that it had to be combined with other models for English. The
same is true for BERT, almost all participants that used BERT for the English texts also ended up using
other models for the Spanish texts. Lastly, the most common and best performing LLMs for handling
multiple languages in this competition were mBERT and XLM-R.



# of speeches % of task data % of all data

Left 58,146 39.0 16.2
Right 90,797 61.0 25.3

Power 111,127 53.1 31.0
Opposition 98,114 46.9 27.4

Table 2
Distribution of the opposition and power labels in the power dataset as well as Left and Right labels in the
orientation dataset.

3. Dataset

Touché provides a dataset [34] for our task which contains a selection of speeches from the ParlaMint
corpora [35]. This dataset contains data from parliamentary speeches in multiple European parliaments—
we include the countries covered in the dataset in Appendix A. More precisely, the dataset consists of
two separate subsets, one for each sub-task. These subsets are also divided into multiple sub-subsets
each containing data from only one country.

The organisers altered the dataset to provide less information than the original one, but also includes
an automatic translation to English for most non-English texts. The provided training dataset consists
of 6.5GB of text files [34] divided among the orientation and power datasets and contains the following
fields:

id is a unique (arbitrary) ID for each text.

speaker is a unique (arbitrary) ID for each speaker. There may be multiple speeches from the same
speaker.

sex is the (binary/biological) sex of the speaker. This information is collected from varying sources
(typically data published by the respective parliament), and in some cases it may be unspecified
or unknown.

text is the transcribed text of the parliamentary speech. Real examples may include line breaks,
and other special sequences escaped or quoted.

text_en is an automatic English translation of the corresponding text. This field may be empty for
speeches in English. There might be missing translations for a small number of non-English
speeches.

label is the binary/numeric label. For political orientation, 0 is left and 1 is right. For power
identification 0 indicates coalition (or governing party) and 1 indicates opposition.

Data imbalance There is an uneven distribution of data where some countries have more data
than others. In addition, the label distribution among the countries is also skewed. For instance, in
Figure 1 we can see that Serbia has more data for speeches connected to right wing parties while for the
power dataset Serbia has more speeches from speakers in power. Table 2 represents the overall label
distribution of the dataset.

The text lengths of each country also vary and are displayed in Figures 2 and 3 for the orientation
dataset. Shorter texts may contain less helpful information for the predictions and thus, decrease the
performance. Moreover, the limited context length of the models may not be able to capture all relevant
information in the longer texts. For instance, BERT has a context length of 512 tokens which means
that it can not process the entirety of most texts at once.
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Figure 1: Distribution of the Opposition, Power, Left and Right-wing labels for each country in the orientation
dataset.

Shared information Even though the datasets are split, 47.5% of the speakers that appear in one of
the datasets appear in both datasets, as shown in Figure 4. Moreover, 51.4% of speeches in the power
dataset are made by a speaker who also appears in the orientation dataset. This amount equates to
72.2% of the total number of speeches in the orientation dataset.

Isolated speeches The dataset does not include the date of when the parliamentary speeches occurred.
This means that modelling changes in party ideas over time or fully encapsulate how politics shift is
infeasible. Moreover, simply connecting a speech to a certain ideology will not be as useful when it
comes to predicting whether the speaker is currently in a governing position or opposition. This is
because a country with a left leaning government one year could have a right leaning government the
next.

Even though speeches are originally part of debates and exchanges in parliament, the dataset contains
no data for connecting multiple speeches to a single conversation or exchange. This prevents approaches
which would model an entire debate and label the participants in the debate rather than the individual
speeches themselves.

Privacy in the dataset The dataset uses arbitrary codes for people’s names. This makes it difficult to
check if our results match up with real-world politicians. Additionally, the test set for the orientation
task does not contain any speakers in the original orientation dataset. As a result, a solution which
attempts to connect specific speeches to the correct political parties using the speakers identity is
infeasible.

Test set The test set for the orientation sub-task contains randomly sampled speeches by speakers
who do not appear in the training set. The test set for the power sub-task does, to a large extent, contain
speakers that also appear in the training set. However, speakers recurring in the test set will tend to
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Figure 2: Mean and standard deviation for text lengths per country in the orientation dataset.

have a different label distribution compared to the training set. For both sub-tasks, the test set contains
approximately 2,000 speeches for each parliament, whose general label distributions resemble those in
the training set. The test data follows a similar structure to the training data apart from the speaker_id
and label field being hidden.

4. System Overview

In the following, we describe how we processed and prepared the data as well as how we selected and
trained models. An overarching view of our method is illustrated in Figure 5.

4.1. Dataset and Preprocessing

We decided not to extend the dataset using external sources. This was partly due to other parliamentary
debates in our selection of countries either being unavailable or already in the original ParlaMint
corpora. It would also require a lot of work in order to create properly labelled datasets in the same
format as our base dataset. Finally, the amount of available data is of substantial size and a larger
amount would put further pressure on the need for computational resources.

We generated the training dataset for each task by sampling 70% of the provided datasets, leaving
the remaining 30% of the datasets for the validation set. Note that the 70/30 split is a commonly used
rule-of-thumb which has shown some empirical optimality [36, 37].

We used this split for evaluating the individual and combined parts of our model. Once we got the
most effective techniques, we switched to a different split for our final ensemble model as explained in
Section 4.6.

Missing translations Firstly, some English translations were missing in the provided Finnish dataset.
Specifically, there were 271 translations missing in the training dataset and 88 in the test set. These
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Figure 3: Density distribution of text lengths for the 3 countries with the highest, and lowest average text
lengths in the orientation dataset.
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Figure 4: Venn diagram where the red region represents the number of speakers that only appear in the
orientation dataset (𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ∖ 𝑃𝑜𝑤𝑒𝑟). The green region represents the number of speakers that only
appear in the power dataset (𝑃𝑜𝑤𝑒𝑟 ∖𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛). The centre region represents the number of speakers that
appear in both datasets, in other words the intersection (𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ∩ 𝑃𝑜𝑤𝑒𝑟).

texts had to be manually machine translated. For the translations we used a Python package called
mrTranslate.

4.1.1. Back-translation

To address country distribution imbalance, we applied back-translation to the data from countries with
fewer than 15,000 entries in the power and orientation datasets combined. We chose this threshold in
order to strike a balance between improving the amount of speeches available for parliaments with less
representation in the dataset and not increasing the training time excessively. The back-translation
process involved translating English text to the original language and back, followed by translating the
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Figure 5: Overarching method illustration. The method is divided into a data preprocessing stage and a model
training and prediction stage. The test set is inserted as input, but it could potentially be any speech.

original text to English and back to the original language. We also used mrTranslate for the translations
and appended the resulting data to the dataset, keeping all other fields unchanged from the original
entry. Sometimes, however, the translations would fail. In these cases, we manually translated the texts
using Google Translate.

4.1.2. Meta data inclusion

By prepending each text with the corresponding country and gender of the speaker, i.e., “Germany,
Female”, models got access to the available contextual information not included in the speeches
themselves. We hypothesise that since parliaments and contexts of debates vary, so should their
analyses. By giving the model access to all available metadata, i.e., all available context, we suspect
that models might be able to better adapt their predictions. An example of adapting to such a context
might be adapting the prediction of someone advocating for a certain law depending on what the law
is currently in a given country. There might also be useful information in the meta data itself, such
as gender making a politician more likely of belonging to a certain ideology in some countries. These
examples are of course purely speculative and therefore part of the reason why we chose to include all
meta data instead of selecting fields based only on our own speculations.

4.2. Combined training

We merged the datasets by combining them where the label column was split into orientation and
power labels. Despite being separate, both datasets contain shared elements, allowing the extraction of
some data in the power dataset data into the orientation dataset, as explained in Section 3. We first
verified that each speaker in the orientation dataset consistently had the same label. Once a speaker
was confirmed as label 𝑦 in the orientation dataset, all texts by that speaker in the power dataset were
also classified as label 𝑦 for orientation. When the datasets shared a text, the text from the orientation
dataset was removed (since the text from the power dataset already had received the orientation label).
This increased the number of orientation entries by 72.2% which equates to 51.4% of the original power
dataset.

4.2.1. Located missing labels loss function

Since the combined dataset has many missing labels, we needed to create a custom loss function. We
calculated a filter tensor for each batch and label, marking rows with true labels as one and rows
without true labels as zero. Then, we used this filter tensor as weights for the entries in the batch when
computing the CE-loss. To account for the number of incomplete labels, we divided each label-specific
loss by the sum of its filter tensor. By summing the loss for our two labels, we had created a multi-label
loss function which could account for Located Missing Labels (LML).



Let us consider this loss function for a single label, i.e., orientation. Formally, let 𝐶 be the set of
classes (i.e., left and right) and 𝑝𝑖 the output predictions for all classes 𝑐 ∈ 𝐶 for entry 𝑖 in the batch.
𝑝𝑐,𝑖 is then the predicted probability of class 𝑐 for entry 𝑖 in the input batch such that 𝑝𝑐,𝑖 ∈ [0, 1] and∑︀

𝑐 𝑝𝑐,𝑖 = 1,∀𝑖. Also let 𝑦 be the true labels such that 𝑦𝑖 ∈ {−1} ∪ 𝐶 (where −1 corresponds to a
missing label) represents the true label of entry 𝑖. Then our custom LML-Loss can be expressed as
Equation (1).

LMLLoss(𝑝, 𝑦) =
1∑︀
𝑖 𝑓𝑖

∑︁
𝑖

𝑓𝑖CELoss(𝑝𝑖, 𝑦𝑖)

𝑓𝑖 =

{︃
1, 𝑦𝑖 ∈ {𝐶}
0, 𝑦𝑖 = −1

(1)

As each label-specific loss is divided by the sum of its filter tensor, the resulting loss maintains a
consistent size regardless of the number of samples with a true label in the batch. Consequently, the
final summed loss represents the combined loss for each task, regardless of its prevalence in the batch.

4.3. Polarity label extension

If training to predict both the power and orientation labels at the same time yields increased performance,
then training to predict a third label might yield further improvements. We chose polarity as the label
to add to our dataset, i.e., whether a text carries a positive, negative or neutral sentiment. We chose
polarity since it is an effective metric for identifying trends in parliamentary speeches.

To obtain polarity labels for our dataset, we used version 0.2 of the instruction fine-tuned Mistral-7B,
as available under mistralai/Mistral-7B-Instruct-v0.2 on Hugging Face. We chose this model since it
outperforms other open source LLMs of similar or larger size, such as 7- and 13-billion parameter
versions of Llama-2 [38]. We chose one example text for each polarity label and had GPT-3.5 explain why
it assigned that label to that text. With these examples, we constructed our in-context learning prompt
using 3-shot classification. The base textual prompt, which we then formatted into the instruction chat
format of the model, can be found in Appendix B.

We double-quantised the Mistral model to a 4-bit normal float with a 16-bit float compute type to
fit the model in memory and for faster inference. To fit the entire base prompt along with the text to
label, we defined a context length of 4,096. To generate from the model, we used sampling beam search
with 3 beams along with forcing the output to contain “Positive”, “Negative”, or “Neutral”. Finally, we
assigned the polarity label as 0, 1 or 2 depending on whether the first word of the output was “Negative”,
“Positive” or “Neutral” respectively, assigning −1 otherwise.

To perform the polarity classification, we added three output nodes to our classification head, corre-
sponding to each polarity class. To account for holes in the polarity data caused by failed generations,
we also used our LML-loss to calculate the loss from the polarity predictions. We only added half of the
polarity LML-loss to the base LML-loss in order to prioritise our two core tasks.

4.4. Models

We restricted the models to those we could effectively train. Therefore, we excluded more extensive
and capable models, such as the 70-billion parameter version of Llama-2 [39]. Furthermore, we were
forced to limit hyperparameters, such as batch size and learning rate, to less-than-ideal values to
comply with our limited computational resources. Our selection of models was also influenced by the
notion that encoder only models outperform modern large decoder models for similar tasks, at a lower
computational demand [20].

We compared different modern transformer-based models to find which models performed the best
for our task. Different models necessitated different hyperparameter values due to their differing sizes
and designs. For all models, any implemented classification heads took the place of the last layer of the
model as provided by their Hugging Face sequence classification implementation, leaving the method
of pooling as implemented in the base model.



BERT and mBERT We evaluated the uncased version of BERT [40], available under bert-base-uncased,
using the provided English translations. We chose this model since it is competent while being much
smaller than other modern models (see Section 2.1) and since it had previously shown outstanding
performance in similar competitions (see Section 2.5).

We also evaluated the uncased version of multilingual BERT, available under bert-base-multilingual-
uncased, on the speeches in their original languages. We chose this model because it is a multilingual
version of BERT and because it demonstrated excellent results for multilingual tasks in similar competi-
tions (see Section 2.5).

RoBERTa and XLM-RoBERTa We evaluated the large version of RoBERTa, available under
FacebookAI/roberta-large, since it has been shown to be state-of-the-art for similar tasks (see Sec-
tion 2.1). We also evaluated XLM-RoBERTa, available under FacebookAI/xlm-roberta-large, which is
RoBERTa pre-trained for multi-lingual tasks [41].

DeBERTa V3 DeBERTa V3 is an improvement upon the original DeBERTa model [42]. The original
DeBERTa model outperforms the large version of RoBERTa using less training data on a wide range of
NLP tasks [43]. The DeBERTa family of models also utilise distangled attention and relative position
embeddings which allow it to process longer sequences than BERT and RoBERTa. Due to these factors,
we chose to evaluate DeBERTa V3, as available under microsoft/deberta-v3-large.

Gemma The 7-billion parameter version of Gemma outperforms similar models of equal size such
as Mistral-7B and Llama-2-7B [44]. Limited by our computational resources, we evaluated the smaller
2-billion parameter version of Gemma, as available under google/gemma-2b. This smaller version still
necessitated using techniques such as LoRA and double quantising the model to 4-bit normal float. We
applied LoRA to all matrices in the self attention- and mlp-layers of Gemma.

4.5. Hyperparameters

Due to our limited computational resources, unfortunately, no experiments could be exhaustive. When
we discovered that a certain hyperparameter value worked well, for instance using a warm-up period,
we could not then afford to repeat experiments for all previous models to include this choice. Efforts
where instead directed as to for each model balance the necessity to fit to the data in a manageable time
frame with the desire not to cause excessive unlearning in the base model.

The main parameters which had to be adapted depending on the size of the models was the learning
rate and the warm-up ratio. For instance, if a large model was trending downwards by the second epoch,
then the learning rate might be lowered and/or a warm-up period added, in this way experiments where
exploratory.

We set specific hyperparameters to increase training speed and reduce memory consumption to
accommodate larger models. For instance, all models except BERT and mBERT used 16-bit floating
point mixed-precision training to accelerate the training process. BERT and mBERT used regular
full-precision training. Additionally, Gemma required LoRA and 4-bit quantisation to make fine-tuning
feasible for us.

All models trained using a maximum sequence length of 512 tokens. Whilst we would have preferred
to train with longer sequence length for the models which can handle it (DeBERTa-V3 and Gemma),
this was not computationally feasible. However, to still utilise the longer context lengths DeBERTa-V3
can handle, it was re-evaluated using a maximum sequence length of 4096 tokens after training was
complete. In this way we could train and evaluate the models more efficiently with 512 tokens and
then afterwards leverage longer context lengths for only the final version of the model. We would
have preferred to also re-evaluate Gemma using a longer context length, however, due to unforeseen
limitations on computational resources, only DeBERTa could be re-evaluated using a longer sequence
length.



Test data for orientation task:
id,      text, text_en, sex
se1, txt1, txt1_en, M

Training data for power task:
id, speaker, text, text_en, sex
se6, sp1, txt1, txt1_en, M
se5, sp1, txt4, txt4_en, M
se8, sp1, txt3, txt3_en, M

Prediction:

0.51

Speaker
Predictions:

0.51
0.001
0.01

Base
Output:

1

Average
Prediction:

0.17

Updated
Output:

0

Figure 6: Visualised process for extracting the speaker for texts in the test data for the orientation task. The
bottom flow chart then shows how we take the average prediction for all texts by speaker sp1. Note that we
illustrate the predictions as ranging from 0 to 1 for simplicity whilst in actuality the logits were used.

4.6. Ensemble modelling

After identifying the best performing models and training methods using our validation set, we created
new training and validation sets which we used to re-train the selected models for ensemble modelling.
These new validation sets contained disjoint selections of 10% of the available data, with a minimum of
5 samples for each country and label.

We chose this approach to increase the amount of data available to our models. By each model in the
ensemble having a separate validation set, each model could be monitored for over-fitting whilst the
ensemble as a whole had still trained on the entire dataset. We speculate that by using this approach,
our ensemble will be able to leverage the entire training set. This is since if a single model has not been
able to learn something useful due to the required data being in its validation set, the other models of
the ensemble will have had access to that data.

We also chose to decrease the ratio of the validation set as we deemed the necessity of it being
representative and reliable to be diminished once we had already determined and validated our method.

We created the ensemble by selecting the best performing multilingual and English-only models. We
then trained two instances of the best performing of the two models as well as once instance of the
other model using our newly created ensemble training and validation sets. For a given prediction, we
ran each of these models and averaged their output logits before applying the sigmoid function and
rounding to receive a final prediction.

4.7. Additional data extraction for test set

Roughly 23% of the texts appearing in the provided test data for the orientation task also appear in the
training data for the power task. Using this information we can extract the speaker id for the overlapping
texts. Then, since the orientation label is always the same for each speaker, we can use these additional
speeches to influence our prediction on the test set. For a given speech in the orientation test set, we
averaged the logits of the examined model on that speech and the logits of our best performing model
on all other speeches by the same speaker. In other words, predictions on the test data were averaged
with those produced by our best model on speeches by the same speaker. This way if the text in the
test data lacks clear ideological signals, we can instead rely on other texts by that speaker to make our
prediction. The process is visualised in Figure 6.

5. Results

In the following, we present the results of our method application to the provided dataset and evaluated
models.



Sub-task Macro-average F1-score

Orientation 0.6755
Power 0.7149

Table 3
Baseline macro-average F1-scores on our validation set for Orientation and Power tasks from provided linear
logistic regression model.

(a) Orientation (b) Power

Figure 7: Comparison of base BERT and with different combinations of the components of our method over the
training epochs. CT stands for combined training, BT for back-translation, PLE for polarity label extension and
MDI for meta data inclusion.

We fine-tuned the models using the transformers library for Python as provided by Hugging Face,
running on a NVIDIA V100 with 32GB of memory. Also, if not mentioned, we set the hyper-parameter
values to their default values as provided by the library.

The competition organisers provided a baseline of a simple linear logistic regression model. When
we fitted this model to our training set and then applied this model to our validation set, we achieved
the macro-average F1-scores as shown in Table 3.

5.1. Method components

To understand the effects of each component of our method, we fine-tuned BERT multiple times with
different combinations of the components in our base method. These components, as presented in
Section 4, were combined training, back-translation, polarity label extension and meta data inclusion.
All runs used the same hyper-parameters, which can be found in Appendix C.1. Results are illustrated
over the training epochs in Figure 7 and summarised in Table 4.

The results as a whole show that the combined training beats both the conventionally trained BERT
and the baseline. The other components all individually improve performance of the combined training
further. Finally, all components together yielded the best performance.

Combined training (CT) Training to predict both labels at once using our LML-loss showed signifi-
cant improvements in comparison to when only training for a single label at a time.

Back-translation (BT) Our results indicate that back-translation yielded an improvement in the
orientation task over all epochs whilst only yielding an non-marginal improvement in the first epochs
of the power task when training for both tasks using CT. To further investigate if back-translation
helped improve the performance of countries with less data, we also visualised the results for each



Model Orientation Power

baseline 0.6755 0.7149
BERT 0.7596 0.7865
+CT 0.8271 0.8041
+CT+BT 0.8333 0.8059
+CT+PLE 0.8317 0.8101
+CT+MDI 0.8377 0.8111
+(all) 0.8493 0.8152

Table 4
BERT component study showing how combinations of components in our method impacted the macro-average
F1-score for the two tasks compared to conventional fine-tuning. CT stands for combined training; BT for
back-translation; PLE for polarity label extension, and; MDI for meta data inclusion.

parliament individually. Results can be found in Appendix D.2 and show that, on average, parliaments
with back-translation saw a significant improvement whilst the remaining parliaments did not.

Polarity label extension (PLE) Extending the combined training by adding a third label yielded an
increase in performance over all epochs.

Meta data inclusion (MDI) Including the available meta data by prepending it to each text resulted
in a improvement by the second epoch and onwards for both tasks. However, for the first epoch it
caused a decrease in performance for the power task whilst not impacting the orientation task.

Method components conclusions The examination of the components in our method seems to
indicate that all components of our method are beneficial for BERT. This is especially clear due to the
combination of two factors. The first factor is that the conventionally trained model had seemingly
started to stagnate or over-fit whilst our proposed method was still improving through out all training
epochs. The second factor is that our method exceeds the conventional fine-tuning already by the first
epoch. In combination then, we may reason that our method provides an intrinsic advantage since it
both converges faster, by the second factor, and does seems to cause less over-fitting or unlearning, by
the first factor. These factors may also be reasoned as to guaranteeing that we actually make better
update steps instead of just smaller (by the second factor) or larger (by the first factor).

In order to to validate that the improvement in performance on the orientation task from our method
is not only due to the increased amount of data, we conventionally fine-tuned RoBERTa on the full set
of available orientation data. We compare this to RoBERTa fine-tuned using the same hyperparameters,
as found in Appendix C.2, but using our full method. Results are illustrated in Figure 8 and show
that even when using the same training data, our method exceeds conventional fine-tuning over all
epochs for orientation classification. As discussed in Section 2.1, fine-tuned RoBERTa has been shown
to outperform very capable models and to be state-of-the-art for similar tasks. It is therefore very
encouraging to note that our method managed to significantly improve upon the performance of
fine-tuned RoBERTa for political orientation classification.

5.2. Models

The highest attained scores resulting from the application of our method on various models are shown in
Table 5. Corresponding hyperparameters can be found in Appendix C.2. Results indicate that DeBERTa-
V3 was the best performing model, with XLM-RoBERTa being the best performing multilingual model.
Gemma, which trained using LoRA and quantisation, manages to exceed the performance of BERT and
mBERT but falls short of the other models.

To investigate the impact of re-evaluating DeBERTa-V3 using a longer sequence length, we also
evaluated different sequence lengths. The results are shown in Table 6 and indicate that there was a
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Figure 8: Comparison of RoBERTa trained for political orientation classification using conventional fine-tuning
and our method.

Model Language* Orientation Power

BERT Translation 0.8493 0.8152
mBERT Original 0.8251 0.7941
RoBERTa Translation 0.8729 0.8440
XLM-RoBERTa Original 0.8621 0.8379
DeBERTa-V3 Translation 0.8870 0.8630
Gemma Translation 0.8541 0.8358

*Translation corresponds to training on automatic translations to En-
glish instead of the original language.

Table 5
Highest attained macro-average F1-scores of our examined models.

Sequence length Orientation Power

512 0.8788 0.8526
1024 0.8847 0.8610
2048 0.8869 0.8627
4096 0.8870 0.8630

Table 6
Macro-average F1-scores of DeBERTa when evaluated using different sequence lengths.

significant improvement in performance from increasing the sequence length initially but that these
increases diminish. The improvement by going from 512 to 1024 tokens was noticeable (+0.0059 and
+0.0084) whilst the improvement by going from 2048 to 4096 tokens was minor (+0.0001 and +0.0003).
These findings are not surprising, after all, successive increases in maximum sequence length add fewer
and fewer tokens since more speeches become fully covered.

5.3. Translated vs. multilingual

To investigate whether models pre-trained for multilingual tasks outperform their mainly English-
comprehending base models, we compared BERT and mBERT as well as RoBERTa and XLM-RoBERTA.
Each pair used the same hyperparameters internally (see Appendix C.2). The multilingual models
processed the original texts whilst their counterparts processed the automatic translations. Results
indicate that the multilingual models lag behind by a consistent amount. The macro-average F1-scores
over the training epochs can be found in Appendix D.1.



Model Orientation Power

XLM-RoBERTa 0.8621 0.8379
DeBERTa-V3 0.8870 0.8630
Ensemble 0.8972 0.8697

Table 7
Macro-average F1-scores on our base validation set of base models and the ensemble of them.

Model Orientation Power

baseline 0.5603 0.6401
Ensemble 0.7945 0.8271

Table 8
Macro-average F1-scores on test set of our final ensemble and the provided baseline model

5.4. Ensemble modelling

In order to validate that ensemble modelling was a beneficial approach, we averaged the output logits
of DeBERTa-V3 and XLM-RoBERTa, fine-tuned on our base training set, on our base validation set. The
macro-average F1-scores of the yielded predictions, as seen in Table 7, show that the predictions of
our best performing stand-alone model could be improved by also considering the outputs of our best
performing multilingual model.

5.5. Test set results

Baseline The macro-average F1-scores attained by the baseline model on the competition test set
are shown in Table 8. This baseline model was fitted to the entirety of the original provided datasets.
When comparing this baseline to the baseline on our validation set, we see a decrease in macro-average
F1-score of 0.1152 and 0.0748 for the orientation and power task respectively. This indicates that the
test set is much more challenging, which is not surprising due to the nature of its construction. For
the orientation task the test set contains speakers that do not appear in the training set, and for the
power task it contains speakers which appear with a different role than they do in the training data.
The test set also does not share the same distributions in parliament representation, for further details
see Section 3.

Final ensemble model Our final ensemble consisted of two DeBERTa-V3 models and one XLM-
RoBERTa model, fine-tuned using disjoint selected validation sets, as detailed in Section 4.6. We
have made these models available on Hugging Face under oscpalML/DeBERTa-political-classification,
oscpalML/DeBERTa-political-classification-alternative and oscpalML/XLM-RoBERTa-political-classification.
Our final ensemble, averaging the logits of these models, yields macro-average F1-scores as seen in
Table 8.

Additional data extraction The additional data extraction improved the performance on the orien-
tation task. Our ensemble, without considering the other available speeches by a speaker, yielded a
macro-average F1-score for the orientation task of 0.7854 whilst when utilising the other speeches the
score increased to 0.7945.

6. Discussion

In the following chapter, we discuss and reason about the effectiveness of the proposed solution. We
further discuss the task itself and the limitations of our project.



Method effectiveness We show that our method improves performance for BERT and RoBERTa.
Whether or not these findings translate to other models and tasks is, of course, a prudent question. The
limitations of this project, enforced upon us by our limited computational resources, prevent us from
examining this quandary fully. However, due to the relatively similar architectures of our examined
models and the nature of our method, we hypothesise that the benefits of our method does translate.
This is because our method does not closely depend on the internals of a model, instead aiming to
provide a more representative loss function and better input data. We leave more extensive empirical
confirmation for future research.

Multi-task training The combined training yields an increase in performance for the orientation
task, which is not surprising since we extract additional orientation labels and therefore provide the
model with more data. On the other hand, the fact that there is also a significant improvement for the
power task is very intriguing. We speculate that this improvement is due to our LML-loss providing a
more representative loss, which incentivises extracting features which are useful for both tasks and
discourages over-fitting. This seems to be supported by the additional increase in performance provided
by also adding the prediction of a polarity label. This increase in performance is even more impressive
when considering that the polarity label was synthetically generated and likely to add at least some
amount of noise. Since polarity likely shares some important similarities with features useful for our
tasks, we speculate that our LML-loss was improved as to further incentivise cross-task useful features.

Data preprocessing The observed impact of prepending available meta data to each speech, as
shown in Figure 7, is not inexplicable. We suspect that the prepended sentence is very different from
the pre-training material of the base model, since it is simply two words and does not follow the form
of a regular phrase or sentence. This disruption, we speculate, might essentially confuse the model until
it is able to learn it in later epochs. Once the model has understood how to interact with the prepended
sentence however, it is able to leverage it into making better predictions.

It would be interesting for future research to compare the difference between adding new tokens
representing the meta data and prepending the meta data in English, as we did. It might be the case
that base models are able to leverage prior understanding of countries, be it their general political
environment or some other aspect. On the other hand, it might also be the case that prior bias hurts the
models ability to predict accurately and fairly.

Nature of tasks On the validation set, it is interesting to note that the linear baseline performed
better on the power task than the orientation task given that the models utilising our method show the
opposite behaviour. We may also note that whilst the difference is small, the power task benefited more
from a longer sequence length. It is therefore not entirely unreasonable to suggest that the power task
might rely more on specific words and phrases, as the linear baseline does. In other words, it might be
the case that specific words are more important for predicting political power whilst how you speak in
general is more indicative for predicting political orientation.

Difference between validation and test scores Another notable aspect is the discrepancy between
the achieved scores on the validation and test sets. Without using additional data extraction, our
top-performing single model achieved a macro-average F1-score on the validation set that was 10.1
percentage points higher than that of our best ensemble model on the test set. In contrast, the gap for
the power task was just 3.6 percentage points. We attribute the majority of this gap to two factors:
the difference in the distribution of the amount of parliamentary data and the nature of the test sets’
construction.

Since all parliaments have the same amount of data in the test sets whilst having greatly differing
amounts of data in the training and validation sets, it is not surprising that the achieved scores differ.
In the likely case that the models perform better on parliaments with more data, then the test set
represents an increased presence of the harder-to-predict parliaments and a decreased presence of the



easier parliaments. Regardless of this factor, just the difference in distribution itself likely also introduces
a challenging condition. In other words, that there is a drift in label and parliament distributions is
likely detrimental, even if the nature of that drift was not suspected to be particularly damaging. This
is because the model likely to some extent relies on the statistical trends, such as favouring to predict
the more common label when a speech is ambiguous.

The nature of the test sets’ construction may also account for the difference in discrepancy between
our two tasks. The power test set largely contains the same speakers as our training data, just with a
different power label. Given that we saw a relatively small decrease in performance, it seems that our
models have been able to avoid over-fitting to a specific speakers power label. Such a case was likely
aided by speakers exhibiting multiple power labels in the training data.

This behaviour is not shared with the orientation task. Since the orientation test set largely consists
of speakers who do not appear in the training data, the gap in performance may indicate that our
models have overfit to specific speakers. An additional factor is that the new speakers may cover topics
our models have previously not encountered. If a speaker is mainly exhibiting a political idea which the
model has not previously learnt the ideological connotations of, then the classification likely becomes
much more challenging. It would therefore be interesting to investigate whether these previously not
encountered speakers are contemporary to and covering the same topics as the speakers in the training
set.

Weak ideological signals Some parliamentary speeches might not indicate strong political beliefs.
They could solely cover practical proceedings, not expressing any opinions or making any arguments.
These types of speeches are likely more challenging to classify, especially if the provided dataset does
not exhibit clear rhetorical or linguistic differences for labels within a given class. This likely introduces
an upper limit on the performance of any model performing this task with similar data.

Limitations As previously discussed, our limited access to computational resources determined what
methods and models we could examine. This prevented us from examining large models such as the
70-billion parameter version Llama-3 or even the the 7-billion parameter version of Gemma. Not only
were we limited in the selection of models, but also in the number of experiments which we could
perform. More time and computational resources would have allowed us to attempt more techniques
and further search for optimal hyperparameters. Techniques which could not be examined include
using different learning rates for different layers and balancing the loss-function.

We were also limited by the data which we had access to. In real life, these speeches are not stand-
alone but most often parts of exchanges and debates. The problem of weak ideological signals could
likely be mitigated by considering all the speeches a speaker makes in an exchange together. By
representing speeches as parts of a larger debate, not only could a model base its prediction on all of
the speakers speeches, but also on the speeches made by the other participants in the debate.

7. Conclusion

In this study, we proposed a method for improved fine-tuning of LLMs for ideology and power identifi-
cation. Our research questions where as stated below.

RQ1 Investigate what the best methods and practices are for identifying the political orientation in a
parliamentary speech.

RQ2 Investigate what the best methods and practices are for identifying whether a parliamentary
speech is made by a speaker in opposition or in power.

In answering our research questions, we found that modern LLMs are an effective approach for
identifying both ideology and power in parliamentary debates. We further found that ideology and
power likely share useful features and therefore fine-tuning to predict them jointly yields improved



performance for both tasks. This improvement also extends to fine-tuning to predict synthetic labels, in
our case polarity.

We also note that performance can be improved by making the context of the speech, as available by
meta data, available to the models. Furthermore, back-translation can be utilised to boost performance
of countries with a smaller presence in a given dataset. Finally, we found that English models predicting
on automatic translations tend to outperform multilingual models predicting on the original languages
but that an ensemble of both types of models is the best approach.
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A. List of countries in the dataset

• Austria (at)
• Bosnia and Herzegovina (ba)
• Belgium (be)
• Czechia (cz)
• Denmark (dk)
• Estonia (ee) [only political orientation]
• Spain (es)
• Catalonia (es-ct)
• Galicia (es-ga)
• Basque Country (es-pv) [only power]
• Finland (fi)
• France (fr)
• Great Britain (gb)
• Greece (gr)
• Croatia (hr)
• Hungary (hu)
• Iceland (is) [only political orientation]
• Italy (it)
• Latvia (lv)
• The Netherlands (nl)
• Norway (no) [only political orientation]
• Poland (pl)
• Portugal (pt)
• Serbia (rs)
• Sweden (se) [only political orientation]
• Slovenia (si)
• Turkey (tr)
• Ukraine (ua)

B. Polarity base prompt

Label the polarity of the following text, similarly to the provided examples. Your answer needs to
start with “positive”, “negative” or “neutral”, followed by a short justification for your answer. It is
important that you only assign a positive or negative label if you are sure of your answer. Here is your
first example.



Text: The south-west was cut off from the UK last winter and Network Rail performed miracles in
getting that line back up and running. I therefore find it extraordinary that reasons such as the weather
have been used to excuse the chaos and incompetence of this debacle, particularly out of King’s Cross.
Why did the Secretary of State feel that it was not necessary for Ministers to ask for a basic reassurance
that an overrun on any of the big programmes could be managed? Why were contingency plans not in
place, and why was the rail regulator warning not adhered to?

Negative. The text expresses frustration and criticism towards the handling of infrastructure issues,
particularly the failure to address problems with the rail system despite previous incidents. It highlights
perceived incompetence and lack of planning, suggesting a negative sentiment towards the situation.

Here is your second example.
Text: We are committed to ensuring that claimants receive high-quality, objective, fair and accurate

assessments. The Department monitors assessment quality through independent audit. Assessments
deemed unacceptable are returned to the provider for reworking. A range of measures, including
provider improvement plans, address performance falling below expected standards. <p> I do agree
with the hon. Lady, which is why we have been trying to work more strategically with Motability,
thrashing through the issues I am very aware of on appeals and on matters such as when an individual
leaves the country. We are looking to reduce the amount of time that appeals take and at what we can
do with the running of the scheme so that the precise scenario she outlines does not happen.

Neutral. The text describes the commitment to ensuring quality assessments for claimants and
outlines measures taken to monitor and address assessment quality. Additionally, it mentions efforts
to work with Motability to improve processes and reduce appeal times. The tone is informative and
focused on addressing issues, without expressing overt positivity or negativity.

Here is your third example.
Text: I congratulate the hon. Gentleman on bringing this much needed debate to the Floor of the

House. Will he join me in paying tribute to local MND associations across the United Kingdom for the
invaluable support they provide? I know of the excellent work of my local Leicestershire and Rutland
association, having heard at first hand from a constituent and friend of mine, Ruth Morrison, about
her tragic personal experience. The support that is available is of immense value and I hope the hon.
Gentleman will join me in paying tribute to the work of those associations.

Positive. The text expresses gratitude and admiration for the efforts of local Motor Neurone Disease
(MND) associations, highlighting the invaluable support they provide. It also encourages acknowledg-
ment of their work, suggesting a positive sentiment towards their contributions.

Now here is your text to label:

C. Hyperparameters

C.1. BERT method components

The hyperparameters which where not left to their default values as provided by the transformers
library are shown in table 9.

Hyperparameter Value

Learning rate 3e-5
Epochs 5
Batch size 40
Weight decay 0.001
Input length 512

Table 9
Non-default hyperparameter values for the BERT method components experiment.



Hyperparameter BERT mBERT RoBERTa XLM-R DeBERTa-V3

Learning rate 3e-5 3e-5 1e-5 1e-5 2e-5
Epochs 5 5 10 10 10
Warm-up ratio 0 0 0 0 0.2
Batch size 40 40 20 20 10*
Weight decay 0.001 0.001 0 0 0
Train input length 512 512 512 512 512
Eval. input length 512 512 512 4096 2048

*Gradients where accumulated for 2 steps to simulate batch size 20 for DeBERTa-V3

Table 10
Best performing examined non-default hyperparameter values for various models

Hyperparameter Gemma

Learning rate 3e-5
Learning rate schedule constant
Epochs 3
Warm-up ratio 0.1
Batch size 12
Train input length 512
Eval. input length 512

LoRA rank 16
LoRA alpha 32
LoRA dropout 0.05

Quantisation type 4-bit NormalFloat
Quantisation compute type 16-bit float
Double quantisation True

Table 11
Best performing examined non-default hyperparameter values for Gemma

C.2. Model hyperparameters

The best performing hyperparameters used for models which did not utilise LoRA can be found in
table 10, and the ones for models which did utilise LoRA in table 11. Not mentioned hyperparameter
values where left to their defaults as provided by the transformers library.

D. Figures and illustrations

D.1. Multilingual model performance figures

The comparison of models and their multilingual counterparts is illustrated in fig. 9.

D.2. Back-translation impact on specific parliaments

The difference in macro-average F1-score when fine-tuning combined training BERT with and without
back-translation is visualised for each parliament in fig. 10.

D.3. Power dataset illustrations

The power dataset is illustrated inf fig. 11 and fig. 12.
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Figure 9: The comparison of BERT and RoBERTa fine-tuned on the English translations vs. mBERT and XLM-
RoBERTa fine-tuned on the original texts.
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Figure 10: Difference in macro-average F1-score comparing combined training BERT with and without back-
translation on the orientation task. The countries are ordered by the number of speeches before back-translation,
from left to right in increasing order.
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Figure 11: Mean and standard deviation for text lengths per country in the power dataset.
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