
TextTrojaners at CheckThat! 2024: Robustness of
Credibility Assessment with Adversarial Examples through
BeamAttack⋆

Notebook for the CheckThat! Lab at CLEF 2024

David Guzman Piedrahita1,*,†, Arnisa Fazla1,† and Lucas Krauter1,†

1University of Zurich, Rämistrasse 71, CH-8006 Zürich, Switzerland

Abstract
This paper describes the submission of TextTrojaners for the CheckThat! 2024 lab task 6: Robustness of Credibility
Assessment with Adversarial Examples [1]. We achieved the second best results on the BODEGA evaluation
metric. Our approach BeamAttack is a novel algorithm for generating adversarial examples in natural language
processing through the application of beam search. To further improve the search process, we integrate a
semantic filter that prioritizes examples with the highest semantic similarity to the original sample, enabling
early termination of the search. Additionally, we leverage a model interpretability technique, LIME, to determine
the priority of word replacements, along with existing methods such as that determine word importance through
the model’s logits. Our approach also allows for skipping and removing words, enabling the discovery of minimal
modifications that flip the label. Furthermore, we utilize a masked language model to predict contextually
plausible alternatives to the words to be replaced, enhancing the coherence of the generated adversarial examples.
BeamAttack demonstrates state-of-the-art performance, outperforming existing methods with scores of up to
0.90 on the BiLSTM, 0.84 on BERT, and 0.82 on the RoBERTa classifier 1.

Keywords
Model Robustness, Adversarial Attack, Beam search, Masked Language Models

1. Introduction

Social media platforms increasingly rely on machine learning algorithms for content filtering to identify
misleading, harmful, or illegal content. Despite advancements, these models remain vulnerable to
adversarial attacks, wherein the input text is manipulated to deceive the model, even after undergoing
adversarial training [2]. As adversaries continue to develop new attack techniques, assessing the
robustness of text classification approaches becomes imperative.

We participated in “Task 6: Robustness of Credibility Assessment with Adversarial Examples (In-
CrediblAE)” at the ‘CheckThat! lab’ during CLEF 2024, which was designed to assess the robustness of
popular text classification methods used in credibility assessment tasks [1]. The task involves conducting
adversarial attacks on multiple text classification systems trained on various credibility assessment
datasets. The goal is to modify the input text in a way that flips the classification of the models while
minimizing semantic and syntactic modifications. These attacks are categorized as grey-box attacks,
where we have access to the output logits of the victim models, and we can query the victim models as
many times as we want.

Previous research on grey-box adversarial attacks on text classification systems has explored mod-
ifications at the character [3], word [4, 5, 6], and sentence levels of the input text. These methods
encompassed a range of techniques, including random character and word replacements [7, 8, 9, 10, 11, 5],
substitution with similar words [12, 13, 6], and controlled sentence paraphrasing to generate semanti-

1Code is available at https://github.com/LucK1Y/BeamAttack
CLEF 2024: Conference and Labs of the Evaluation Forum, September 09–12, 2024, Grenoble, France
*Corresponding author.
†
These authors contributed equally.
$ david.guzmanpiedrahita@uzh.ch (D. G. Piedrahita); arnisa.fazla@uzh.ch (A. Fazla); lucassteffen.krauter@uzh.ch
(L. Krauter)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/LucK1Y/BeamAttack
mailto:david.guzmanpiedrahita@uzh.ch
mailto:arnisa.fazla@uzh.ch
mailto:lucassteffen.krauter@uzh.ch
https://creativecommons.org/licenses/by/4.0

cally similar text [14]. Our submission follows the line of research in the field that focuses on sequential
word replacement using Masked Language Models (MLMs) combined with a search algorithm.

We introduce BeamAttack, our word-level adversarial attack and submission to the shared task.
At its core, BeamAttack employs a beam search algorithm to identify optimal word substitutions,
thereby enabling the generation of multiple alternative adversarial text hypotheses capable of
flipping the model’s classification. Leveraging techniques from existing literature and innovative
approaches, BeamAttack integrates a Masked Language Model (MLM), specifically RoBERTa [15],
to produce contextually appropriate word substitutions. BeamAttack demonstrated superior perfor-
mance compared to all baseline methods across all datasets, securing the second place in the competition.

Our contributions include the following:

• We employ a beam search algorithm to explore combinations of multiple word substitutions,
optimizing for the output logits of classifier models. This approach significantly expands the
search space compared to the greedy search commonly used in the literature and allows for the
generation of multiple alternative adversarial samples in a single run. While beam search has
been utilized in white-box attacks by Ebrahimi et al. [16], to our knowledge, it has not been
applied in a grey-box scenario.

• In line with existing methodologies [6], we generate contextual word substitution alternatives
using a Masked Language Model. Although Li et al. [6] utilized a BERT model [17], we employ a
RoBERTa model [15] to enhance the effectiveness of our approach.

• We adapt the beam search algorithm to allow for the option of not modifying certain words
or removing them instead of substituting them at each step. This modification enables a more
flexible and comprehensive exploration of possible word replacement combinations.

• In addition to the logit-based word importance ranking method commonly used in the literature
[6], we experiment with identifying vulnerable words in the input text using the explainable
AI framework LIME [18], offering a novel perspective on word vulnerability in adversarial text
generation.

In the following sections, we will present the details of our approach addressing the challenge of
robustness in credibility assessment. Section 2 provides an overview of related work in the field of
NLP adversarial attacks, highlighting the fundamental principles of various attack methods and their
applications. Section 3 describes the specific task we participate in, namely “Task 6: Robustness of
Credibility Assessment with Adversarial Examples (InCrediblAE)”, and outlines the datasets and victim
models used in our experiments. In Section 4, we present our algorithm and methodology for generating
adversarial examples. The results of our experiments are presented in Section 5, where we evaluate
the effectiveness of our algorithm in attacking the victim models. In Section 6, we conduct an ablation
study to analyze the impact of hyper-parameters on our algorithm’s performance. Finally, we conclude
our paper in Section 7 and outline limitations and potential avenues for future work in Section 8.

2. Related Work

Despite their powerful capabilities, neural networks suffer from a lack of interpretability, making it
difficult to predict their behavior, which can raise security concerns. Szegedy et al. [19] highlighted
that while neural networks exhibit impressive generalization capabilities, they are also vulnerable to
adversarial examples.

An adversarial sample is generated from the original sample by applying the smallest possible change
that leads to a misclassification by the target model, known as the victim classifier. The goal is to alter
the sample just enough to trick the classifier into making an incorrect prediction. A formal definition
for adversarial samples or examples can be found in [2].

While much of the existing research focuses on adversarial attacks in image classification [20], similar
vulnerabilities exist in text classification tasks [21, 22, 4].

2.1. Categories of Adversarial Attacks

Adversarial attacks in NLP can be classified in three categories: white-box attacks, black-box attacks,
and grey-box attacks. White-box attacks are also called gradient-based attacks, since the adversary (the
attacker) has access to the weights and thus the gradients of the victim model [23, 24, 16, 5].

Black-box attacks are the more realistic scenario, where the adversary only has access to the prediction
of the victim for any given input samples. Most algorithms assume an infinite number of queries to
find the best perturbation [25, 14], or make use of surrogate models [26].

Przybyła et al. [27] proposes a grey-box scenario, where the adversary has access to not only the
predictions, but also to the probabilities given to each class by the victim. This scenario enables
adversaries to optimize their attacks based on the output probability distributions [28, 29, 6, 13, 30, 31,
32, 8].

We can also distinguish between targeted and untargeted attacks. In a targeted attack, the attacker
aims to mislead the model into a specific incorrect class or label. In an untargeted attack, the attacker
aims to mislead the model into any incorrect class or label, without a specific target in mind. The shared
task at hand, InCrediblAE, focuses solely on untargeted attacks.

2.2. Granularity of Modifications in Adversarial Attacks

Adversarial attacks in NLP differ fundamentally from those in computer vision due to the symbolic
and discrete nature of text versus the continuous nature of images. This discreteness complicates the
creation of adversarial examples in NLP, as modifications must preserve the grammatical and semantic
integrity of the text while still deceiving the model. Consequently, NLP adversarial attacks often focus
on specific granularities of modification, such as characters, words, subwords, or entire sentences.

Character-level methods involve changing individual characters in the adversarial text [5, 16, 8, 3].
Sentence-level methods modify longer passages of a text, including paraphrasing entire sentences in

a constrained manner to create adversarial samples [14].
Word-level methods modify the original text by removing, adding, or substituting words, often

combining these techniques to create adversarial examples [10, 11]. This process typically involves
identifying vulnerable words in the input text and then modifying these selected words to generate
adversarial samples [4, 33, 28, 29, 6, 13, 23].

Most of the recent work in adversarial text is based on search algorithms that first rank the words
in an input sequence by their importance scores and then search the space of possible replacements
for each word according to this pre-computed ranking. This common approach requires a method for
calculating word importance scores to determine the optimal order for word replacement, a strategy for
selecting suitable word replacements, and a search strategy for iterative word replacement to guide the
process of finding the most effective substitutions.

The replacement strategies involve replacing selected words with out-of-vocabulary words [7, 8, 9];
introducing common typos [10, 11, 5]; replacing words with their synonyms or using rule-based systems
like dictionaries or WordNet [12]; leveraging embedding spaces to identify semantically similar words
[5]; and using masked language models (MLM) to find a word that fits the given context [13, 6].

The methods for calculating the word importance scores involve grey-box methods utilizing the
change in the output probabilities of the victim model, when some words are masked or removed [4, 5, 6]
and black-box attacks such as calculating the gradient of a surrogate model’s output regarding the input
words [26]. For example, BERT-Attack [6] iteratively masks each word, measuring the resulting change
in prediction, and thereby assessing the degree to which the outcome depends on the deleted word.

One of the most common search strategies is greedy search where each word is replaced sequentially
in the order of the word importance [33, 4, 26, 6]. For example, BERT-Attack tries replacing each word
with alternatives iteratively until it either manages to flip the classification or moves on to the next
word to be replaced. This is a relatively query-efficient strategy, however the search space is severely
limited, and it is highly dependent on the performance of the word importance scoring method.

Other search strategies with a larger search space include evolutionary algorithms [28, 29]; and beam

search [16]. For example, HotFlip [16], a white-box adversarial attack for text classification, uses a beam
search-based approach that leverages gradient information to guide the search process.

3. Task 6: Robustness of Credibility Assessment with Adversarial
Examples (InCrediblAE)

The CheckThat! lab at CLEF 2024 [34] introduced a novel task designed to assess the robustness of
popular text classification approaches. The task 6 [1] simulates the content filtering processes commonly
employed in social media, spanning multiple domains. For each domain, we were provided with three
pre-trained classifiers and a corresponding attack dataset. Our objective was to craft adversarial
examples for each sample in the dataset, which would flip the binary classification outcome while
preserving the original meaning.

3.1. Dataset Description

The basic statistics of the provided datasets are summarized in Table 1. Each dataset is divided into
three subsets: training, development (dev), and attack. The training and dev subsets are used to train
the classifier, while the attack subset serves as the evaluation dataset, where the effectiveness of our
attack is measured. Each dataset is designed for a binary classification task, and therefore, the positive
rate corresponds to the portion of samples belonging to class 1, and is therefore also a measure of class
imbalance. Notably, we observed significant variations in the length of samples across the datasets,
measured in terms of the number of characters, which are also reported in the table.

Table 1
Datasets used in BODEGA, described by the task, number of instances in training, attack and development
subsets, an overall percentage of positive (non-credible) class, and maximum length of samples in characters.

Task Training Attack Dev Positive Max Sample Length

RD 8,683 415 2,070 34.24% 3,8350
FC 172,763 405 19,010 51.27% 6,983
HN 60,234 400 3,600 50.00% 142,492
PR2 11,546 407 3,186 71.03% 11,626
C19 1,130 595 - 34.96% 349

Next, we briefly outline the different text domains. All except C19 are already published and described
in the CheckThat! lab at CLEF 2023 [27]:

• Style-based news bias assessment (HN): Categorizing news articles as either credible or
non-credible based on stylistic cues.

• Propaganda detection (PR): Text passages from news articles that employ propaganda tech-
niques to influence readers.

• Fact checking (FC): Evaluating the accuracy of news articles by considering contextual informa-
tion from given related Wikipedia snippets.

• Rumor detection (RD): Identifying Twitter threads that disseminate information without a
reliable source.

• COVID-19 misinformation detection (C19): Comprises social media messages that convey
either factual information or misinformation about the COVID-19 pandemic. The classifier must
rely on subtle cues, such as writing styles reminiscent of those found in high-quality news sources
(HN), to make its assessments.

3.2. Target Classifier Models

For each domain, the organizers provided three classifiers, each trained in a binary classification setup
on the training split of the corresponding dataset.

Figure 1: Diagram depicting the series of actions in our BeamAttack algorithm, where beam size 𝑘 = 2, branching
factor 𝑏 = 6, hypothesis count ℎ = 2.

• Fine-tuned BERT
• Trained BiLSTM,
• Fine-tuned RoBERTa (Surprise classifier): Trained to improve robustness, only available in the

test phase.

3.3. Evaluation

The evaluation process is designed to assess the effectiveness of generated adversarial examples in
altering the victim’s decision while preserving the original meaning. Driven by the formulation of the
shared task itself, our approach employs an untargeted attack strategy (see Section 2.1). This means
that, for every sample, we aim to alter the victim’s decision by flipping it to the opposite of its original
prediction.

To quantify the success of an attack, InCrediblAE uses the BODEGA score [27], a comprehensive
metric that evaluates the adversarial examples from multiple angles. The BODEGA score is calculated
by multiplying three components. The confusion score, which indicates whether the victim classifier’s
decision has changed and the attack was successful; the semantic score, which measures the similarity
between the original and adversarial examples using BLEURT; and the character score, which calculates
the Levenshtein distance as a similarity score. All three metrics range in values from 0 to 1.

4. Methodology

Our approach focuses on word-level attacks, a well-regarded technique in recent literature for its
balance between edit distance and semantic similarity. We aim to improve upon this by evaluating and

addressing the shortcomings of previous techniques.1

We redefine previous word-level attacks, such as HotFlip [16] and BERT-Attack [6], as search problems.
In this perspective, the total search space is determined by the number of words to be replaced and
the number of valid replacements for each word. This redefinition highlights the potential of search
algorithms in optimizing word replacements.

4.1. BeamAttack

BeamAttack combines three components: a method for calculating a ranking of words to determine
their replacement order, a word replacement strategy, and the beam search algorithm to explore the
search space of possible word replacement combinations. The algorithm overview is given in Figure 1.

4.1.1. Beam Search

Most existing techniques employ greedy search algorithms, selecting the first word(s) that effectively
alters the model’s prediction. This greedy strategy can lead to sub-optimal adversarial samples, requiring
more word changes than necessary.

Our approach adopts beam search as a replacement for greedy search, leveraging its efficacy as a
decoding strategy for language models. Beam search explores multiple potential solutions concurrently,
structured in a tree-like fashion, where each node represents a partial solution and branches signify
possible extensions. At each step, beam search maintains a predefined number of the most promising
partial solutions, known as the beam size 𝑘. This parameter balances exploration and computational
efficiency: larger 𝑘 values increase the likelihood of finding optimal or near-optimal solutions but
elevate computational complexity, while smaller 𝑘 values reduce demands at the cost of potentially
overlooking superior solutions.

In our approach, beam search operates by iteratively expanding the most promising nodes until a final
solution is reached. The root node represents the input text, and subsequent nodes denote candidate
adversarial texts. At each depth, one word is replaced, with branching occurring when alternative
words are considered for replacement. To manage computational complexity, we decouple the number
of alternatives evaluated at each depth (branching factor 𝑏) from the number of branches retained after
pruning. At each depth beyond the first, 𝑘 × 𝑏 nodes are evaluated, with 𝑏 replacements per alternative
from the previous depth and 𝑘 nodes from the previous depth, since we prune down to the 𝑘 nodes
retained from the previous depth post-pruning.

Selection of promising nodes is based on their effectiveness in reducing the predicted probability
of the original class while increasing the probability of the target class. This objective guides branch
pruning during the search process. The search continues until cumulative changes are sufficient to alter
the model’s classification for a designated number of hypotheses. To preserve semantic similarity to the
original sample, we introduce the hypothesis count ℎ: the search extends until at least ℎ branches flip
the model classification. The final adversarial sample is chosen as the node with the highest semantic
similarity to the original sample, as measured by Bleurt scores [35], among the selected hypotheses.

4.1.2. Word Replacement Strategy

For each individual replacement, we enable the option to either keep the word intact or remove it
altogether at any depth of the beam search. This added flexibility allows us to preserve the original
word if replacements have no impact on changing the probability, thus reducing similarity and edit
distances. Conversely, removing the word entirely may be the best strategy to confuse the model in
more challenging cases.

To maximize text fluency, we use a masked language model to suggest replacements for any given
word. This approach leverages the model’s pretraining to ensure that the replacements are likely to be
coherent with the rest of the text. We primarily use RoBERTa-Large for this purpose.

1The pseudocode for the algorithm can be found in the Appendix 1.

For each depth of beam search, we evaluate the top 𝑏 (branching factor) highest likelihood word
replacements as suggested by the masked language model. This strategy ensures that the potential
replacements not only fit well within the context of the sentence but also maintain the overall semantic
coherence of the text.

4.1.3. Word Importance Scoring Method

To determine the order in which words should be replaced, we use two different techniques to identify
the most important words for the model’s decision: LIME [18] and logit-based importance scores, as
proposed by Li et al. [6].

LIME is an explainability algorithm that provides local explanations for model predictions. It works
by perturbing the input data and observing the changes in the output. Specifically, for each word in the
input sentence, LIME generates a set of perturbed versions of the sentence with that word replaced by
various alternatives. It then fits a simple, interpretable model to these perturbed instances to estimate
the importance of each word based on how much the model’s output changes.

Logit-based importance scores, on the other hand, measure the influence of each word on the model’s
output logits directly. Let 𝑆 = [𝑤0, . . . , 𝑤𝑖, . . .] denote the input sentence, and 𝑜𝑦(𝑆) represent the
logit output by the target model for the correct label 𝑦. The importance score 𝐼𝑤𝑖 for each word 𝑤𝑖 is
defined as the difference in logits when the word is masked:

𝐼𝑤𝑖 = 𝑜𝑦(𝑆)− 𝑜𝑦(𝑆 ∖ 𝑤𝑖),

where 𝑆 ∖ 𝑤𝑖 is the sentence with 𝑤𝑖 replaced by a [MASK] token. This score quantifies how much
the presence of 𝑤𝑖 contributes to the model’s prediction.

Our approach is specifically designed to maximize the risk of incorrect model predictions by exploiting
the vulnerabilities in the model’s decision-making process. We achieve this by identifying the most
susceptible words in the input text and strategically replacing them with semantically consistent
alternatives. This targeted approach enables us to effectively manipulate the model’s decision while
preserving the overall coherence of the text. Moreover, by focusing on the most critical words, we
increase the likelihood of achieving our goal with a minimal number of word replacements, thereby
maintaining the semantic integrity of the original text.

4.2. Hyper-parameters

For each dataset and victim model combination, we determined a different set of hyperparameters for
our BeamAttack approach. To achieve this, we employed an informed random search on subsets of
10-50 samples for each task and victim model. Our search strategy was guided by intuition and initial
observations, allowing us to effectively fine-tune the hyperparameters. We considered the following
ranges for the hyperparameter values:

1. Beam size 𝑘: We tested values between 10 to 100, increasing in steps of 5 (i.e., 10, 15, 20, ...). We
increased the beam size until the improvement in the BODEGA score became negligible (less
than 1 point). Figure 2 illustrates how this approach led to convergence.

2. Branching factor 𝑏: We tested a range of values similar to the chosen 𝑘 values, within a range
of -20 to +20 around the selected 𝑘 values.

3. Hypothesis count ℎ: Based on initial experiments, we decided to test hypothesis counts of 5, 10,
and 20. This decision was made considering the difficulty of the task at hand and the BODEGA
scores obtained during the hyper-parameter search. We observed that further increasing ℎ did
not significantly improve the scores, as explained in Section 6.4.

4. Word importance scoring method: We compared the results of both word importance scoring
methods, LIME and logit-based, in the initial experiments of each dataset and victim model
combination.

We report the selected parameters for each scenario in Table 2.
As mentioned, we employed RoBERTa-large2 to replace the masks, with one exception: for the

Covid-19 (C19) task on the BERT classifier, we utilized the "vinai/bertweet-large"3 model instead. This
decision was motivated by the intuition that, given the Twitter domain of the COVID-19 dataset, this
model might perform better.

Table 2
Hyper-parameters for each combination of victim model and dataset.

Victim Task beam size 𝑘 hypothesis count ℎ branching factor 𝑏 importances

BiLSTM Pr2 25 30 50 logit-based
BiLSTM FC 10 10 30 logit-based
BiLSTM RD 10 10 30 logit-based
BiLSTM HN 20 10 20 logit-based
BiLSTM C19 15 10 30 logit-based

BERT PR2 60 10 80 logit-based
BERT FC 10 10 30 LIME
BERT RD 10 10 10 logit-based
BERT HN 20 5 20 LIME
BERT C19 10 10 30 logit-based

RoBERTa PR2 60 10 80 logit-based
RoBERTa FC 60 10 80 logit-based
RoBERTa RD 20 20 40 logit-based
RoBERTa HN 10 10 10 LIME
RoBERTa C19 40 10 60 logit-based

4.3. Computational Resources

This chapter outlines the computational resources utilized and the hyper-parameter tuning strategies
employed to optimize our BeamAttack approach, which demanded substantial computational power.
To overcome the limitations imposed by computational and time constraints, we resorted to a random
search strategy to determine the optimal parameter set for each scenario, recognizing that this approach
may not necessarily result in the identification of the globally optimal combination. We primarily used
Kaggle’s free GPU infrastructure, which offers NVIDIA Tesla P100s and T4x 4. We report the running
time statistics for the final runs of each model and dataset combination in Table 3.

5. Results

The outcomes of this shared task and a comparison with those reported by Przybyła et al. [27] are
presented in Tables 4, 5, and 6. Notably, we do not report scores for the Covid (C19) classification
subtask besides our own, as no official published scores are available. The same thing applies to the
RoBERTa victim in Table 6.

Our algorithm outperforms all other algorithms on BERT and BiLSTM victims, demonstrating the
superior effectiveness of BeamAttack. While other algorithms may generate adversarial samples with
better character or semantic scores in specific tasks, they fail to achieve this consistently across the
entire dataset. Moreover, our confusion scores are always superior to those of other techniques.

Nevertheless, our algorithm needs many victim queries to achieve this goal. For example, in the task
RD on the BERT classifier (see Table 4), our BeamAttack takes roughly double the number of queries

2FacebookAI/roberta-large model from Hugging Face: https://huggingface.co/FacebookAI/roberta-large
3vinai/bertweet-large model from Hugging Face: https://huggingface.co/vinai/bertweet-large
4For the submission phase, we used an NVIDIA Tesla T4 GPU.

https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/vinai/bertweet-large

Table 3
Running time statistics (in seconds) for each combination of victim model and dataset, measured on the entire
dataset.

Victim Task Time per Example (s) Total Attack Time (s) Total Evaluation Time (s)

BiLSTM Pr2 1.513 629.279 15.843
BiLSTM FC 2.111 854.859 54.206
BiLSTM RD 13.248 5497.992 560.019
BiLSTM HN 9.578 3831.309 615.956
BiLSTM C19 2.26 1344.562 95.838

BERT PR2 12.586 5235.587 15.986
BERT FC 7.988 3235.195 51.033
BERT RD 70.347 29193.831 488.945
BERT HN 86.049 34419.532 660.498
BERT C19 12.453 7409.627 103.194

RoBERTa PR2 72.192 30031.747 20.433
RoBERTa FC 3.467 1403.967 44.0466
RoBERTa RD 72.192 30031.747 20.433
RoBERTa HN 144.188 57675.011 544.444
RoBERTa C19 54.731 32564.714 117.173

compared to the Genetic algorithm. This highlights a trade-off between the quality of the generated
adversarial samples and the computational resources required to achieve them.

In summary, our BeamAttack algorithm has shown exceptional capability in producing high-quality
adversarial samples that are highly effective in deceiving victims, thereby surpassing the performance
of other algorithms when tested on BERT and BiLSTM victims.

6. Ablation Experiments

We conducted a small-scale ablation study to investigate the impact of various hyper-parameters on
the performance of our BeamAttack algorithm, shedding some light on the relationship between these
parameters and the algorithm’s effectiveness. Specifically, we investigate the impact of logit-based
versus LIME, beam size 𝑘, branching factor 𝑏 and the hypothesis count ℎ on the algorithm’s performance,
exploring each of these parameters in the context of specific scenarios of task and victim model. The
full results of the ablation studies can be found in the Appendix B.

6.1. Word Importance

Besides the logit-based approach from BERT-Attack [6], we utilized LIME, a state-of-the-art inter-
pretability framework, to identify crucial words in a sample that influence the victim’s decision-making
process. By modifying these words, we increased the victim’s susceptibility to our adversarial attack.

We report some comparisons of LIME in the appendix in Table 7. From this table, we can gather
multiple insights. For instance, for the BERT victim the choice of importance method depends on the
task dataset, with RD favoring the logit-based method and FC preferring LIME. For the BiLSTM, the
logit-based method is superior on all datasets. For RoBERTa, which is architecturally similar to BERT,
the choice of importance method also depends on the dataset, with FC favoring LIME.

Furthermore, we observed that for the RoBERTa victim and C19 task, the choice between LIME and
logit-based depends on other hyper-parameters such as beam size, branching factors, and hypothesis
count. More specifically, our results suggest transformer-based classifiers, namely classifiers BERT and
RoBERTa are generally more vulnerable to LIME over logit-based for the HN and FC datasets. Both
these datasets classify whether a statement contains facts, with HN using subtle clues in writing styles
and FC using external knowledge from Wikipedia. We leave the investigation behind this observation

Table 4
Results of adversarial attacks on the BERT classifier in five misinformation detection tasks in an
untargeted scenario, including previously reported results by Przybyła et al. [27] and our findings.
Evaluation measures include BODEGA score (B.), confusion score (con), semantic score (sem), character
score (char) and number of queries to the attacked model (Q.). The best score in each task is in boldface.

Task Method B. con sem char Q.

HN BAE 0.34 0.60 0.58 0.96 606.83
BERT-ATTACK 0.60 0.96 0.64 0.97 648.41
DeepWordBug 0.22 0.29 0.78 1.00 395.94
Genetic 0.40 0.86 0.47 0.98 2713.80
SememePSO 0.16 0.34 0.50 0.99 341.70
PWWS 0.38 0.82 0.47 0.98 2070.78
SCPN 0.00 0.92 0.08 0.02 11.84
TextFooler 0.39 0.92 0.44 0.94 660.52
BeamAttack (Ours) 0.84 1.00 0.86 0.97 4327.67

PR BAE 0.11 0.18 0.69 0.94 33.96
BERT-ATTACK 0.43 0.70 0.68 0.90 80.16
DeepWordBug 0.28 0.36 0.79 0.96 27.43
Genetic 0.50 0.84 0.65 0.89 962.40
SememePSO 0.41 0.68 0.66 0.90 96.17
PWWS 0.47 0.75 0.68 0.91 131.92
SCPN 0.09 0.47 0.36 0.46 11.47
TextFooler 0.43 0.77 0.64 0.87 57.94
BeamAttack (Ours) 0.69 0.98 0.77 0.89 1373.41

FC BAE 0.34 0.51 0.70 0.96 80.69
BERT-ATTACK 0.53 0.77 0.73 0.95 146.73
DeepWordBug 0.44 0.53 0.84 0.98 54.32
Genetic 0.52 0.79 0.70 0.95 1215.19
SememePSO 0.44 0.64 0.71 0.96 148.20
PWWS 0.48 0.69 0.72 0.96 225.27
SCPN 0.09 0.90 0.29 0.31 11.90
TextFooler 0.46 0.70 0.70 0.93 106.13
BeamAttack (Ours) 0.79 1.00 0.83 0.96 1390.83

RD BAE 0.07 0.18 0.41 0.98 313.01
BERT-ATTACK 0.18 0.44 0.43 0.96 774.31
DeepWordBug 0.16 0.23 0.70 0.99 232.74
Genetic 0.20 0.46 0.45 0.96 4425.11
SememePSO 0.10 0.21 0.46 0.97 345.89
PWWS 0.16 0.38 0.45 0.95 1105.99
SCPN 0.01 0.38 0.16 0.10 11.35
TextFooler 0.16 0.41 0.43 0.91 657.15
BeamAttack (Ours) 0.59 0.80 0.80 0.91 10618.93

C19 BeamAttack (Ours) 0.71 0.98 0.78 0.92 2628.90

to future work.
Our results suggest that exploring explainable AI frameworks for adversarial attacks is a promising

direction of research. However, our experiments show that LIME only improved upon the logit-based
approach on a few datasets. Additionally, LIME requires more queries, and when the improvement was
marginal, we opted for the logit-based approach due to resource constraints.

Table 5
Results of adversarial attacks on the BiLSTM classifier in five misinformation detection tasks in an
untargeted scenario, including previously reported results by Przybyła et al. [27] and our findings.
Evaluation measures include BODEGA score (B.), confusion score (con), semantic score (sem), character
score (char) and number of queries to the attacked model (Q.). The best score in each task is in boldface.

Task Method B. Con Sem Char Q.

HN BAE 0.48 0.77 0.64 0.98 489.27
BERT-ATTACK 0.64 0.98 0.66 0.99 487.85
DeepWordBug 0.41 0.53 0.77 1.00 396.18
Genetic 0.44 0.94 0.48 0.98 2029.31
SememePSO 0.21 0.42 0.50 0.99 313.51
PWWS 0.44 0.93 0.48 0.99 2044.96
SCPN 0.00 0.94 0.08 0.02 11.86
TextFooler 0.43 0.94 0.47 0.97 543.68
BeamAttack (Ours) 0.90 1.00 0.91 0.99 936.96

PR BAE 0.15 0.23 0.72 0.94 32.94
BERT-ATTACK 0.53 0.80 0.72 0.91 61.41
DeepWordBug 0.29 0.38 0.79 0.96 27.45
Genetic 0.54 0.88 0.67 0.89 782.15
SememePSO 0.47 0.76 0.68 0.89 85.34
PWWS 0.53 0.84 0.69 0.90 130.85
SCPN 0.12 0.55 0.39 0.50 11.55
TextFooler 0.51 0.85 0.67 0.88 52.59
BeamAttack (Ours) 0.70 0.97 0.80 0.90 593.38

FC BAE 0.36 0.55 0.69 0.96 77.76
BERT-ATTACK 0.60 0.86 0.73 0.95 132.80
DeepWordBug 0.48 0.58 0.85 0.98 54.36
Genetic 0.61 0.90 0.71 0.95 840.99
SememePSO 0.53 0.76 0.72 0.96 112.84
PWWS 0.57 0.82 0.73 0.96 221.60
SCPN 0.08 0.75 0.29 0.32 11.75
TextFooler 0.55 0.82 0.71 0.94 98.31
BeamAttack (Ours) 0.76 1.00 0.81 0.94 1549.12

RD BAE 0.09 0.21 0.43 0.98 312.77
BERT-ATTACK 0.29 0.79 0.41 0.89 985.52
DeepWordBug 0.16 0.24 0.68 0.99 232.75
Genetic 0.32 0.71 0.47 0.96 3150.24
SememePSO 0.15 0.31 0.48 0.97 314.63
PWWS 0.29 0.64 0.47 0.97 1059.07
SCPN 0.01 0.55 0.17 0.09 11.53
TextFooler 0.24 0.64 0.41 0.87 639.97
BeamAttack (Ours) 0.83 1.00 0.87 0.96 3831.72

C19 BeamAttack (Ours) 0.72 0.99 0.78 0.92 837.35

6.2. Beam Size 𝑘

We also conducted an experiment to investigate the effect of the beam size 𝑘 on our algorithm’s
performance. Specifically, we experimented on a subset of 30 samples from the PR2 dataset using
the RoBERTa victim model. The results are presented in Figure 2, with the exact scores provided
in Appendix Table 8. Our analysis reveals a consistent improvement in all scores as the beam size
increases.

However, we encountered a significant limitation. As shown in the table, a beam size of 100 requires
16,500 queries per sample, which is impractical for limited GPU setup. Therefore, we sought an optimal

Table 6
Results of our adversarial attack on the RoBERTa classifier in five misinformation detection tasks in an
untargeted scenario. Evaluation measures include BODEGA score (B.), confusion score (con), semantic
score (sem), character score (char) and number of queries to the attacked model (Q.).

Task Method B. Con Sem Char Q.

HN BeamAttack (Ours) 0.67 1.00 0.72 0.91 4596.62
PR BeamAttack (Ours) 0.45 0.97 0.55 0.79 10286.82
FC BeamAttack (Ours) 0.82 1.00 0.843 0.97 498.93
RD BeamAttack (Ours) 0.54 0.87 0.69 0.83 15458.12
C19 BeamAttack (Ours) 0.66 1.00 0.72 0.91 6491.39

trade-off where the scores would reach a plateau. In the case of PR2 and RoBERTa, we determined that
a beam size of 60 strikes a reasonable balance between performance and computational feasibility.

Figure 2: Comparison of the scores across different settings for the beam size

6.3. branching factor 𝑏

We further explored the impact of the branching factor 𝑏 on our algorithm’s performance, using a
fixed beam size of 40. We conducted an experiment on a subset of 30 samples from the PR2 dataset,
employing the RoBERTa victim model. The results are illustrated in Figure 3, which displays the scores
against varying branching factors. The exact scores can be found in Appendix Table 9. Our analysis
reveals that increasing the branching factor 𝑏 leads to a slight improvement in the BODEGA score.

6.4. Hypothesis Count ℎ

Our algorithm’s flexibility in replacing, skipping, or removing words, combined with the use of a masked
language model, ensures that the resulting sentence remains semantically correct. The beam search
approach enables us to efficiently query for multiple adversarial samples and use the one that is most
semantically close to our original sentence.

We conducted an ablation study on the hypothesis count ℎ, which defines how many adversarial
samples to use before selecting the closest. We explored different scenarios, incrementing the parameter
from 10 to 20, but observed only minimal effects, resulting in a negligible improvement or deterioration

Figure 3: Comparison of the scores across different settings for the branching factor

of less than 1% in the BODEGA score. We provide a small-scale report of our findings for the RoBERTa
victim and various tasks in the appendix (Table 10). Notably, in some cases, it came at the cost of
requiring more queries. Therefore, we opted to maintain a constant value of 10 for the hypothesis count
in most cases.

We acknowledge that a more comprehensive investigation of this parameter could have potentially
yielded further improvements.

6.5. LIME Parameters

The LIME explainability method itself presents several hyper-parameters that can be optimized. Al-
though tuning these parameters was not our primary focus, we recognized their potential impact on our
approach. Due to time constraints, we initially chose to keep the parameters fixed, but we later realized
that adjusting them could have a significant effect on our algorithm’s performance. The complete
documentation of parameters can be found here5.

Specifically, we found that by reducing the number of samples used by LIME, we could substantially
decrease the number of victim model queries required without compromising our algorithm’s perfor-
mance. Notably, by setting the number of samples to 500, a significant reduction of 4500 queries per
explanation was achieved, compared to LIME’s default setting of 5000. This adjustment may come at
the cost of reduced performance for longer samples, highlighting the need for further exploration of
these parameters in future work.

In future studies, researchers could explore matching the explainability model better to the victim
model. This could involve trying out different kernel sizes or entirely different kernels. We think this
adjustment could improve the efficency of generating an explanation.

7. Conclusion

In this shared task, we introduced BeamAttack, an innovative adversarial text generation method that
combines multiple techniques from the literature with novel approaches. At the core of BeamAttack
lies the beam search algorithm, which serves as a fundamental tool in optimizing adversarial text
generation.

Our method leverages a Masked Language Model (MLM), specifically RoBERTa, to produce contex-
tually appropriate word substitutions. Notably, RoBERTa’s ability to generate alternative words with
typos and controversial connotations significantly enhances BeamAttack’s effectiveness.

5Code Documentation of LimeTextExplainer. https://lime-ml.readthedocs.io/en/latest/lime.html#lime.lime_text.
LimeTextExplainer

https://lime-ml.readthedocs.io/en/latest/lime.html#lime.lime_text.LimeTextExplainer
https://lime-ml.readthedocs.io/en/latest/lime.html#lime.lime_text.LimeTextExplainer

Additionally, we integrate LIME, an interpretability method, to calculate the contribution of each
word to the model’s classification. Our experiments demonstrate significant improvements in attack
effectiveness, particularly in specific task contexts.

The key feature of BeamAttack is its utilization of beam search, which enables the identification
of optimal word-level modifications. Unlike previous methods relying on simplistic greedy search
approaches, BeamAttack’s beam search strategy allows for more nuanced modification decisions.
Moreover, by incorporating the capability to skip or remove words, inspired by prior work, we enhance
the algorithm’s flexibility in exploring potential solutions.

Furthermore, BeamAttack’s beam search produces multiple alternative adversarial text hypotheses
capable of flipping the model’s classification. By selecting the hypothesis with the highest semantic
similarity to the input text, our method effectively filters out dissimilar or contradictory hypotheses.

In summary, BeamAttack’s efficacy is significantly attributed to its beam search component, which
plays a crucial role in optimizing adversarial text generation. The flexibility provided by tunable
hyper-parameters allows users to prioritize semantic or character similarity based on their specific
requirements.

8. Limitations

Our word replacement strategy in BeamAttack is currently limited to methods of substituting and
removing words. Removing a word can sometimes result in syntactically incorrect and nonsensical
sentences, especially since RoBERTa is not utilized for this operation. This decreases the coherence
of the context after the change. To enhance the quality of our outputs, we recommend exploring the
integration of word insertion techniques into the beam search process. This approach could potentially
improve the syntactic and semantic integrity of the sentences.

The BeamAttack approach strives to maintain semantic similarity to the original sample via semantic
filtering. However, there could be a benefit to scoring the beams at each step of the beam search, rather
than solely relying on selecting the hypothesis with the highest semantic score.

Moreover, while RoBERTa provides context-based alternatives, these alternatives solely depend on
the context rather than the word to be replaced itself. This limitation may impact the performance of
the beam search, potentially resulting in alternatives that are opposite in meaning to the word to be
replaced. To address this, potential solutions include prompting Language Models (LLMs) to produce
word candidates at each step of the beam search or filtering out produced alternatives based on similarity
to the word to be replaced. However, these approaches may introduce trade-offs and require careful
consideration to maintain performance.

In our experiments, we limited ourselves to the use of the Explainable AI method LIME. However, we
suggest that future research should explore the potential of diverse Explainable AI methods to uncover
vulnerabilities in the victim’s decision-making process. Our experience with LIME has demonstrated
the value of these approaches, but we believe that Explainable AI frameworks could provide even
more insightful explanations. By leveraging these techniques, researchers may be able to identify more
effective strategies for generating adversarial examples, ultimately leading to more robust and reliable
machine learning models.

Acknowledgments

We would like to express our gratitude to the Department of Computational Linguistics at the University
of Zurich (UZH) for the valuable advice and guidance they offered throughout our research. Additionally,
we appreciate their efforts in providing us with access to a GPU during the evaluation phase of our project.
For more information about the department, please visit their website at https://www.cl.uzh.ch/en.html.

https://www.cl.uzh.ch/en.html

References

[1] P. Przybyła, B. Wu, A. Shvets, Y. Mu, K. C. Sheang, X. Song, H. Saggion, Overview of the CLEF-
2024 CheckThat! lab task 6 on robustness of credibility assessment with adversarial examples
(incrediblae), in: G. Faggioli, N. Ferro, P. Galuščáková, A. García Seco de Herrera (Eds.), Working
Notes of CLEF 2024 - Conference and Labs of the Evaluation Forum, CLEF 2024, Grenoble, France,
2024.

[2] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, C. Li, Adversarial attacks on deep-learning models
in natural language processing: A survey, ACM Trans. Intell. Syst. Technol. 11 (2020). URL:
https://doi.org/10.1145/3374217. doi:10.1145/3374217.

[3] B. Formento, C. S. Foo, L. A. Tuan, S. K. Ng, Using punctuation as an adversarial attack on deep
learning-based NLP systems: An empirical study, in: A. Vlachos, I. Augenstein (Eds.), Findings
of the Association for Computational Linguistics: EACL 2023, Association for Computational
Linguistics, Dubrovnik, Croatia, 2023, pp. 1–34. URL: https://aclanthology.org/2023.findings-eacl.1.
doi:10.18653/v1/2023.findings-eacl.1.

[4] D. Jin, Z. Jin, J. T. Zhou, P. Szolovits, Is bert really robust? natural language attack on text
classification and entailment, 2019. URL: https://api.semanticscholar.org/CorpusID:198967870.

[5] J. Li, S. Ji, T. Du, B. Li, T. Wang, Textbugger: Generating adversarial text against real-world appli-
cations, ArXiv abs/1812.05271 (2018). URL: https://api.semanticscholar.org/CorpusID:54815878.

[6] L. Li, R. Ma, Q. Guo, X. Xue, X. Qiu, BERT-ATTACK: Adversarial attack against BERT using
BERT, in: B. Webber, T. Cohn, Y. He, Y. Liu (Eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Association for Computational
Linguistics, Online, 2020, pp. 6193–6202. URL: https://aclanthology.org/2020.emnlp-main.500.
doi:10.18653/v1/2020.emnlp-main.500.

[7] Y. Belinkov, Y. Bisk, Synthetic and natural noise both break neural machine translation, ArXiv
abs/1711.02173 (2017). URL: https://api.semanticscholar.org/CorpusID:3513372.

[8] J. Gao, J. Lanchantin, M. L. Soffa, Y. Qi, Black-box generation of adversarial text sequences to
evade deep learning classifiers, in: 2018 IEEE Security and Privacy Workshops (SPW), 2018, pp.
50–56. doi:10.1109/SPW.2018.00016.

[9] H. Hosseini, S. Kannan, B. Zhang, R. Poovendran, Deceiving google’s perspective api built for
detecting toxic comments, ArXiv abs/1702.08138 (2017). URL: https://api.semanticscholar.org/
CorpusID:15418780.

[10] B. Liang, H. Li, M. Su, P. Bian, X. Li, W. Shi, Deep text classification can be fooled, in: Proceedings
of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, AAAI Press, 2018, p.
4208–4215.

[11] S. Samanta, S. Mehta, Towards crafting text adversarial samples (2017).
[12] G. A. Miller, WordNet: A lexical database for English, in: Human Language Technology:

Proceedings of a Workshop held at Plainsboro, New Jersey, March 8-11, 1994, 1994. URL: https:
//aclanthology.org/H94-1111.

[13] S. Garg, G. Ramakrishnan, Bae: Bert-based adversarial examples for text classification, ArXiv
abs/2004.01970 (2020). URL: https://api.semanticscholar.org/CorpusID:214802269.

[14] M. T. Ribeiro, S. Singh, C. Guestrin, Semantically equivalent adversarial rules for debugging
NLP models, in: I. Gurevych, Y. Miyao (Eds.), Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational
Linguistics, Melbourne, Australia, 2018, pp. 856–865. URL: https://aclanthology.org/P18-1079.
doi:10.18653/v1/P18-1079.

[15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov,
Roberta: A robustly optimized bert pretraining approach, 2019. arXiv:1907.11692.

[16] J. Ebrahimi, A. Rao, D. Lowd, D. Dou, HotFlip: White-box adversarial examples for text clas-
sification, in: I. Gurevych, Y. Miyao (Eds.), Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), Association for Computa-
tional Linguistics, Melbourne, Australia, 2018, pp. 31–36. URL: https://aclanthology.org/P18-2006.

https://doi.org/10.1145/3374217
http://dx.doi.org/10.1145/3374217
https://aclanthology.org/2023.findings-eacl.1
http://dx.doi.org/10.18653/v1/2023.findings-eacl.1
https://api.semanticscholar.org/CorpusID:198967870
https://api.semanticscholar.org/CorpusID:54815878
https://aclanthology.org/2020.emnlp-main.500
http://dx.doi.org/10.18653/v1/2020.emnlp-main.500
https://api.semanticscholar.org/CorpusID:3513372
http://dx.doi.org/10.1109/SPW.2018.00016
https://api.semanticscholar.org/CorpusID:15418780
https://api.semanticscholar.org/CorpusID:15418780
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111
https://api.semanticscholar.org/CorpusID:214802269
https://aclanthology.org/P18-1079
http://dx.doi.org/10.18653/v1/P18-1079
http://arxiv.org/abs/1907.11692
https://aclanthology.org/P18-2006

doi:10.18653/v1/P18-2006.
[17] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers

for language understanding, 2019. arXiv:1810.04805.
[18] M. T. Ribeiro, S. Singh, C. Guestrin, "why should I trust you?": Explaining the predictions of any

classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, 2016, pp. 1135–1144.

[19] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing
properties of neural networks, 2014. arXiv:1312.6199.

[20] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, D. Song, Natural adversarial examples, 2021.
arXiv:1907.07174.

[21] T. McCoy, E. Pavlick, T. Linzen, Right for the wrong reasons: Diagnosing syntactic heuristics in
natural language inference, in: A. Korhonen, D. Traum, L. Màrquez (Eds.), Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, Association for Computational
Linguistics, Florence, Italy, 2019, pp. 3428–3448. URL: https://aclanthology.org/P19-1334. doi:10.
18653/v1/P19-1334.

[22] R. Jia, P. Liang, Adversarial examples for evaluating reading comprehension systems, in: M. Palmer,
R. Hwa, S. Riedel (Eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, Copenhagen, Denmark, 2017,
pp. 2021–2031. URL: https://aclanthology.org/D17-1215. doi:10.18653/v1/D17-1215.

[23] N. Papernot, P. McDaniel, A. Swami, R. Harang, Crafting adversarial input sequences for recurrent
neural networks, in: MILCOM 2016 - 2016 IEEE Military Communications Conference, IEEE Press,
2016, p. 49–54. URL: https://doi.org/10.1109/MILCOM.2016.7795300. doi:10.1109/MILCOM.2016.
7795300.

[24] P. Gaiński, K. Bałazy, Step by step loss goes very far: Multi-step quantization for adversarial
text attacks, in: A. Vlachos, I. Augenstein (Eds.), Proceedings of the 17th Conference of the
European Chapter of the Association for Computational Linguistics, Association for Computational
Linguistics, Dubrovnik, Croatia, 2023, pp. 2038–2048. URL: https://aclanthology.org/2023.eacl-main.
149. doi:10.18653/v1/2023.eacl-main.149.

[25] Z. Yu, X. Wang, W. Che, K. He, TextHacker: Learning based hybrid local search algorithm for
text hard-label adversarial attack, in: Y. Goldberg, Z. Kozareva, Y. Zhang (Eds.), Findings of
the Association for Computational Linguistics: EMNLP 2022, Association for Computational
Linguistics, Abu Dhabi, United Arab Emirates, 2022, pp. 622–637. URL: https://aclanthology.org/
2022.findings-emnlp.44. doi:10.18653/v1/2022.findings-emnlp.44.

[26] R. Maheshwary, S. Maheshwary, V. Pudi, A strong baseline for query efficient attacks in a black box
setting, ArXiv abs/2109.04775 (2021). URL: https://api.semanticscholar.org/CorpusID:237485150.

[27] P. Przybyła, A. Shvets, H. Saggion, Verifying the robustness of automatic credibility assessment,
2023. arXiv:2303.08032.

[28] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, K.-W. Chang, Generating natural
language adversarial examples, in: E. Riloff, D. Chiang, J. Hockenmaier, J. Tsujii (Eds.), Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, Association for
Computational Linguistics, Brussels, Belgium, 2018, pp. 2890–2896. URL: https://aclanthology.org/
D18-1316. doi:10.18653/v1/D18-1316.

[29] Y. Zang, F. Qi, C. Yang, Z. Liu, M. Zhang, Q. Liu, M. Sun, Word-level textual adversarial attacking as
combinatorial optimization, in: D. Jurafsky, J. Chai, N. Schluter, J. Tetreault (Eds.), Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, Association for Compu-
tational Linguistics, Online, 2020, pp. 6066–6080. URL: https://aclanthology.org/2020.acl-main.540.
doi:10.18653/v1/2020.acl-main.540.

[30] X. Yang, Y. Gong, W. Liu, J. Bailey, D. Tao, W. Liu, Semantic-preserving adversarial text attacks, IEEE
Transactions on Sustainable Computing 8 (2023) 583–595. doi:10.1109/TSUSC.2023.3263510.

[31] M. Ni, Z. Sun, W. Liu, Fraud’s bargain attack: Generating adversarial text samples via word
manipulation process, IEEE Transactions on Knowledge and Data Engineering (2024) 1–14.
doi:10.1109/TKDE.2024.3349708.

http://dx.doi.org/10.18653/v1/P18-2006
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1907.07174
https://aclanthology.org/P19-1334
http://dx.doi.org/10.18653/v1/P19-1334
http://dx.doi.org/10.18653/v1/P19-1334
https://aclanthology.org/D17-1215
http://dx.doi.org/10.18653/v1/D17-1215
https://doi.org/10.1109/MILCOM.2016.7795300
http://dx.doi.org/10.1109/MILCOM.2016.7795300
http://dx.doi.org/10.1109/MILCOM.2016.7795300
https://aclanthology.org/2023.eacl-main.149
https://aclanthology.org/2023.eacl-main.149
http://dx.doi.org/10.18653/v1/2023.eacl-main.149
https://aclanthology.org/2022.findings-emnlp.44
https://aclanthology.org/2022.findings-emnlp.44
http://dx.doi.org/10.18653/v1/2022.findings-emnlp.44
https://api.semanticscholar.org/CorpusID:237485150
http://arxiv.org/abs/2303.08032
https://aclanthology.org/D18-1316
https://aclanthology.org/D18-1316
http://dx.doi.org/10.18653/v1/D18-1316
https://aclanthology.org/2020.acl-main.540
http://dx.doi.org/10.18653/v1/2020.acl-main.540
http://dx.doi.org/10.1109/TSUSC.2023.3263510
http://dx.doi.org/10.1109/TKDE.2024.3349708

[32] D. Lee, S. Moon, J. Lee, H. O. Song, Query-efficient and scalable black-box adversarial attacks on
discrete sequential data via bayesian optimization, 2022. arXiv:2206.08575.

[33] S. Ren, Y. Deng, K. He, W. Che, Generating natural language adversarial examples through
probability weighted word saliency, in: A. Korhonen, D. Traum, L. Màrquez (Eds.), Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, Association for
Computational Linguistics, Florence, Italy, 2019, pp. 1085–1097. URL: https://aclanthology.org/
P19-1103. doi:10.18653/v1/P19-1103.

[34] A. Barrón-Cedeño, F. Alam, T. Chakraborty, T. Elsayed, P. Nakov, P. Przybyła, J. M. Struß, F. Haouari,
M. Hasanain, F. Ruggeri, X. Song, R. Suwaileh, The clef-2024 checkthat! lab: Check-worthiness,
subjectivity, persuasion, roles, authorities, and adversarial robustness, in: N. Goharian, N. Tonel-
lotto, Y. He, A. Lipani, G. McDonald, C. Macdonald, I. Ounis (Eds.), Advances in Information
Retrieval, Springer Nature Switzerland, Cham, 2024, pp. 449–458.

[35] T. Sellam, D. Das, A. Parikh, BLEURT: Learning robust metrics for text generation, in: D. Jurafsky,
J. Chai, N. Schluter, J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Association for Computational Linguistics, Online, 2020, pp. 7881–7892.
URL: https://aclanthology.org/2020.acl-main.704. doi:10.18653/v1/2020.acl-main.704.

http://arxiv.org/abs/2206.08575
https://aclanthology.org/P19-1103
https://aclanthology.org/P19-1103
http://dx.doi.org/10.18653/v1/P19-1103
https://aclanthology.org/2020.acl-main.704
http://dx.doi.org/10.18653/v1/2020.acl-main.704

A. BeamAttack Algorithm

Input: 𝑆 = [𝑤0, 𝑤1, . . . , 𝑤𝑛] // input tokenized sentence, 𝑌 // gold-label, 𝐾 // beam size, 𝐵 // branching factor, 𝐻 // hypothesis count,
𝑚𝑜𝑑𝑒𝑙 // the target model to attack

Output: 𝑆𝑎𝑑𝑣 // adversarial sample
Initialize the beam as a priority queue with the original sentence and its score 𝑏𝑒𝑎𝑚 ← PriorityQueue()
𝑏𝑒𝑎𝑚.𝑎𝑑𝑑((𝑆,𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑝𝑟𝑜𝑏𝑎(𝑆)[𝑌]))

begin FCalculateWordImportance
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒𝑠← [] foreach word 𝑤𝑖 in 𝑆 do

𝑠𝑐𝑜𝑟𝑒_𝐿𝐼𝑀𝐸 ← LIME_importance(𝑤𝑖, 𝑆,𝑚𝑜𝑑𝑒𝑙) 𝑠𝑐𝑜𝑟𝑒_𝑙𝑜𝑔𝑖𝑡 ← logit_importance(𝑤𝑖, 𝑆,𝑚𝑜𝑑𝑒𝑙)
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑((𝑤𝑖, 𝑠𝑐𝑜𝑟𝑒_𝐿𝐼𝑀𝐸 + 𝑠𝑐𝑜𝑟𝑒_𝑙𝑜𝑔𝑖𝑡))

end
return 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒𝑠

end
begin FGetTopReplacements

Input: 𝑤𝑜𝑟𝑑, 𝑆,𝐵
𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠← masked_language_model.predict(𝑤𝑜𝑟𝑑, 𝑆,𝐵) return 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠

end
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒𝑠← CalculateWordImportance(𝑆,𝑚𝑜𝑑𝑒𝑙) Sort 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒𝑠 by descending order

while beam is not empty do
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑒𝑎𝑚← [] foreach (𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠𝑐𝑜𝑟𝑒) in beam do

foreach word 𝑤𝑗 in 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒𝑠 do
𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠← GetTopReplacements(𝑤𝑗 , 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝐵) foreach replacement in replacements do

𝑆𝑛𝑒𝑤 ← 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 with 𝑤𝑗 replaced by replacement 𝑛𝑒𝑤_𝑠𝑐𝑜𝑟𝑒 ← 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑝𝑟𝑜𝑏𝑎(𝑆𝑛𝑒𝑤)[𝑌]
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑒𝑎𝑚.𝑎𝑑𝑑((𝑆𝑛𝑒𝑤, 𝑛𝑒𝑤_𝑠𝑐𝑜𝑟𝑒))

end
end

end
Sort 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑒𝑎𝑚 by score 𝑏𝑒𝑎𝑚← top 𝐾 items from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑒𝑎𝑚

Check for success: foreach (𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑠𝑐𝑜𝑟𝑒) in beam do
if model.predict(𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) ̸= 𝑌 then

𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑎𝑑𝑑((𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑠𝑐𝑜𝑟𝑒))
end

end
if length of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ≥ 𝐻 then

break
end

end
𝑆𝑎𝑑𝑣 ← SelectBestCandidate(𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)

return 𝑆𝑎𝑑𝑣 if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is not empty, otherwise return None

begin FSelectBestCandidate
𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒← None 𝑏𝑒𝑠𝑡_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← −∞ foreach (𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑠𝑐𝑜𝑟𝑒) in 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← Bleurt_score(𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑆) if 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 > 𝑏𝑒𝑠𝑡_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 then
𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒← 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑏𝑒𝑠𝑡_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

end
end
return 𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

end
begin FLIME_importance

Input: 𝑤𝑜𝑟𝑑, 𝑆,𝑚𝑜𝑑𝑒𝑙
return LIME_score

end
begin FLogit_importance

𝑚𝑎𝑠𝑘𝑒𝑑_𝑆 ← 𝑆 with 𝑤𝑜𝑟𝑑 replaced by [MASK] return 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑝𝑟𝑜𝑏𝑎(𝑆)[𝑌]−𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑝𝑟𝑜𝑏𝑎(𝑚𝑎𝑠𝑘𝑒𝑑_𝑆)[𝑌]
end

Algorithm 1: BeamAttack

B. Ablation Studies

Task Victim Importance Method 𝑘, ℎ, 𝑏
Queries

per example
Success Semantic Character BODEGA

RD BERT LIME 10, 10, 10 16342.9 0.7 0.8160 0.9174 0.5380
RD BERT logit-based 10, 10, 10 5947.0 0.9 0.8189 0.9130 0.6874

FC BERT LIME 10, 10, 10 5520.44 1.0 0.8392 0.9546 0.8044
FC BERT logit-based 10, 10, 10 732.66 1.0 0.8188 0.9466 0.7787

FC BiLSTM LIME 10, 10, 30 2597.3 0.985 0.8111 0.9332 0.7511
FC BiLSTM logit-based 10, 10, 30 1549.1 1.0 0.8059 0.9410 0.7642

HN BiLSTM LIME 10, 10, 20 1529.04 1.0 0.9043 0.9837 0.8905
HN BiLSTM logit-based 10, 10, 20 665.72 1.0 0.9112 0.9893 0.9031

FC RoBERTa LIME 10, 10, 20 557.08 1.0 0.8398 0.9644 0.8110
FC RoBERTa logit-based 10, 10, 20 112.4 1.0 0.8392 0.9641 0.8105

C19 RoBERTa LIME 40, 10, 40 9714.4 1.0 0.5625 0.8602 0.4860
C19 RoBERTa logit-based 40, 10, 40 5505.0 1.0 0.6541 0.8939 0.5853
C19 RoBERTa LIME 10, 10, 20 1858.0 1.0 0.6304 0.8669 0.5500
C19 RoBERTa logit-based 10, 10, 20 972.7 1.0 0.6120 0.8677 0.5316

Table 7
Evaluation metrics for different importance methods on different tasks and victims. We always bold the
better BODEGA score with the same settings for either LIME or BERT. 𝑘 refers to the selected beam
size, ℎ to hypothesis counts and 𝑏 to the branching factor.

beam size 𝑘
branching factor 𝑏

Subset size
Queries

per example
Success Semantic Character BODEGA

10 30 530.53 0.93 0.58 0.78 0.44
20 30 1334.07 1.00 0.56 0.78 0.47
30 30 2451.77 1.00 0.58 0.79 0.49
35 30 3090.13 1.00 0.59 0.81 0.50
40 30 3656.93 1.00 0.60 0.83 0.51
50 30 5308.23 1.00 0.60 0.84 0.52
60 30 7151.87 1.00 0.61 0.84 0.53
70 30 9279.90 1.00 0.61 0.83 0.53
80 30 11374.77 1.00 0.62 0.84 0.54
90 30 14546.27 1.00 0.62 0.84 0.54
100 30 16499.97 1.00 0.63 0.84 0.55

Table 8
Scores for Different Beam Sizes 𝑘 for task PR2 and victim RoBERTa. Here hypothesis counts ℎ is always 10 and
𝑏 = 𝑘 for each case.

branching factor 𝑏 Beam size 𝑘 Subset size
Queries

per example
Success Semantic Character BODEGA

30 40 30 3032.733 1.0 0.5835 0.7924 0.4904
40 40 30 3656.933 1.0 0.5993 0.8280 0.5130
50 40 30 4476.300 1.0 0.5957 0.8331 0.5115
60 40 30 4836.333 1.0 0.6058 0.8309 0.5210
70 40 30 5799.533 1.0 0.6113 0.8249 0.5253

Table 9
Scores for Different branching factors 𝑏 with a fixed Beam size 𝑘 for task PR2 and victim RoBERTa with
hypothesis counts ℎ = 10.

Task
hypothesis
count ℎ

beam
size 𝑘

branching
factor 𝑏

Subset size
Queries

per example
Success Semantic Character BODEGA

RD 20 20 40 20 37576.3 0.95 0.6645 0.7952 0.5501
RD 10 20 40 20 37764.7 0.95 0.6654 0.7951 0.5508
PR2 20 40 40 30 3744.8 1.0 0.5996 0.8235 0.5101
PR2 10 40 40 30 3656.9 1.0 0.5993 0.8280 0.5130
C19 20 40 40 10 5505.0 1.0 0.6541 0.8939 0.5853
C19 10 40 40 10 5505.0 1.0 0.6541 0.8939 0.5853

Table 10
Results of different hypothesis counts ℎ with the RoBERTa victim and different tasks.

	1 Introduction
	2 Related Work
	2.1 Categories of Adversarial Attacks
	2.2 Granularity of Modifications in Adversarial Attacks

	3 Task 6: Robustness of Credibility Assessment with Adversarial Examples (InCrediblAE)
	3.1 Dataset Description
	3.2 Target Classifier Models
	3.3 Evaluation

	4 Methodology
	4.1 BeamAttack
	4.1.1 Beam Search
	4.1.2 Word Replacement Strategy
	4.1.3 Word Importance Scoring Method

	4.2 Hyper-parameters
	4.3 Computational Resources

	5 Results
	6 Ablation Experiments
	6.1 Word Importance
	6.2 Beam Size k
	6.3 branching factor b
	6.4 Hypothesis Count h
	6.5 LIME Parameters

	7 Conclusion
	8 Limitations
	A BeamAttack Algorithm
	B Ablation Studies

