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Abstract
This paper describes the submission of attack methods and results for shared task 6 at CheckThat! Lab at CLEF

2024. We present two novel attack methods to test the robustness of credibility assessment (CA) classifiers across

five tasks: fact-checking, COVID-19 misinformation detection, propaganda detection, style-based news bias

assessment, and rumor detection. The methods were evaluated using the BODEGA score, which accounts for

the success of the attack while preserving the original text’s meaning. Our GloTa method, combining GloVe

embeddings with RoBERTa-based substitutions, demonstrated superior effectiveness in most tasks compared

to baselines. Notably, GloTa achieved the highest BODEGA scores in propaganda detection and fact-checking,

indicating significant vulnerability in these areas. However, the method showed comparable performance to

baselines in style-based news bias and rumor detection, reflecting the inherent robustness of classifiers in these

tasks. Against a more robust pre-trained RoBERTa classifier, GloTa still outperformed RoBERTa-ATTACK,

although with generally lower success rates. These findings highlight the need for continuous improvement in

adversarial attack techniques to enhance the robustness of CA systems against evolving threats.
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1. Introduction

Credibility assessment (CA) can be understood as a family of tasks that have their goal in determining

whether a given textual document adheres to constraints, such as factuality, or not [1]. Advances in

NLP techniques and increased availability of high-quality domain-specific data have made classifiers

for CA viable for real-world deployment in contexts such as automated moderation of comments in

online platforms.

However, recent studies [2, 3] indicate that text classifiers can be easily deceived through simple

manipulations. For example, a user might circumvent a misinformation classifier by selectively re-

placing alphabetic characters with numbers. In the statement drinking water kills, this would lead to

a perturbation such as drinking w4ter k1lls, which a classifier might not robustly handle, leading to

misclassification. Such alterations, both simple and sophisticated, highlight that classifiers still lack the

robustness needed to withstand attacks from users with potentially malicious intent.

The robustness of classifiers can be systematically assessed by automatically perturbing initially

correctly classified input examples until the classifier’s decision is altered. From an attacker’s perspective,

the goal is to develop an algorithm that generates adversarial examples for each text sequence, resulting

in an opposite label compared to the original text sequence. If a decision can be changed (i.e., the

classifier gets confused), the attack is considered successful. To ensure that perturbations remain

human-readable and convey the original content, semantic and character-based distance metrics can be

employed in systematic robustness assessments.
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In the present working notes, we detail two attack methods1
used to assess the robustness of

five tasks given by this shared task: fact checking (FC), COVID-19 misinformation detection (C19),

propaganda detection (PR), style-based news bias assessment (HN), and rumor detection (RD). These

tasks are interpreted as binary classification tasks aimed at determining whether a given piece of text is

credible or not.

We evaluate our attack methods on various classifier models, referred to as victim models, which

differ in architecture but are applied to the same tasks for comparison. The evaluation metric employed

is the BODEGA score, as proposed by Przybyła et al. [1], which measures the success rate of confusion

under the constraint of meaning preservation.

2. Background

Credibility assessment (CA) is the high-level task concerned with determining whether some given

natural language expression is credible with regards to some aspect, e.g. veracity, or not. Assessing

the robustness of classifiers performing CA is vital, for otherwise users with malicious intent might

easily bypass such classifiers in contexts such as automated content moderation, such as the screening

of contributions to online forums. We restrict our focus to five CA tasks. The first task, FC is concerned

with classifying whether a given natural language statement is true or false relative to some body of

knowledge [1]. The fact checking classifiers we attack are based on data from Thorne et al. [4]. The other

four tasks are similar to FC, but differ by text type and subsequently by the datasets they were trained

and evaluated on. These tasks have the goal of assessing whether some given text is misinformation [5],

a rumor [6], propaganda [7] or fake news [8] respectively. A summary of the statistical information for

these tasks is presented in the following Table 1.

Table 1
Detailed information about the task dataset used to attack the victim models.

Task Name HN PR FC RD C19

Domain News
Bias

Propaganda
Detection

Fact
Checking

Rumor
Detection

COVID-19
Misinformation

Number of Texts2 400 416 405 415 541
Average Words Per Text 323 21 47 147 43

Previous work on classifier attack strategies can be broadly classified by information available to

an attacker (black-box, grey-box, white-box) and perturbation granularity (sentence-level, word-level,

character-level). In a white-box setting an attacker has full visibility of the models internals, including

model weights [9]. In a black-box scenario – as understood in the context of this task – an attacker

only can obtain information of the (binary) classification decision / confidence scores.

We solve for the grey-box version of the task as outlined in Przybyła et al. [1]. An attacker hence,

(1) can obtain the confidence scores from the model, (2) is provided information about the high-level

architecture (not model parameters though), and (3) has access to training and development datasets as

also the evaluation method. Further, an attacker is free to query the model as many times as needed in

order to confuse it. Przybyła et al. [1] introduce an attack effectiveness metric, called BODEGA score,

that is composed of the confusion success rate, while also punishing semantic and lexical (character-

level) distance. They detail BODEGA scores for a number of methods on the five aforementioned tasks

(FC, C19, PR, HN, RD) subsuming three different model types – BERT [10], BiLSTM and RoBERTa [11].

The datasets used to train the victim models are openly available
3
.

1

The detailed code for our methods is available at: https://github.com/yafengsong/InCrediblAE-2024-GloTa

2

The numbers of texts here are from the data used for the BERT Classifier. The number of texts may vary slightly for the

other two models.

3

cf.: https://gitlab.com/checkthat_lab/clef2024-checkthat-lab/-/tree/main/task6/incrediblAE_public_release

https://github.com/yafengsong/InCrediblAE-2024-GloTa
https://gitlab.com/checkthat_lab/clef2024-checkthat-lab/-/tree/main/task6/incrediblAE_public_release


The measure of evaluation, the BODEGA score, is computed as the product of one binary and two

real-valued numbers 𝑆BODEGA = succ * semdist * chrdist. Where succ ∈ 0, 1. The success variable

(succ) takes 1 when confusion is achieved and 0 when not. The other two values, semantic distance

(semdist) and character-edit distance (chrdist) are ∈ [0, 1]. 1 indicates that similarity is preserved relative

to the original in both cases, whereas a value closer to 0 signifies a higher divergence. The BODEGA

scores over the individual adversarial generations are then mean-aggregated across test data points and

tasks, to generate a final score. Thus, a high BODEGA score against a classifier implies low robustness,
but a high fecundity of the attack method. The BODEGA score can only consider attacks successful

that targeted towards a potential attacker’s goals, i.e. we are only interested in changes from 1→ 0, or

consider both confusion directions as a success, which can be understood as untargeted. We consider

only the untargeted scenario.

As basis for our experiments, we follow two promising methods, of which the latter also serves as one

of our baselines. Firstly, Li et al. [9], who replace words using nearest neighbor search and second Li

et al. [12], who use BERT to detect potential replacements for each input instance. Li et al. [12]’s method,

BERT-ATTACK, consists of probing the victim model for words that have high potential to change

the classification confidence and then in a subsequent step looking for suitable replacement words

for the most vulnerable words that still preserve the meaning. Their method outperforms previous

methods and is shown to work relatively well independent of the specific classifier architecture or task

(model-agnostic). The second baseline method is from Alzantot et al. [13], who use a genetic algorithm

over multiple generations to generate adversarial samples that are maximally fit to confuse the classifier.

As a framework for evaluation, we rely on the OpenAttack toolkit developed by Zeng et al. [14]. While

our work focuses on the word-level, some approaches have addressed perturbations on a more coarse-

respectively fine-grained level [15], such as character-switching [16] or paraphrasing [17].

Our contributions in the CLEF CheckThat! 2024 edition [18, 19] of the Shared Task on Robustness of
Credibility Assessment with Adversarial Examples (IncrediblAE) [20] can be summarized as follows:

• We introduce two novel methods to efficiently generate adversarial text samples for robustness

assessment of CA classifiers.

• We outperform previous baselines in the majority of CA tasks, with our GloTa approach appearing

as the most promising.

3. Methods

Motivated by previous work, we initially attempted to address this task using either rule-based al-

gorithms or neural network-based methods. However, our experiments indicated that rule-based

algorithms, such as randomly arranging characters or replacing words using a preset synonym list, did

not achieve satisfactory performance across the five test tasks. Consequently, we focused primarily on

developing a new model-based method to solve this shared task.

3.1. Contextual Embedding with RoBERTa Attacker

Inspired by BERTAttacker
4

[12], which provides a framework for automatically generating adversarial

samples, we first adopted a similar approach. BERTAttacker calculates an importance score for each

word and generates a candidate word list for substitution. However, we opted to use the RoBERTa

model [11] instead of BERT, given RoBERTa’s focus on masked word prediction with dynamic masking

and its training on a larger dataset, which should enhance its semantic understanding. We use the

RoBERTa-base model to generate importance scores for each word by calculating the difference in

output probability distributions between the original input sequence and the masked input sequence.

Once the importance scores for each word are obtained, we rank the words in the sequence based

on these scores. This ranking identifies the most vulnerable words, with the highest-ranking word

4

An implementation can be found at: https://github.com/thunlp/OpenAttack/blob/master/OpenAttack/attackers/bert_attack/

__init__.py

https://github.com/thunlp/OpenAttack/blob/master/OpenAttack/attackers/bert_attack/__init__.py
https://github.com/thunlp/OpenAttack/blob/master/OpenAttack/attackers/bert_attack/__init__.py


being the most susceptible to an attack that could alter the classifier’s output. Then, we iteratively

substitute these words to execute the attack on the victim model. For each substitution, we identify the

word’s position and extract its contextual embedding from the second-to-last layer of the RoBERTa

model. We select 𝑘 (in our case 𝑘=36) other words from the masked sequence’s predictions at that

position and extract their contextual embeddings after substituting the original word in the RoBERTa

model. We experimented with different values of 𝑘 and determined that 36 offers the optimal balance

between attack success rate and semantic preservation. By comparing the original word’s contextual

embedding with those of the 𝑘 selected words, we retain only those with a similarity score above a

preset threshold(=0.3) as candidates for substitution.

After obtaining a list of candidate words for each position in the original sequence, we substitute

each original word with candidates and check if the substitution fools the victim model. If successful,

we stop and return the modified sequence. If none of the candidates succeed, we retain the word that

most reduces the confidence in the original label and repeat the process for the next position. This

continues until either the attack is successful or all words in the input sequence have been processed.

The whole process of this method is shown in Algorithm 1.

Algorithm 1 Adversarial Attack using RoBERTa

Require: Original sequence X, victim model 𝑀 , RoBERTa model 𝑅, number of candidates 𝑘, similarity

threshold 𝜏
Ensure: Modified sequence X′

1: S← CalculateImportanceScores(X, 𝑅)
2: W← RankWordsByImportance(S)
3: for word 𝑤𝑖 in W do
4: 𝑒𝑖 ← ExtractEmbedding(𝑤𝑖, 𝑅)
5: C← GenerateCandidateWords(𝑤𝑖, 𝑘, 𝑅)
6: E← ExtractEmbeddings(C, 𝑅)
7: C′ ← {𝑐 ∈ C | Similarity(𝑒𝑖, 𝑒𝑐) > 𝜏}
8: for candidate 𝑐 in C′ do
9: X′ ← SubstituteWord(X, 𝑤𝑖, 𝑐)

10: if 𝑀(X′) ̸= 𝑀(X) then
11: return X′

12: end if
13: end for
14: 𝑤′

𝑖 ←WordThatReducesConfidenceMost(C′,𝑀)
15: X← SubstituteWord(X, 𝑤𝑖, 𝑤

′
𝑖)

16: end for
17: return X

3.2. GloTa: Combining GloVe Embeddings with RoBERTa

GloTa, which stands for GloVe and RoBerTa, represents a method that combines GloVe [21] embeddings

and RoBERTa to enhance adversarial attack techniques. Applying the aforementioned method yielded

a high success rate, but the semantic score was often low due to extensive substitution by RoBERTa-

generated candidates. These substitutions do not necessarily preserve the original meaning and may

even introduce opposite meanings. For example, RoBERTa-generated candidates for the word love
in the sentence I love you might include miss, forgive, or hate. To address this issue, we use GloVe

embeddings to generate candidate lists for substituting vulnerable words in the input sequence.

The candidate lists are generated using a process akin to the initial step in Genetic algorithm [13].

We build a large synonym dataset by computing the 𝑁 nearest neighbors of each selected word based

on distance in the GloVe embedding space (Common Crawl, 840B tokens, 2.2M vocab), using the aclImdb
dataset [22] of movie reviews from IMDB as dictionary to construct the synonym dictionary, thereby



mitigating the semantic loss associated with candidates generated from masked language models. We

still use the aclImdb dataset because it was employed in the original Genetic algorithm paper, allowing

us to maintain consistency and compare our results with the original findings.

Algorithm 2 Adversarial Attack using RoBERTa and GloVe

Require: Original sequence X, victim model 𝑀 , RoBERTa model 𝑅, GloVe embeddings 𝐺, synonym

dictionary 𝐷, number of candidates 𝑘, similarity threshold 𝜏
Ensure: Modified sequence X′

S← CalculateImportanceScores(X, 𝑅)
2: W← RankWordsByImportance(S)

for word 𝑤𝑖 in W do
4: if 𝑤𝑖 ∈ 𝐷 then

C← 𝐷[𝑤𝑖]
6: else

𝑒𝑖 ← ExtractEmbedding(𝑤𝑖, 𝑅)
8: C← GenerateCandidateWords(𝑤𝑖, 𝑘, 𝑅)

E← ExtractEmbeddings(C, 𝑅)
10: C′ ← {𝑐 ∈ C | Similarity(𝑒𝑖, 𝑒𝑐) > 𝜏}

C← ReRankCandidatesByBLEURT(C′,X)
12: end if

for candidate 𝑐 in C do
14: X′ ← SubstituteWord(X, 𝑤𝑖, 𝑐)

if 𝑀(X′) ̸= 𝑀(X) then
16: return X′

end if
18: end for

𝑤′
𝑖 ←WordThatReducesConfidenceMost(C,𝑀)

20: X← SubstituteWord(X, 𝑤𝑖, 𝑤
′
𝑖)

end for
22: return X

Once the synonym dictionary is constructed, we extract the most vulnerable word by the method

in Algorithm 1, generate a list of the closest words in the GloVe embeddings as candidates, and then

substitute the original word with candidates until the decision is flipped. If none of the words in the

list achieves this, we proceed to the next vulnerable word in the sequence and repeat the process.

However, because the input sequences span five different domains and may even include URLs and

emojis, many words are absent from the constructed synonym dictionary. For these out-of-vocabulary

words, we revert to using RoBERTa to generate candidate lists and then re-rank the substitution words

by BLEURT [23] to prioritize semantically close words for substitution. The entire process is illustrated

in Algorithm 2.

Additionally, we set two types of hyperparameters that can be tuned for different input datasets:

(1) max_candidates (2) max_substitutes and max_sub_rate. The first hyperparameter is the number

of substitution words. A longer list may increase the success rate but reduce semantic integrity. The

second type includes two hyperparameters: the number of substitutions made to the original sequence

and the substitution rate compared to the original input sentences. Ideally, we can substitute each

word, but excessive substitutions may significantly alter the semantic meaning. Therefore, we establish

these thresholds to balance the trade-off between the semantic score and success score. The attack on

the sequence will terminate when either threshold is reached. In our experiment, we tested different

parameter values and set the optimal parameters as follows: max_candidates to 30, max_substitutes to

80, and max_sub_rate to 0.5.



4. Results

We conducted the RoBERTa-ATTACK and our GloTa method, along with BERT-ATTACK and Genetic

algorithms as baselines, on five tasks to attack three victim models: the BERT Classifier, the Bi-LSTM

Classifier, and the RoBERTa Classifier. The last model, the RoBERTa Classifier, was introduced as

a "surprise" model for this shared task. The results are summarized in Table 2. GloTa achieved the

highest BODEGA scores in the Propaganda Detection (PR) and Fact Checking (FC) tasks. Analyzing the

sub-scores of these tasks, the gains were primarily from the success scores compared to the baseline

methods, indicating that our method is more effective at fooling the classifier in these tasks.

Table 2
Performance comparison of different attack methods on BERT and Bi-LSTM classifiers. Evaluation measures
include BODEGA score (BO), success score (suc), semantic score (sem), and character score (char). The best score
in each task and scenario is in boldface.

Task Method
BERT Classifier Bi-LSTM Classifier RoBERTa Classifier

BO suc sem cha BO suc sem cha BO suc sem cha

HN

BERT-ATTACK 0.60 0.96 0.64 0.97 0.64 0.98 0.66 0.99 - - - -
Genetic 0.40 0.86 0.47 0.98 0.44 0.94 0.48 0.98 - - - -

RoBERTa-ATTACK 0.58 0.95 0.62 0.98 0.63 0.99 0.64 0.99 0.34 0.57 0.60 0.98
GloTa 0.59 0.96 0.62 0.98 0.63 0.99 0.64 0.99 0.44 0.77 0.59 0.97

PR

BERT-ATTACK 0.43 0.70 0.68 0.90 0.53 0.80 0.72 0.91 - - - -
Genetic 0.50 0.84 0.65 0.89 0.54 0.88 0.67 0.89 - - - -

RoBERTa-ATTACK 0.53 0.95 0.62 0.88 0.58 0.97 0.65 0.89 0.25 0.54 0.54 0.82
GloTa 0.56 0.97 0.64 0.88 0.60 0.98 0.68 0.90 0.45 0.95 0.56 0.81

FC

BERT-ATTACK 0.53 0.77 0.73 0.95 0.60 0.86 0.73 0.95 - - - -
Genetic 0.52 0.79 0.70 0.95 0.61 0.90 0.71 0.95 - - - -

RoBERTa-ATTACK 0.62 1.00 0.64 0.96 0.67 0.99 0.70 0.97 0.67 0.99 0.69 0.97
GloTa 0.62 0.98 0.66 0.96 0.69 1.00 0.71 0.97 0.67 0.99 0.70 0.96

RD

BERT-ATTACK 0.18 0.44 0.43 0.96 0.29 0.79 0.41 0.89 - - - -
Genetic 0.20 0.46 0.45 0.96 0.32 0.71 0.47 0.96 - - - -

RoBERTa-ATTACK 0.20 0.52 0.42 0.89 0.31 0.76 0.44 0.92 0.20 0.47 0.44 0.93
GloTa 0.19 0.45 0.44 0.94 0.31 0.71 0.46 0.95 0.21 0.52 0.44 0.92

C19
RoBERTa-ATTACK 0.53 0.99 0.57 0.92 0.53 1.00 0.57 0.92 0.47 0.99 0.51 0.89

GloTa 0.52 0.96 0.58 0.93 0.53 1.00 0.57 0.92 0.45 0.96 0.51 0.89

For the Style-based News Bias Assessment (HN) and Rumor Detection (RD) tasks, our GloTa method

achieved similar BODEGA scores as the baseline. In the HN task, the baseline BERT-ATTACK already

achieved a high success score, limiting the potential for additional gains. In the meantime, GloTa’s

semantic score did not outperform the baseline, resulting in a comparable BODEGA score. In the

RD task, the victim model’s robustness led to low success scores across all methods, limiting GloTa’s

effectiveness in this context.

The COVID-19 Misinformation Detection (C19) task is a new dataset released for this shared task,

lacking prior baselines for comparison. Both GloTa and RoBERTa-ATTACK achieved a relatively high

success score, indicating this task’s susceptibility. However, the semantic score was not high due to

the presence of non-word tokens such as URLs, hashtags, and emojis from Twitter data, making it

challenging to find semantically similar alternative words.

The newly introduced classifier in this shared task, the RoBERTa classifier, is purported to be more

robust. We employed both RoBERTa-ATTACK and GloTa methods to attack this model, although we

did not have baseline results for comparison. GloTa significantly outperformed RoBERTa-ATTACK in

the HN and PR tasks, while achieving comparable results in the FC and RD tasks. These outcomes from

the RoBERTa classifier align with the comparative performance between GloTa and RoBERTa-ATTACK

observed in the BERT and Bi-LSTM classifier results. However, the performance gap between them

has widened, suggesting that GloTa is more effective at attacking more robust classifiers. Nonetheless,



RoBERTa-ATTACK marginally outperformed GloTa in the C19 task, primarily due to its higher success

score. Furthermore, when compared to all the BODEGA scores in BERT and Bi-LSTM classifiers, only

the FC task exhibited a higher BODEGA score in the RoBERTa classifier, while the other tasks showed

lower scores due to decreased success score or semantic score. This indicates that the RoBERTa classifier

is indeed more robust.

5. Discussion and Future Work

Given that the BODEGA score consists of three components—success score, semantic score, and

character score—the evaluation of adversarial attacks can be analyzed within these divisions. As shown

in Table 2, the character scores consistently remain high across different tasks. Therefore, our discussion

is focused on improving the success score and semantic score.

5.1. Success Score

Our GloTa method achieves near-perfect success scores across all three classifiers, with the exception

of the RD task in these three classifiers and the HN task in the RoBERTa classifier. We attribute this

high success rate primarily to our "greedy" attack method, which identifies vulnerable words and

replaces them sequentially until the classification is altered. While it is possible to replace all words

in the input sentences, this approach would significantly slow the process and lower the semantic

score, given that GloTa creates word-level replacements without considering the context. Therefore, we

introduced hyperparameters to control the number of substitutions in the original sequences, balancing

the trade-off between success and semantic scores. Additionally, as shown in Table 1, we observed that

HN and RD tasks involve longer texts compared to other tasks. This can lead to a more robust trained

victim model, which requires either replacing more words to alter the result or failing to attack when

the thresholds set by hyperparameters are reached. Future research could investigate allowing varying

numbers of substitutions in low-success tasks, such as RD, to determine if increasing the success rate

can enhance the overall BODEGA score.

5.2. Semantic Score

Our initial goal of combining BERT-ATTACK and Genetic was due to their superior performance in the

experiment conducted by Przybyła et al. [1]. We found that using a masked language model to replace

words could not maintain a relatively high semantic score, and character-level replacement resulted in

a low success rate. Therefore, we employed GloVe embeddings at word level to improve the semantic

score in the BODEGA calculation while maintaining a high success rate. However, results indicate that

the semantic score of our GloTa method showed only minor improvement compared to using words

from masked language models. For some tasks, such as FC, the semantic score decreased despite an

increase in the success score, due to more words being replaced in the original sequences. This may

be because the synonym dictionary was constructed from the aclImdb dataset, which differs from the

domains of the test tasks (HN, PR, FC, RD, and C19). As a result, many out-of-vocabulary words were

found in the original sequences, which required using RoBERTa to generate alternative words. This

likely explains the similarity in semantic scores between RoBERTa-ATTACK and GloTa.

In addition, our system achieved an average BODEGA score of 0.4776 across all tasks and classifiers

with an average semantic score of 0.5867, ranking 4th out of 6 teams. However, in human evaluations,

our system managed to preserve the meaning in only 14% of the attack samples, also ranking 4th

out of 6 teams. The details of the ranking and human evaluation methodology are explained in the

overview paper of this shared task by Barrón-Cedeño et al. [18]. The human evaluation result is

notably lower compared to the semantic score achieved by our system. This discrepancy is likely due to

several factors. First, in the automatic evaluation, the BODEGA score utilizes BLEURT to calculate the

semantic score, where substituting a single word with its close synonym often results in a high score,

whereas human evaluation considers the entire context. Second, as previously mentioned, the synonym



dictionary did not adequately cover the domain of the test tasks, leading to candidate words that were

not semantically similar enough to the original words. Third, word-level replacements do not consider

the full context, leading to decreased sentence fluency and greater deviation from the original meanings

as more replacements are performed. However, we found that using GloVe embeddings performed

better in human evaluation compared to other teams that used only masked language models for word

substitution. This is likely because, as noted in Section 3.2, the words generated by the masked language

model do not necessarily preserve the original meaning and may even introduce opposite meanings.

To further improve semantic scores, constructing the synonym dictionary using text data from the five

test tasks could reduce the occurrence of out-of-vocabulary words, thereby enhancing the semantic score.

Additionally, methods such as DeepWordBug [24], which performs character-level modifications, could

be explored to enhance the semantic score in both automatic and human evaluations after identifying

vulnerable words by the masked language model. Furthermore, our current methodology overlooks the

impact of emojis, which were ignored despite their importance in conveying emotional information.

Future research should incorporate emoji embeddings to enhance semantic understanding and model

performance.

6. Conclusion

In this shared task, we explored the robustness of classifiers for credibility assessment (CA) tasks by

developing and evaluating two attack methods: RoBERTa-ATTACK and GloTa. The GloTa method, which

combines GloVe embeddings and RoBERTa to enhance adversarial attack capabilities, demonstrated

superior effectiveness, achieving the highest BODEGA scores in propaganda detection (PR) and fact-

checking (FC) tasks. This indicates a significant vulnerability in these areas. However, its performance

was on par with baselines in style-based news bias assessment (HN) and rumor detection (RD), reflecting

the inherent robustness of classifiers in these tasks.

When tested against a more robust RoBERTa classifier, GloTa outperformed RoBERTa-ATTACK,

although with generally lower success rates, underscoring the enhanced robustness of the RoBERTa

classifier. These findings highlight the trade-off between achieving high attack success rates and

maintaining semantic integrity. Our study enhances the understanding of CA classifier robustness and

demonstrates that using a masked language model to identify vulnerable words and replace them with

similar word embeddings in the original texts can be an effective method for adversarial attacks.
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