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Abstract
A goal of database reverse engineering techniques is the extraction of a conceptual model describing an
otherwise complex or obtuse database system. In such contexts, and notably, when applied to legacy
databases, thorough preservation of the knowledge lying in the source schema is a reasonable priority.
In the common database reverse engineering pipeline, database normalization is the process in which
we are most able to dictate and maintain the information preservation property. We make use of the
transformation pattern formalism as our base to guarantee information preservation. We present how
these theoretical templates can be applied over complex database schema and how they can serve as the
foundation of an automatic, deterministic database normalization methodology.
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1. Introduction

As time passes, knowledge of and used in database management systems is at risk of becoming
either lost or outdated. There are ways to mitigate this inevitability by requiring strict control and
upkeep of a persistent conceptual model for each change done over the original database [1]. But
in some scenarios, such as legacy database, the only approach left is recovery. Recovery of several
forms of knowledge usually takes the form of a brand new conceptual model emerging from
the bribes of information at its disposal. Database Reverse Engineering (DBRE) encompasses
the set of methods and tools aiming for this result. Naturally, in such a context, the desire for
the conceptual model generated to be precise and to reflect exactly the veiled information is
quite high. Thus emerges our will to mix theory on information preservation with this process
of conceptualization.

Our foundation is the research done in [2] which explores the application of information
capacity preservation in the restricted context of first-order schemata. Focusing on a simple
notation based on first-order logic in which we translate concepts of database theory allows
for the logical verification of constraint and schema preservation. This research was done
through the lens of DBRE to provide methods for transforming databases. First, into other ones
in higher normal forms and then, into conceptual models after passing by an intermediary
step incorporating the abstract relational model notation. This process eventually crystallises
into specific templates designed to represent database transformations called Transformation
Patterns (TPs). This strong formalism was however lacking a proper associated application
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methodology and served more as guidance for database engineer. To illustrate the various
sections of the methodology we provide the following ongoing example Fig. 1:

Figure 1: Ongoing Example

This example presents a legacy database schema with a single universal relation

𝑃𝑒𝑟𝑠𝑜𝑛 ∶ (𝑆𝑆𝑁,𝑝ℎ𝑜𝑛𝑒,𝑚𝑎𝑛𝑎𝑔𝑒𝑟, 𝑡𝑖𝑡𝑙𝑒, 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑚𝑎𝑦𝑜𝑟)

onto which are applied several constraints: - a primary key on 𝑆𝑆𝑁 denoted by a bold underline
- a functional dependency 𝑐𝑖𝑡𝑦 → 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑚𝑎𝑦𝑜𝑟 written with a top single arrow - another
functional dependency 𝑚𝑎𝑛𝑎𝑔𝑒𝑟 → 𝑡𝑖𝑡𝑙𝑒, this time restrained to tuples satisfying a condition
𝑚𝑎𝑛𝑎𝑔𝑒𝑟, 𝑡𝑖𝑡𝑙𝑒 ≠ NULL requiring both attributes to be non-null - a multivalued dependency
𝑆𝑆𝑁 ↠ 𝑝ℎ𝑜𝑛𝑒 signed with a top double-headed arrow and finally - two inclusion dependency
𝑚𝑎𝑛𝑎𝑔𝑒𝑟 ⊆ 𝑆𝑆𝑁 and 𝑚𝑎𝑦𝑜𝑟 ⊆ 𝑆𝑆𝑁 , both shown as bottoms arrows.

Using transformation patterns as our base, we propose a methodology based on them for
automatic database normalization. It starts with a primer on information capacity and what
leads us to focus on TPs as a means of preserving knowledge with no loss. Once we present how
these restrictive patterns could be applied to more complex schemas, we describe a method-
ology to remove all null values and all join dependencies from the source schema via schema
decompositions. For closure, we contextualize our work among the many adjacent fields it
grazes before discussing our future application of transformation patterns.

2. Background

2.1. Information Preservation

At its core, most of the literature regarding the preservation of information during a schema
transformation emerged from Hull’s [3] definition of four decreasingly strict notions of schema
dominance. The main idea behind schema dominance is that for two relational schemas, any
valid database instance in one of the schemas can be expressed in the other.

Definition 1 (Schema Transformation). Let there be two schemas 𝑆 and 𝑇 . A schema trans-
formation from 𝑆 to 𝑇 is a mapping function 𝑓𝑆→𝑇 ∶ 𝑆 → 𝑇 such that 𝑓𝑆→𝑇 𝐼(𝑆)→ 𝐼(𝑇 ) where
𝐼 correspond to all valid database instances of 𝑆 and 𝑇 , respectively. Furthermore, a mapping
function 𝑓𝑆→𝑇 ∶ 𝑆 → 𝑇 is total if ∀𝑥 ∃𝑦 𝑓𝑆→𝑇 (𝑥) = 𝑦, injective if ∀𝑥,𝑥′ 𝑓𝑆→𝑇 (𝑥) = 𝑓𝑆→𝑇 (𝑥′),
surjective if ∀𝑦 ∃𝑥 𝑓𝑆→𝑇 (𝑥) = 𝑦 and bijective if 𝑓𝑆→𝑇 is total, injective and surjective.



Definition 2 (Schema Dominance). Let there be two schemas 𝑆 and 𝑇 and the two mapping
functions 𝑓𝑆→𝑇 and 𝑓𝑇→𝑆 . We say that 𝑆 dominates 𝑇 if for any instance 𝐼(𝑇 ) of 𝑇 : 𝑓𝑆→𝑇 ○
𝑓𝑇→𝑆𝐼(𝑇 ) = 𝐼(𝑇 ). If 𝑆 dominates 𝑇 , then the mapping function 𝑓𝑇→𝑆 is injective and total.

Definition 3 (Schema Equivalence). Let there be two schemas 𝑆 and 𝑇 . We say that 𝑆 and 𝑇
are equivalent if and only if 𝑆 dominates 𝑇 and 𝑇 dominates 𝑆. If 𝑆 and 𝑇 are equivalent, then
the mapping function 𝑓𝑆→𝑇 is bijective.

A genesis of schema dominance can be found in [4] where it is defined as a query-equivalence
problem. Later, these definitions were expanded [5] by answering the conjuncture that schema
transformations could preserve primary keys, thus implying the preservation of not only
instances but also relational constraints. Once more, the notions of schema dominance and
equivalence were extended in [6] which defines a correct schema transformation as one which
preserves both constraints and instances, thus differentiating between instance preservation,
constraint preservation and their combination, information capacity preservation.

2.2. Transformation Patterns

Walking in [2] footsteps, we restrict our definition of schema to that of first-order schemas. A
first-order schema (FOS) 𝑆 is a couple (︀A𝑆 ,C𝑆⌋︀ where A𝑆 define the alphabet of predicates used,
therefore databases tables, and C𝑆 define the set of constraints applied over these relations. A
predicate, written 𝑟(𝑎1, 𝑎2, ..., 𝑎𝑛) is composed of a predicate name 𝑟 and a finite set of attribute
names of arity 𝑛. FOS provides a representation of various kinds of constraints, ranging from
functional dependencies to constraints on values. More interestingly, restricting ourselves
to first-order logic semantics allows for simple proofs of FOS equivalence through mutual
entailment via a process automated by theorem solvers, in our case we use Prover9 [7]. Now
that we need a way of writing schema transformation per the semantics of first-order logic, we
move toward a definition of view as a mapping function over both alphabets of two FOS:

Definition 4 (FO Mappings). For two schema 𝑆 and 𝑇 , a First-Order (FO) Mappings 𝑀𝑆→𝑇 is
a set of views 𝑎𝑇 = 𝜑𝑆 where 𝑎𝑇 is each predicate present in 𝑇 and 𝜑𝑆 is an first-order expression
over the alphabet A𝑆 of 𝑆.

For readability, we write those FO Mappings in relational algebra. We can now translate the
previous definitions of schema dominance by interchanging schema transformation with FO
mappings. Thus resulting in the notion of FO Dominance, informally a schema 𝑆 FO Dominate
another schema 𝑇 if 𝑆 dominates 𝑇 via mapping functions 𝑓𝑆→𝑇 and 𝑓𝑇→𝑆 written as FO
Mappings. Using the FOS notation, we can also write FO Dominance as such (C𝑆 ∪𝑀𝑆→𝑇 ) ⊧
(C𝑇 ∪𝑀𝑇→𝑆) This lead to this final definition of Losslessness;

Definition 5 (Losslessness). Let 𝑆 and 𝑇 be two first-order schemas, if 𝑆 FO Dominates 𝑇 and
𝑇 FO Dominates 𝑆, then 𝑆 and 𝑇 are the lossless representations of each other. A result which we
can also write as (C𝑆 ∪𝑀𝑆→𝑇 ) ≡ (C𝑇 ∪𝑀𝑇→𝑆)



Transformation patterns [2] are crafted templates describing a particular schema trans-
formation and the constraints necessary to ensure its losslessness. It can be written as the
triple 𝑇𝑃 = (𝐷𝑃𝑆 ,𝐷𝑃𝑇 ,𝑀) with 𝐷𝑃𝑆 and 𝐷𝑃𝑇 , two database patterns whose purpose is
to represent the state of a database on both sides of a transformation 𝑀 written as mappings
pattern in relational algebra. Database Pattern and Mapping Patterns are both similar
to FOS and relational algebra mappings respectively, with the difference that instead of ma-
nipulating attributes, they manipulate variables. Variables are sets of attributes defined by
the constraints applied to them. For example, a relation 𝑊𝑜𝑟𝑘𝑒𝑟(𝑆𝑆𝑁,𝑛𝑎𝑚𝑒, 𝑑𝑜𝑏) with
a sole primary key constraint on 𝑆𝑆𝑁 fits the following relation pattern 𝑅(𝑃𝐾,𝑅𝐸𝑆𝑇 ).
A database pattern is a couple 𝐷𝑃 = (𝑅,𝐶) composed of a set of relation patterns and
one of constraint patterns. Relations Patterns are defined similarly to FOS predicate
𝑅 ∶ (𝐴𝑇𝑇1,𝐴𝑇𝑇2, ...,𝐴𝑇𝑇𝑛) with 𝑅 standing as the relation name and 𝐴𝑇𝑇1, ...,𝐴𝑇𝑇𝑛 being
variables either present in some constraint patterns or unconstrained and qualified as 𝑅𝐸𝑆𝑇 .
Constraint Patterns forms vary from dependency to dependency, but they all can be written
as 𝜓𝜃(︀𝑅1, ...𝑅𝑛⌋︀(𝐴𝑇𝑇1, ...,𝐴𝑇𝑇𝑚)(𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛). 𝜓 denotes the type of constraints used and
𝜃 precises that type. Notably differentiating between a total inclusion dependency written
𝑖𝑛𝑑=(︀𝑅1,𝑅2⌋︀(𝐴𝑇𝑇1,𝐴𝑇𝑇2) and a 𝑖𝑠𝐴 one 𝑖𝑛𝑑⊆(︀𝑅1,𝑅2⌋︀(𝐴𝑇𝑇1,𝐴𝑇𝑇2). Finally, 𝑐𝑜𝑛𝑑 de-
notes a conjunction of simple conditions over values. Despite being a bit heavy, this formal
notation is necessary as a thorough assignment of each constraint over their associated relation
is mandatory.

2.2.1. Example

We present a short example illustrating the potential of TPs. In Tab. 1 (𝑎) we have a simplified
version of our ongoing example 𝑊𝑜𝑟𝑘𝑒𝑟 ∶ (𝑆𝑆𝑁,𝑝ℎ𝑜𝑛𝑒,𝑚𝑎𝑛𝑎𝑔𝑒𝑟, 𝑐𝑖𝑡𝑦) with only one con-
straint: 𝑚𝑎𝑛𝑎𝑔𝑒𝑟 is nullable. We want to horizontally split it into a second database schema (𝑏)
containing two tables: one where all values of 𝑚𝑎𝑛𝑎𝑔𝑒𝑟 are non-null (𝑊𝑜𝑟𝑘𝑒𝑟_𝑤_𝑀𝑎𝑛𝑎𝑔𝑒𝑟)
and in the other there is no 𝑚𝑎𝑛𝑎𝑔𝑒𝑟 (𝑊𝑜𝑟𝑘𝑒𝑟_𝑤𝑡_𝑀𝑎𝑛𝑎𝑔𝑒𝑟). Because there is little worth
in keeping a column full of null values, we also want to drop 𝑚𝑎𝑛𝑎𝑔𝑒𝑟 from the second table.

Worker
SSN phone manager city
012-3155 133039133 024-5143 Southfield
012-3155 125682994 024-5143 Southfield
024-5143 181332948 𝑁𝑈𝐿𝐿 Pearland
031-7471 131297308 040-5166 Pearland
040-5166 156422537 𝑁𝑈𝐿𝐿 Southfield
040-5166 187797355 𝑁𝑈𝐿𝐿 Southfield

(a) Source Schema

Worker_w_Manager
SSN phone manager city
012-3155 133039133 024-5143 Southfield
012-3155 125682994 024-5143 Southfield
031-7471 131297308 040-5166 Pearland
Worker_wt_Manager
SSN phone city
024-5143 181332948 Pearland
040-5166 156422537 Southfield
040-5166 187797355 Southfield

(b) After Horizontal Decomposition

Table 1
Example of a Database Horizontal Decomposition



First, we need a way to represent (𝑎) in our formalism, and it starts with expressing that
𝑚𝑎𝑛𝑎𝑔𝑒𝑟 is nullable. A condition over a set of attributes is commonly written as 𝜎𝑐𝑜𝑛𝑑𝑅 ≠ ∅ in
a TP to denote that in the relation 𝑅, tuples satisfying 𝑐𝑜𝑛𝑑 could exists. This is called a guard
constraint. They can also express conditions that either always hold or never do by writing
𝜎𝑐𝑜𝑛𝑑𝑅 = 𝑅 and 𝜎𝑐𝑜𝑛𝑑𝑅 = ∅ respectively. In our example, the nullable attribute manager
would be written as such 𝜎𝑚𝑎𝑛𝑎𝑔𝑒𝑟=NULL𝑊𝑜𝑟𝑘𝑒𝑟 ≠ ∅. Put as a database pattern, we have a
constraint pattern 𝜎𝐴𝑇𝑇=NULL𝑅 ≠ ∅ applying over a set of attributes 𝐴𝑇𝑇 , coalescing with
any other number of unrelated attributes captured as the 𝑅𝐸𝑆𝑇 into the relation pattern
𝑅 ∶ (𝐴𝑇𝑇,𝑅𝐸𝑆𝑇 ). This is the first half of a transformation pattern, the part onto which
we can match our relation 𝑊𝑜𝑟𝑘𝑒𝑟. The second part denotes instead the two tables where
𝑚𝑎𝑛𝑎𝑔𝑒𝑟 is either always null or non-null. Once again, in our formalism, these two conditions
are expressed as 𝜎𝐴𝑇𝑇=NULL𝑅1 = ∅ and 𝜎𝐴𝑇𝑇=NULL𝑅2 = 𝑅2 for 𝑐𝑜𝑛𝑑 is never satisfied and
𝑐𝑜𝑛𝑑 is always satisfied respectively. From these conditions, we can deduce two relation
patterns 𝑅1 ∶ (𝐴𝑇𝑇,𝑅𝐸𝑆𝑇 ) and 𝑅2 ∶ (𝑅𝐸𝑆𝑇 ). Finally, its mapping patterns is two sets of
FO-Mappings 𝑅1 = 𝜎𝐴𝑇𝑇≠NULL(𝑅), 𝑅2 = Π𝑅𝐸𝑆𝑇 (𝜎𝐴𝑇𝑇=NULL(𝑅)) and 𝑅 = 𝑅1⊍𝑅2. These
mappings uses standards relational algebra notation plus the outer union operation denoted
by ⊍. The full TP is shown in Fig. 2 (𝑎) where an additional constraint 𝑐𝑜𝑛𝑠𝑡 is used to
capture residual constraints, a notion developed in the next section. Applying this TP over
our 𝑊𝑜𝑟𝑘𝑒𝑟 relation requires to match the variables in the former with the attributes in the
latter. To do so, 𝑊𝑜𝑟𝑘𝑒𝑟 has to be rewritten as an FOS so that its semantics can match those
of any TPs. Here, this match is trivial and it is quickly deduced that 𝐴𝑇𝑇 = {𝑚𝑎𝑛𝑎𝑔𝑒𝑟}
and 𝑅𝐸𝑆𝑇 = {𝑆𝑆𝑁,𝑝ℎ𝑜𝑛𝑒, 𝑐𝑖𝑡𝑦}. We call a transformation pattern, a database pattern or a
mapping pattern instantiated once it has been matched with real values from a database schema.

(a) TP for Horizontal Decomposition (b) TP for Vertical Decomposition of a MVD

Figure 2: Example of a Transformation Patterns

The decomposition resulting from a TP application can be expressed as a set of views. This
is crucial when working with legacy databases or in cases where it’s neither practical nor
desirable to actively modify the source database. And because the transformations are lossless
and thus preserve information capacity, it is possible to update the source database from any of
its equivalent views [8]. As they stand, TPs are useful tools for DBRE to database engineers as
guidance for a normalization process, as well as an eventual translation into a conceptual model.
TPs notably offer a way to resolve the issue of identity resolution in database schema. The crux
is that in a traditional relational database, there is no way to identify an object with the same



precision a conceptual model would allow. The closest is primary keys, but there are many
cases in which it gets complicated. Arises the 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑀𝑜𝑑𝑒𝑙 (ARM) [9], a model
which explicitly gives an Object Identifier to relational schemas. An extensive catalogue of TP
turning databases into their ARM counterparts was presented in [2]. However, they required
the database pattern to already be in a fully decomposed form, a process never explored before.

3. Transformation Pattern Application

One thing missing for the application of TPs is a proper understanding of the 𝑐𝑜𝑛𝑠𝑡 constraint
and more generally of the process of constraint propagation. If we added𝑚𝑣𝑑(︀𝑅⌋︀(𝑆𝑆𝑁,𝑝ℎ𝑜𝑛𝑒)
and 𝑝𝑘(︀𝑅⌋︀(𝑆𝑆𝑁) to the relation 𝑊𝑜𝑟𝑘𝑒𝑟 used in last example, then they would be considered
as residual constraints in the application of the TP 𝑎) in Fig. 2 and assigned to both𝑅𝐸𝑆𝑇 𝑘 and
𝑅𝐸𝑆𝑇 𝑙 as constraints over 𝑅𝐸𝑆𝑇 . Here, 𝑘 and 𝑙 separate the residual constraints applied over
all variables satisfying 𝑐𝑜𝑛𝑑 and those that do not, respectively. Such basic propagation seems
straightforward in our example but as we apply TPs over databases containing several tables,
all linked via foreign keys, then we need to have a proper propagation methodology. One that
has two main objectives: -matching the TP and the database schema and - merging the newly
decomposed schema with the rest of the old one. In Fig. 3 we present the main components
of a successful pattern application, this time starting with a vertical decomposition following
𝑆𝑆𝑁 ↠ 𝑝ℎ𝑜𝑛𝑒 (see Fig. 2 (𝑏)) and showing how this affect the attribute 𝑚𝑎𝑛𝑎𝑔𝑒𝑟.

Figure 3: Showcase of a TP for multivalued dependencies decomposition (see Fig. 2 (𝑏)) applied over a
schema example. 𝑆𝑅𝐸𝑆𝑇 is another FOS corresponding to 𝑆 minus the constraint matched by Σ𝑆

Here, Σ𝑆 denote the mapping function between the source database 𝑆 and the desired TP,
matching with𝐷𝑃𝑆 . The mapping is trivial when only one constraint needs to be matched. Once
the TP is applied and we have a decomposition in 𝐷𝑃𝑆 , we need to merge this new database
schema with the previous one, propagating all constraints from the latter in the process. We
call the constraints left behind after the application of a TP leftover constraints. In Fig. 3, the
leftover constraint is the guard constraint 𝜎𝑚𝑎𝑛𝑎𝑔𝑒𝑟=NULL𝑊𝑜𝑟𝑘𝑒𝑟 ≠ ∅. The propagation of
those leftover constraints, and of their associated tables is done via a set of rules defined in the
merging function Σ𝑇 . Later on, we will introduce further rules when dealing with overlapping
guard constraints, a then-defined notion, but for now, the three most important rules are:



• Basic Propagation: If a leftover constraint applies over a set of attributes found again in
𝐷𝑃𝑇 , then it is propagated fully.

• Inclusion Update: Following a vertical decomposition, any inclusion dependencies over
a set of attributes captured by the TP will get updated by changing the relations it applies
over (i.e., one of the newly generated relations).

• Inclusion Split: Following a horizontal decomposition, a previously total inclusion
dependency (𝑖𝑛𝑑=) will split into two subset dependencies (𝑖𝑛𝑑⊆) with the corresponding
new relations names.

Now that we have an intuitive base to process multiple TPs it is time to move on to our
proposed decomposition methodology.

4. Decomposition Process

Stemming out DBRE, TPs theory takes roots deeper inside the field of Database Normalization
[10] centering around the question of data quality through the prism of structural redundancy.
One of its solutions is the process of data decomposition in which a sequence of operations
is applied over a database schema to remove redundancies and null values improving data
consistency. Normal forms (NF) is the metric used to define the set of desirable properties a
database satisfies. Ranging from the 1NF which checks for the atomization of each cell to the
5NF satisfied if all non-trivial join dependencies are only applied over superkeys. So far, most
of the normalization approaches have taken the form of an algorithm [11] [12] focalizing on
properties of functional dependencies and consequently rarely going beyond the Boyce-Codd
NF. We believe that an approach based on lossless TPs can not only work just as well but also
go beyond and reach the canonical 6NF, taking care of null values in the process. In this section,
we will present several types of TPs along with a short methodology on how to apply them.
Focusing only on a single database schema under the Universal Relation Assumption (URA), we
assume that it is at least in 1NF and that its set of constraints is acyclic. We naturally expect the
whole decomposition process to be lossless by definition, but another property we are aiming
for is to attain some kind of determinism. In the last section, we unfolded a twice decomposed
database schema, first vertically then horizontally. Of course, another sequence would have
given another result. To say which final output is preferable might sound arbitrary, but we
claim that the former, the one ending with fewer tables, is actually preferable and more in line
with a restructuring of knowledge made for conceptual models.

4.1. Inclusion Dependency Extraction

We preemptively create a singleton table based on the right-hand side of an inclusion depen-
dency, then change that constraint to target the newly generated table. In the database schema 𝑆
made of 𝑊𝑜𝑟𝑘𝑒𝑟 ∶ (𝑆𝑆𝑁,𝑝ℎ𝑜𝑛𝑒,𝑚𝑎𝑛𝑎𝑔𝑒𝑟) and 𝑖𝑛𝑑⊆(︀𝑊𝑜𝑟𝑘𝑒𝑟,𝑊𝑜𝑟𝑘𝑒𝑟⌋︀(𝑚𝑎𝑛𝑎𝑔𝑒𝑟,𝑆𝑆𝑁)
decomposing into 𝑆′ makes 𝑊𝑜𝑟𝑘𝑒𝑟 ∶ (𝑆𝑆𝑁,𝑝ℎ𝑜𝑛𝑒,𝑚𝑎𝑛𝑎𝑔𝑒𝑟) 𝑅𝑆𝑆𝑁 ∶ (𝑆𝑆𝑁) and
𝑖𝑛𝑑⊆(︀𝑊𝑜𝑟𝑘𝑒𝑟,𝑅𝑆𝑆𝑁 ⌋︀(𝑚𝑎𝑛𝑎𝑔𝑒𝑟,𝑆𝑆𝑁). In the cases of transitive inclusion dependencies
or sets of inclusion dependencies sharing the same right-hand side, additional patterns are
necessary, some illustrated in Figure. 4.



Figure 4: Instantiated Inclusion Dependency Extraction Pattern. Full line: regular case ; Dot line:
transitive case

4.2. Vertical Decomposition

Vertical Decomposition (VD) is one of the core operations along with horizontal decompositions.
Its principle is to project into a new table all attributes present in the join constraint and to drop
its right-hand-side attributes from the source relation. This applies to either a functional depen-
dency or a multivalued dependency and both have their kind of TPs, see Fig. 2 (𝑏) for the latter.
The TP defining the vertical decomposition of a relation𝑅 ∶ (𝑅𝐸𝑆𝑇,𝐿𝐻𝑆,𝑅𝐻𝑆), with regards
to a join dependency we write as 𝜓(︀𝑅⌋︀(𝐿𝐻𝑆,𝑅𝐻𝑆), always generate 𝑅1 ∶ (𝑅𝐸𝑆𝑇,𝐿𝐻𝑆),
𝑅2 ∶ (𝐿𝐻𝑆,𝑅𝐻𝑆), a full inclusion between the tables 𝑖𝑛𝑑=(︀𝑅1,𝑅2⌋︀(𝐿𝐻𝑆,𝐿𝐻𝑆) and ends
with this constraint 𝑝𝑘(︀𝑅⌋︀(𝐿𝐻𝑆) or 𝑝𝑘(︀𝑅⌋︀(𝐿𝐻𝑆,𝑅𝐻𝑆) for functional dependency or multi-
valued dependency, respectively, see Fig. 5. This figure also depicts the transformation done to
our ongoing example.

Figure 5: Instantiated Vertical Decomposition Pattern

In this scenario, no sequencing is required and both decomposition can be done independently
from the other. Independent in this context means that a pair of constraints 𝑐1, 𝑐2 are in none
of the three following combinations: shared RHS, transitive and critical.

Decomposing a set of overlapping constraints 𝑐1, 𝑐2, ..., 𝑐𝑛 of the form 𝑐𝑖 =
𝜓(︀𝑅⌋︀(𝐿𝐻𝑆𝑖,𝑅𝐻𝑆𝑖) such that 𝑅𝐻𝑆1 ∧ 𝑅𝐻𝑆2 ∧ ... ∧ 𝑅𝐻𝑆𝑛 ≠ ∅ require a TP which pre-
serve the greatest common subset of attributes in the right-hand side at each step. To illustrate,
the greatest common denominator for the set 𝑐1 = 𝑋 → 𝑇 , 𝑐2 = 𝑌 → 𝑇𝑈𝑉 , 𝑐3 = 𝑍 ↠ 𝑇𝑉
in the relation 𝑅 ∶ (𝑋,𝑌,𝑍,𝑇,𝑈,𝑉 ) where we choose to start by projecting 𝑐1 is 𝑇 , whereas
for 𝑐2 it would be 𝑇𝑉 . The decomposed schema for both scenarios are 𝑅1 ∶ (𝑋,𝑌,𝑍,𝑇,𝑈,𝑉 ),
𝑅2 ∶ (𝑋,𝑇 ) and 𝑅′1 ∶ (𝑋,𝑌,𝑍,𝑇, 𝑉 ), 𝑅′2 ∶ (𝑌,𝑇,𝑈,𝑉 ) respectively.



Unlike the previous overlap, transitive overlaps do not require any new TPs. What they
require however is an ordering of the decompositions. It is quite clear how, without any ordering,
we lose information contained in 𝑅 ∶ (𝑋,𝑌,𝑍), 𝑐1 =𝑋 → 𝑌 , 𝑐2 = 𝑌 → 𝑍 by decomposing 𝑐1
first ending on 𝑅1 ∶ (𝑋,𝑍) 𝑅2 ∶ (𝑋,𝑌 ) thus losing 𝑐2. The ordering we advocate is a relatively
simple one in which, borrowing some tree terminology, all decompositions should start from
the leaves then upward.

The last cases of overlap we have to detect are the critical ones. We borrow our definition of
critical constraints from [13], denoting a functional dependency 𝑋 → 𝐴 is critical if and only if
there exists in the closure of the set of constraints 𝑌 → 𝐵 such that 𝑌 𝐵 ⊆ 𝑋𝐴 and 𝑋𝐴 ⇑⊆ 𝑌
(the closure of an attribute is written �̄�). A common example is the pair 𝑋𝑌 → 𝑍 , 𝑍 → 𝑋 .
This is where our approach clashes with the literature on database normalization as we refuse
to stop here and to lose information, something usually required to reach the BCNF [14]. What
we propose to solve an overlap akin to 𝑋𝑌 → 𝑍 , 𝑍 →𝑋 is to simply separate the problematic
constraints into their own table, thus generating for any 𝑅 ∶ (𝑋,𝑌,𝑍,𝑅𝐸𝑆𝑇 ) the relations
𝑅1 ∶ (𝑋,𝑌,𝑍) and 𝑅2 ∶ (𝑋,𝑍). Because we do not pretend to present an exhaustive list of all
possible types of constraint overlaps over join dependencies, we need a backup plan. That is, a
solution which always guarantees both determinism and losslessness when used at the expense
of redundancy. And the decomposition used to solve critical overlaps is that solution. We still
consider this part of the methodology automatic under the assumption that we have a broader
definition of overlaps. We now present a priority scale to follow whenever several types of
overlaps, well, overlap: In order of priority, we start with dealing with critical constraints, then
transitive ones and then ones that share an RHS.

4.3. Horizontal Decomposition

Going further than most database normalization methodologies we propose the use of TPs,
such as the one presented in Fig. 2, to express Horizontal Decomposition (HD) with for intent
to remove null values from a database schema. We already introduced guard constraint in our
example section and now expend on its condition 𝑐𝑜𝑛𝑑. That latter is a conjunction of atomic
conditions ⋀𝑛

𝑖 (𝐴𝑇𝑇𝑖 ≠ NULL). As long as all guard constraints are independent of each other,
the decomposition methodology is trivial and deterministic. To verify if this property also
extends to overlapping guard constraints, we first need to define them.

Definition 6 (Guard Overlaps). In a relation 𝑅 ∶ (𝐴𝑇𝑇𝑛) onto which are applied two con-
straints 𝜎𝐴𝑇𝑇𝑘=NULL𝑅 ≠ ∅ and 𝜎𝐴𝑇𝑇𝑙=NULL𝑅 ≠ ∅ where, 𝐴𝑇𝑇𝑘,𝐴𝑇𝑇𝑙 ⊆ 𝐴𝑇𝑇𝑛. We distinguish
two types of overlap:

• Containment: 𝐴𝑇𝑇𝑘 ⊂ 𝐴𝑇𝑇𝑙
• Non-Distinct: 𝐴𝑇𝑇𝑘 ∧𝐴𝑇𝑇𝑙 ≠ ∅, 𝐴𝑇𝑇𝑘 ⇑⊂ 𝐴𝑇𝑇𝑙 and 𝐴𝑇𝑇𝑙 ⇑⊂ 𝐴𝑇𝑇𝑘

We illustrate these two cases with an example: there be𝑅 ∶ (𝑋,𝑌,𝑍,𝑇 ) and three overlapping
guard constraints 𝑐1 = 𝜎𝑋𝑌 =NULL𝑅 ≠ ∅, 𝑐2 = 𝜎𝑋=NULL𝑅 ≠ ∅ and 𝑐3 = 𝜎𝑌 𝑇=NULL𝑅 ≠ ∅. Both
scenarios are shown with the pairs {𝑐1, 𝑐2} and {𝑐1, 𝑐3} clearly demonstrating the containment



and non-distinct cases respectively. Focusing on the containment case, starting with an HD on
𝑐1 will result in two relations 𝑅1 ∶ (𝑋,𝑌,𝑍,𝑇 ) and 𝑅2 ∶ (𝑍,𝑇 ), one where no tuples satisfy
𝑋𝑌 = NULL and one where all does. The constraint propagation formula we presented in
Section 3 dictates that 𝑐2 and 𝑐3 would hold in both relations which is impossible for 𝑐2. This is
why we need two additional rules:

• Guard Loss: 𝜎𝑐𝑜𝑛𝑑1𝑅 ≠ ∅ do not get propagated in𝑅′ if𝑅′ contains one of the following
constraints 𝜎𝑐𝑜𝑛𝑑2𝑅 = ∅, 𝜎𝑐𝑜𝑛𝑑2𝑅 = 𝑅 for 𝑐𝑜𝑛𝑑2 ⊂ 𝑐𝑜𝑛𝑑1 and 𝑐𝑜𝑛𝑑1 ⊂ 𝑐𝑜𝑛𝑑2 respectively.

• Guard Intuition: 𝜎𝑐𝑜𝑛𝑑1𝑅 ≠ ∅ get propagated in 𝑅′ even if 𝜎𝑐𝑜𝑛𝑑2𝑅 = 𝑅 holds, with
𝑐𝑜𝑛𝑑1 ⇑⊂ 𝑐𝑜𝑛𝑑2 and 𝑐𝑜𝑛𝑑1 ∧ 𝑐𝑜𝑛𝑑2 ≠ ∅.

The intuition behind the first rule is that a constraint can only get propagated if it is not
directly contradicted by another. What the other rules allow is for nullable conditions to hold
in a table where a subset of the attribute in said condition is non-existent. In our example, this
permits 𝑐3 to be propagated to 𝑅2 even though this table is missing the 𝑌 column. Adding
these rules to the one previously described leads to the following result:

Lemma 1. All sequences of horizontal decompositions are lossless and their schema outputs are
equivalents.

Proof 1. We want to show that for any binary relation HD(𝑇𝑃1, 𝑇𝑃2) representing the sequential
application of HD TPs 𝑇𝑃1 → 𝑇𝑃2, then HD is symmetric. Losslessness is already guaranteed
by the TP formalism, so only the deterministic aspect is touched. This property is trivial when it
comes to independent guard constraints so we test it on both kinds of overlaps. Using the same
notation used in the definition, in the containment case starting with a decomposition on the
subsumed constraints gives 𝑅1 ∶ (𝐴𝑇𝑇𝑛) and 𝑅2 ∶ (𝐴𝑇𝑇𝑛/𝐴𝑇𝑇𝑘). The second decomposition
here only affects 𝑅2 because of the guard loss property, giving a final decomposition of 𝑅1, 𝑅2

and 𝑅3 ∶ (𝐴𝑇𝑇𝑛/𝐴𝑇𝑇𝑙). Starting from 𝑇𝑃2 would instead give us first 𝑅′1 ∶ (𝐴𝑇𝑇𝑛) and
𝑅′2 ∶ (𝐴𝑇𝑇𝑛/𝐴𝑇𝑇𝑙) and 𝑇𝑃1 here only affect 𝑅′1 because of the guard loss property giving
for final decomposition 𝑅′1, 𝑅′2 and 𝑅′3 ∶ (𝐴𝑇𝑇𝑛/𝐴𝑇𝑇𝑘). Both decompositions are the same,
thus demonstrating the symmetric property of HD in this scenario. A similar logic is applied
for non-distinct guard overlaps and the same result, that is 𝑅1 ∶ (𝐴𝑇𝑇𝑛), 𝑅2 ∶ (𝐴𝑇𝑇𝑛/𝐴𝑇𝑇𝑘),
𝑅3 ∶ (𝐴𝑇𝑇𝑛/𝐴𝑇𝑇𝑙), 𝑅4 ∶ (𝐴𝑇𝑇𝑛/(𝐴𝑇𝑇𝑘⋃𝐴𝑇𝑇𝑙)) is found in all sequences. ◻

Because all possible scenarios of overlap over guard constraints can be represented, our
methodology for their decomposition is complete. We can mention a specific case where
one or more overlapping guard constraints exist and the union of their set of attributes
𝐴𝑇𝑇1⋃ ...⋃𝐴𝑇𝑇𝑚 = 𝐴𝑇𝑇𝑛 is the size of the attribute set 𝐴𝑇𝑇𝑛 in 𝑅. In this case, the
relation satisfying all guard constraints would just be an empty table 𝑅∅ with 𝑚 constraints
of the form 𝜎𝐴𝑇𝑇𝑖=NULL𝑅∅ = 𝑅∅. This is unnecessary and can be resolved by adding a last
propagation rule:

• Guard Total: 𝜎𝑐𝑜𝑛𝑑1𝑅 ≠ ∅ with 𝑐𝑜𝑛𝑑1 over 𝐴𝑇𝑇𝑘 gets propagated as 𝜎𝑐𝑜𝑛𝑑1𝑅 = ∅ in
𝑅′ if 𝐴𝑇𝑇𝑛 ⊆ 𝐴𝑇𝑇𝑘.



4.4. Conditional Vertical Decomposition

A Conditional Function Dependency, defined in [15], is, within our formalism, a de-
pendency 𝜓(︀𝑅⌋︀(𝐴𝑇𝑇𝑖)(𝜎𝑐𝑜𝑛𝑑) of type 𝜓 which only gets applied over tuples that sat-
isfy 𝜎𝑐𝑜𝑛𝑑. We return to our ongoing example, shorten this time as 𝑊𝑜𝑟𝑘𝑒𝑟 ∶
(𝑆𝑆𝑁,𝑚𝑎𝑛𝑎𝑔𝑒𝑟, 𝑡𝑖𝑡𝑙𝑒) onto which is applied a condition functional dependency 𝑐1 =
𝑓𝑑(︀𝑊𝑜𝑟𝑘𝑒𝑟⌋︀(𝑚𝑎𝑛𝑎𝑔𝑒𝑟, 𝑡𝑖𝑡𝑙𝑒)(𝑚𝑎𝑛𝑎𝑔𝑒𝑟, 𝑡𝑖𝑡𝑙𝑒 ≠ NULL). The functional dependency
𝑚𝑎𝑛𝑎𝑔𝑒𝑟 → 𝑡𝑖𝑡𝑙𝑒 holds only whenever 𝑚𝑎𝑛𝑎𝑔𝑒𝑟 and 𝑡𝑖𝑡𝑙𝑒 are both non-null. If only one
CVD is applied we refer to the Fig. 6 instantiated with our recurring example. Otherwise, for
any set of conditional dependencies, overlapping or not, we always start with all HDs followed
by all VDs, respecting both methodologies for overlap along the way.

Figure 6: Conditional Vertical Decomposition Pattern

The final order is: IDE → VD → CVD → HD. What results is a pair of mapping patterns
between an FOS schema and its equivalent 4NF decomposition, the latter shown in Fig. 7.

Figure 7: 4NF Decomposition of the Ongoing Example. Inclusion dependencies are drawn merged for
clarity but they are all distinct

It is uncertain if a potential decomposition into 5NF and higher can be deterministic, meaning
that any further process is likely to be semi-automatic. The end goal being a fully decomposed
schema in 6NF which can easily be translated into a conceptual modeling language. Such
process is prone to the arbitrary as is the nature of conceptual models. To illustrate, we argue
for a new table 𝑃𝑒𝑟𝑠𝑜𝑛_𝐶𝑖𝑡𝑦 ∶ (𝑆𝑆𝑁, 𝑐𝑖𝑡𝑦) to be added to our schema as it reflects better the
relation between 𝑃𝑒𝑟𝑠𝑜𝑛 and 𝐶𝑖𝑡𝑦 and for the drop of 𝐶𝑖𝑡𝑦 in the workers tables. Taking
inspiration from conceptual modeling operations, such as attribute generalization in this case,
to create new TPs is something I already encouraged in [16]. Another challenges is to properly
draw out concepts from our database schema, an action fitting for TPs turning database schema
into their ARM equivalents.



5. Related Work

With regards to the rest of the literature on DBRE [17], ignoring the aggregation of knowledge
from different sources and the type of output, the closest method to ours would be [18]. This
approach also emphasizes the preservation of information, but we believe that shifting to an
ontological formalism limits the kind of operations we can apply over the source database,
notably direct updates from any point in the framework. Several papers presented their own
interpretation to Hull’s information preservation criterion [3]: [8] brings up 𝑆𝐼𝐺, a formal-
ism which represents via edges the relations between attributes as functions - [19] propose
conflictfreeness as a restriction for the integration of two schemas - [20] put the focus on the
transformation itself and how to embody them with instance preserving properties and - [21]
which encapsulates how information preservation and bijective functions are related.

Throughout the literature provided so far, one common scenario outside of DBRE in which
information preservation is desirable is in data integration [22]. Because most database trans-
formations are written as mappings, ours included, it is quite intuitive to link them to the
mappings used in data integration following either Global as View (GAV) or Local as View
(LAV) paradigms. [23] notably proposed a framework based on sequences of simple operations
to represent more complex transformations in a data integration context. Delving deeper into
information preservation with regard to data integration can lead us to consider methodologies
used in data exchange [24]. While the main focus of data exchange is the generation of a proper
database instance from constraints, the problem of schema exchange introduced in [25] is closer
to our ambitions. Mostly with regards to the grouping of similar schemas into templates making
an automatic schema transformation possible.

6. Conclusion and Discussions

We presented a case study for the application of the transformation pattern formalism. Showing
first how it can be applied to a database schema before asserting that it can serve as the base
of a database decomposition process. Any database schema, once translated into FOS, can
then be decomposed following a sequence of lossless transformations embodied by the TPs.
What result is a pair of mapping patterns between the source database and its equivalent 4NF
decomposition. The presented methodology places itself in the context of the SQL Semantic
Transducer [26] in which the conceptual model of a database schema can act as its materialized
view. Meaning that, once the jump from 6NF to any conceptual modeling language is done,
queries and updates applied to the model would get propagated back to the source database. And
so would the reverse, a property only guarantee because losslessness was preserved through
the entire process. Upcoming works will therefore focus on transitions into both 6NF then to
a conceptual model, likely going through an ARM schema in the process. Going further, we
consider frameworks ensuring losslessness appealing to other database related fields such as
data integration and data preparation. Both handle transformations where information loss is
unavoidable, thus requiring both a definition of non-lossless, i.e. lossy, TPs and ways to enforce
losslessness still, perhaps taking inspiration from the complementary view problem.
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