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Abstract
The digital transformation of health processes and the resulting availability of vast amounts of health-
related data about patients offer significant promise to advance multiple medical research projects and
enhance both the public and private healthcare systems. Exploiting the full potential of this vision requires
a unified representation of different autonomous data sources to facilitate detailed data analysis capacity.
To this end, OMOP CDM has emerged as the de facto standard for organizing healthcare data from diverse
sources. However, collecting and processing sensitive data about individuals leads to consideration of
privacy requirements and confidentiality concerns. Privacy-Preserving Data Integration (PPDI) is the
process of establishing a unified view of personal data across multiple data sources while protecting
the privacy of individuals represented in the underlying data. This discussion paper offers a concise
overview of the research field related to PPDI, highlighting associated challenges and opportunities
within the healthcare domain. In particular, it delves into the specific research challenges encountered
by the PPDI process alongside the utilization of OMOP-CDM, with particular attention directed towards
the Schema Alignment phase and the classification of data based on identifiability and privacy.

1. Introduction

The digitization of legal, administrative, and healthcare processes, among many others, has gen-
erated vast amounts of data describing people and their behavior. The resulting person-related
Big Data presents substantial intrinsic worth and holds considerable potential to feed multiple
research areas with the aim of enhancing the human condition. Achieving this vision requires an
efficient Data Integration (DI) process, enabling users to access a unified and consistent view of
diverse data sources. However, the integration of personal data is limited by ethical and privacy
concerns. The European General Data Protection Regulation (GDPR) bases the classification of
data content on the concepts of identifiability and privacy:

• Personally Identifiable Information (PII) denotes attributes that hold the potential to identify
an individual. These include direct PII (e.g. identification number) and indirect PII or
Quasi-IDentifiers (QID) that can identify a specific individual when combined (e.g. name,
surname, date of birth, and address).

• Sensitive Personal Information (SPI) denotes confidential personal attributes to be protected
from privacy disclosure (e.g. medical history or criminal records).
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• Non-Sensitive Data: denotes attributes that contain neither identifying information nor
information which deserves protection (e.g. metadata).

Privacy-Preserving Data Integration (PPDI) [1] is the process aimed at providing a unified and
accurate representation of personal information across multiple heterogeneous data sources
while preventing privacy disclosure of individuals represented in the underlying data.

The GDPR leads toward the adoption of specific techniques [2] to prevent internal parties
involved in the PPDI process and external adversaries from the possibility of identifying a
specific individual, called Re-identification.

Our research in the field of PPDI has encompassed concrete application projects, such as the
design and development of a Proof of Concept (PoC) for the Criminal Data Warehouse project,
establishing a PPDI process across Italian legal data sources to assess the recidivism phenomena
[3]. However, we intended from the design stage to accommodate different application scenarios
and not tailor solutions to the justice domain. To this end, our collaboration with the Health
Departments of the Emilia Romagna region have underscored the challenges inherent in privacy-
preserving processing of health-related data [4, 5] , emphasizing the necessity for a standard and
comprehensive PPDI framework. Pursuing this line, the European Health Data Evidence Network
(EHDEN) aims to promote the adoption of the Observational Medical Outcomes Partnership
Common Data Model (OMOP-CDM) in Europe. In furtherance of this objective, our research
group is participating in the European ARISTOTELES project, which includes a research strand
focused on the PPDI process adherent to OMOP-CDM standards.

This discussion paper aims to delineate our current and future research efforts directed toward
the creation of a novel and comprehensive PPDI framework within the EHDEN ecosystem.

• Section 2 provides a concise overview of the PPDI process devised for our framework (a
more in-depth discussion was addressed in [6, 5]).

• In Section 3 we present the OMOP-CDM standard and discuss the major advantages
and drawbacks, particularly concerning privacy issues that have not been adequately
addressed in the literature.

• Section 4 proposes a primary contribution to overcome some of these challenges, exploit-
ing a semantic-based tool to classify schema elements in QID and SPI, facilitating the
schema alignment between local sources and OMOP-CDM and allowing to maximize the
trade-off between privacy and utility.

• Finally, in Section 5, we conclude and provide insights for future directions and develop-
ments.

2. COMPREHENSIVE PPDI FRAMEWORK

In this section, we outline the methodology and architectural approach devised to support the
creation of a novel and comprehensive PPDI framework. The idea behind the PPDI framework is
an incremental extension of the MOMIS (Mediator envirOnment for Multiple Information Sources)
[7] Data Integration system toward a Trusted Third-Party (TTP) [8] microservice architecture,
including specific software modules to realize PPDI in compliance with the GDPR. As shown in
Fig. 1, the TTP will serve as the PPDI Domain to provide the Consumer Domain with a unified



and privacy-preserving representation of the different autonomous data sources within the
Source Domain.

Figure 1: Schema of the PPDI Architecture.

2.1. Privacy-Preserving Data Integration process

The PPDI process usually involves three steps:

• Schema Alignment resolves inconsistencies at the schema level by finding the semantic
correspondences among the schema of the Local Sources and producing an integrated
Global Schema. Furthermore, within the privacy context, this step involves the classifi-
cation of data based on identifiability and privacy. The sets of PII and SPI are typically
considered disjointed in a PPDI process and undergo distinct procedures.

• Privacy-Preserving Record Linkage (PPRL) resolves inconsistencies at the tuple level
by identifying records about the same individuals from different sources. PPRL can be
viewed as a classification problem that labels pairs of records across different sources
like a match (i.e. two records refer to the same individual) or a non-match. To this end,
PII undergoes specific pseudonymization techniques to facilitate record linkage while
preventing re-identification.
Pseudonymization [9] is the process of replacing PII with a pseudonym (or encrypted code),
to allow further processing.

• Data Fusion resolves inconsistencies at the value level by fusing duplicate entries from
different sources and creating a unique record for each individual. Data Fusion is aimed
at increasing the conciseness and consistency of data that are made available to users
and applications to facilitate data analysis. To this end, the outcome of PPDI is in plain
format and therefore includes only the SPI as PII and QID possess the potential to enable
re-identification.



2.2. Privacy and usability trade-off

In real-world privacy scenarios, with any information disclosure, there is always some privacy
loss, and with any masking (or pseudonymization) technique, there is always some information
loss. An important issue of privacy-preserving approaches is to ensure the optimal trade-
off between measures to maximize the utility of data to be disclosed (which is equivalent to
minimizing information loss) and to maximize privacy protection. For instance, one of the key
dimensions for assessing the usefulness of data sharing is de-duplication (aka record linkage).
On the other hand, the evaluation of privacy is one of the biggest impediments in a PPDI
process as it represents the resistance to re-identification attacks and depends on aspects that
are complex to quantify, such as the nature of the data involved and the publicly available
information [10]. Some methods have been proposed to pursue this objective [11], nevertheless,
they tend to concentrate only on PPRL. For these reasons, the determination of a set of standard
measures for the empirical evaluation of the trade-off between privacy and usability of data
is still a developing area of the literature that necessitates careful consideration. From our
perspective, PPDI needs to be collectively approached, especially in addressing privacy.

This discussion paper delves into the specific research challenges encountered by the PPDI
process alongside the utilization of OMOP-CDM, with particular attention directed toward the
privacy and usability trade-off.

3. OMOP Common Data Model

The advent of Big Health Data (BHD) has led to an upsurge in the need for methods to effectively
manage their information content and offer a unified view to enable efficient analysis. The
intrinsic aspects of BHD require careful consideration and impose strict demands on the data
resulting from the PPDI process concerning completeness, consistency, interoperability, and
scalability over time.

The Observational Health Data Sciences and Informatics1 (OHDSI) program proposed the
OMOP-CDM to standardize the structure and content of health data and to enable efficient
analyses that can produce reliable evidence. A central component of the OMOP-CDM is the
OMOP standardized vocabularies which allow organization and standardization of medical
terms. OMOP-CDM plays a crucial role in addressing the challenges of data heterogeneity and
interoperability among disparate healthcare systems by facilitating consistency, compatibility,
and efficiency of the integration process. Moreover, OMOP-CDM addresses scalability challenges
by accommodating large datasets and allowing for the independent addition of new sources,
thereby empowering the management of vast amounts of health data with high performance
and reliability. For these reasons, EHDEN launched a program aimed to promote the adoption
of OMOP/OHDSI in Europe, addressing the challenges in generating insights and evidence
from real-world clinical data on a large scale. The project’s goal is to assist patients, clinicians,
regulators, governments, and the industry in understanding well-being, disease, treatments, and
outcomes, as well as new therapeutics and novel devices. Due to this initiative, the OMOP-CDM
has been widely adopted across various healthcare systems, research institutions, and data

1www.ohdsi.org



repositories worldwide, and now constitutes a vast repository of health data for observational
studies and evidence-based research. The literature concerning the procedure to harmonize
data with respect to OMOP-CDM encompasses a diverse range of data types, including but not
limited to electronic health records (EHRs) [12], claims datasets [13], registries [14], and clinical
trial [15]. Within such literature, the mapping process to ensure standardized representation
and compatibility with OMOP CDM can be summarized in the following three phases:

1. Vocabulary mapping: is the process of mapping elements from a local data source (es-
pecially medical terms) to an appropriate standard concept defined within the OMOP
vocabularies.

2. Data tables mapping: is the process of aligning the structure and semantics of the local
data source with the standardized tables and fields defined in the OMOP-CDM.

3. Extract-Transform-Load (ETL): is the process that involves the extraction of local data
and their transformation based on the Data tables mapping rules defined in the previous
steps. Finally, local data are loaded into the OMOP CDM-compliant database.

One of the main drawbacks, nevertheless, is that while in the numerous works that undertake
health database mapping in OMOP [12, 13, 14], the data table mapping phase is often performed
manually and/or coded only in the ETL stage. This negatively affects the tradeoff between
privacy and usability of the overall process.

3.1. Privacy and usability trade-off in OMOP/OHDSI ecosystem

The vocabulary mapping process is extremely difficult, time-consuming, and mostly conducted
manually by domain experts. To facilitate this human-in-the-loop process, some tools are
provided by OHDSI. The most important one is Usagi2, a vocabulary mapping tool that utilizes
probabilistic algorithms to suggest mappings between local source terminologies and standard
vocabularies to domain experts. One of the major drawbacks of Usagi is its exclusive reliance
on a probabilistic algorithm based on syntactic matching. This results in limited accuracy,
particularly with ambiguous terms and complex relationships, along with linguistic dependence,
challenges in adapting to domain-specific vocabularies, and scalability issues. This aspect highly
affects the utility of the resulting data Different research programs have been established to
improve Usagi’s performance. Deep learning-based methods demonstrate to outperform both
Usagi and previous simple word-level matching algorithms. However, the main limitation lies
in the need for a conspicuous and accurate training set as the presence of negative training
samples significantly affects the outcomes. Other researchers extended the vocabulary mapping
to different languages [16] through automatic translation methods. However, challenges remain
in translating nonstandard expressions and resolving abbreviations into full names. To overcome
the limitations of these methods, we are developing techniques that will be briefly presented in
Section 4.2. For instance, [17] discusses how to translate multilingual nonstandard expressions
and resolve abbreviations.

The focus of this article is indeed on the privacy issues that arise when transforming data into
OMOP-CDM. One of the main privacy challenges encountered by the PPDI process, alongside

2www.ohdsi.org/software-tools



the utilization of OMOP-CDM, concerns the fact that mapping large amounts of data to the
OMOP-CDM raises significant concerns about protecting QID; as clinical terminologies expand
to include new terms that may capture QID, institutions may inadvertently start using them
in clinical data ETL processes. This can potentially put institutions and patients at risk if not
addressed. The OHDSI consortium strongly cautions against this during the ETL process, as
certain vocabularies may contain terms that represent phone numbers, emails, and other QID
information, rather than clinical observations [18]. This highlights the importance of carefully
considering the potential risks and implementing appropriate safeguards when mapping health
data to the OMOP-CDM. To address this challenge, we envisaged a method to semi-automatically
classify OMOP-CDM attributes into QID and SPI, presented in Section 4.1.

4. OMOP-CDM Privacy-Preserving Framework

The objective of this section is to present the methodology devised to develop additional
privacy-preserving services to be implemented within our PPDI framework, based on the
re-implementation of MOMIS, (see Section 2) to enhance the process of harmonizing data
with OMOP-CDM standards (see Section 3). An open-source version of MOMIS is currently
maintained by DataRiver3. DataRiver participated in various European projects aligning dif-
ferent health-related cross europe sources to OMOP-CDM and was certified as an SME by the
IMI EHDEN consortium for its support to healthcare facilities in standardizing health data
according to the OMOP CDM standard and providing additional services in the EHDEN and
OHDSI ecosystem. This experience has proven important in identifying the main issues of
OMOP/OHDSI approach in concrete applications. In light of these reasons, presented in Section
4.1, we are investigating techniques to semi-automatically classify QID and SPI and facilitate
the schema alignment according to OMOP-CDM.

4.1. Classification of OMOP-CDM data

Classifying data according to identifiability in a real-world scenario is a complex task that
highly impacts the overall trade-off between privacy and data usability. SPI and QID can overlap
and the combination of attributes identifying an individual may vary from person to person
depending on the rarity of attribute values.

To address this challenge, we intend to develop a tool adherent to OHDSI principles to
semi-automatically classify OMOP-CDM attributes into QID and SPI. This tool applied to the
OMOP-CDM attributes and to the terminologies in the main vocabularies, will allow us to
determine whether they are QID or SPI.

This outcome can be leveraged not only in the mapping of new local sources to OMOP-CDM
but also across all the previously mentioned systems and projects where the transformation into
OMOP-CDM is already underway (see section 2), enabling validation of the ETL process from
a privacy perspective. For instance, the local attributes mapped to OMOP concepts classified
as identifiers will necessitate the consideration of appropriate controls and privacy protection
techniques.

3originally founded as a spin-off of DBGroup dbgroup.unimore.it/



To investigate the feasibility of our idea and highlight potential issues within the process, we
took as a starting point the already available manually annotated terminologies of PII related
to medical data. As it is likely impossible to capture all codes that can potentially contain PII,
due to their wide variability, an initial resource is presented in [18]4. Another one is the PPI
(Participant Provided Information) terminology, a standard vocabulary in OMOP related to the
’All of Us’ program, which focuses on collecting health data from a diverse group of participants
[19]. However, the PPI terminology is not linked by any relationship to any other vocabulary.
Furthermore, these resources are not directly linked to OMOP-CDM vocabularies, therefore
we explored various procedures to match these resources with OMOP-CDM terminologies and
leverage this knowledge to classify the mapped attributes as PII.

• Initially, we investigated different mapping techniques based on syntactic probabilistic
algorithms, which as expected yielded poor results, but with the inclusion of specific
data pre-processing approaches, they do tend to identify some potentially identifiable
attributes.

• In addition, experiments were conducted exploiting Large Language Models (LLM). We
tested some of the most renowned open-source LLM instructing them with specific exam-
ples to perform the mapping. Initially, some models have shown acceptable performance
but later exhibited hallucinations regarding column names.

• Subsequently, we focused on techniques specifically developed for the classification and
annotation tasks. For instance, we adapted the methodology used in [20] by defining
identifiable and sensitive data classes as labels for annotation. However, the performance
of this approach was limited by the impossibility of accessing plain-text column data.

In consideration of these experiments, we consider that a potential approach to achieving
accurate classification methods may lie in training an instance of LLM specifically for this task.
However, these models do not provide high reliability as they are also based on probabilistic
syntactic principles and fail to capture the semantics of concepts [21]. Therefore, we believe
that employing symbolic, explainable, and semantic-based methods will yield more promising
results.

4.2. Data mapping to OMOP CDM

In the application case where a local source has not already been harmonized to OMOP-CDM,
it is not only necessary to perform the data classification procedure described above, but also
the Vocabulary Mapping, Data tables mapping and ELT process described in Section 2. This
approach can be locally performed by a single source, participating in the PPDI framework
outlined in 1. However, the harmonization process is extremely challenging, needing to be
accomplished quasi-totally manually by domain experts.

From a practical standpoint, the first steps of the harmonization process can be overlaid on
the Schema Matching phase of data integration processes (Section 2). In the majority of data
integration projects the schema matching phase is implemented following a bottom-up approach,
finding the correspondences between the different schema of Local sources and producing a

4github.com/data2health/next-gen-data-sharing/blob/master/CodesWithPPIPotential.csv



unique integrated Global Schema. Within the OMOP/OHDSI ecosystem, the global schema is
represented by OMOP-CDM. Therefore this phase is carried out using a top-down approach,
aligning each local schema to OMOP-CDM and producing mapping rules to harmonize the
original data. This allows parallelization across multiple local sources and the addition of new
ones, dealing with scalability and interoperability issues (see Section 2) of the traditional bottom-
up approach. However, within a privacy-preserving context, to prevent data privacy disclosure
is not possible to access the original data in plain format, but only metadata, attribute names,
and their associated descriptions, therefore only schema-level matching methods can be applied.
The schema-level matching method SMAT[22] is considered a baseline within the OMOP-CDM
and it is based on a deep learning model incorporating NLP techniques. Instead, within the PoC
for the Criminal Data Warehouse project [3] we employed a schema-level matching method
based on annotation.

4.2.1. Semantic Privacy-Preserving Schema Annotator

To date, the re-implementation of MOMIS has consisted of the development of different microser-
vices to perform semantic-based schema annotation of property names and values, exploiting
the semantic knowledge of multiple thesauri in multiple languages. The system allows scalabil-
ity on multiple simultaneous pipelines and thesaurus configuration. Among them the OMOP
standard for the medical field, including all the different standardized vocabularies (such as
SNOMED, ICD10, and several others) and the OMW - Open Multilingual WordNet, offering
good linguistic coverage. Furthermore 35 translation services are available, supporting all major
languages and specific functions for the identification of non-canonic terms [17] are available
allowing better performance. E.g., the term “consenso” is not found in OMOP, however the
automatic translation “consent” can be correctly annotated. We will provide a more accurate
description of this system in other publications as it is still in the development phase, but from
the initial results, our method appears to achieve better results compared to SMAT [22].

On the other hand, it is also advisable to contemplate scenarios where accessing the local
schema is unfeasible and hence explore the concept of Privacy-Preserving Schema Matching
(PPSM) [23]. It establishes that at the time when the schema matching is conducted, no concrete
information regarding the local data and schema has been released to the PPDI framework. For
this reason, future work will concern the application of PPSM methods [23] to the OMOP-CDM
context, based on the classification and privacy assessment presented in 4.1.

5. Conclusion and Future Works

This paper provides an overview of the Privacy-Preserving Data Integration process encom-
passing numerous challenges, especially in the context of Big Health Data. Section 3 presents
the OMOP-CDM standardized data structure, the process of harmonizing healthcare datasets
to OMOP-CDM format and discussing the assessment of the privacy and usability trade-off of
this process. In light of this, Section 4 presents a solution to address the main privacy issues in
the context of OMOP-CDM. Namely, the design and development of specific methodologies
and tools, adherent to the principles of OHDSI, to classify data according to identifiability
and privacy, and perform a Privacy-Preserving Schema Matching [23] process according to



OMOP-CDM. This solution is still in the development phase but promises good results in terms
of performance and privacy protection compared to other state-of-the-art systems. From our
perspective, the broad spectrum of tasks and issues about the process of harmonizing data ac-
cording to OMOP-CDM that, to the best of our knowledge, have not received extensive coverage
in the existing literature allow for many future developments. One of the main shortcomings
of this process that limits its usefulness is the absence of de-duplication [24]. To this end, a
possible future development is the adaptation of Privacy-Preserving Record Linkage techniques
and Data fusion approaches to perform de-duplication within the OMOP-CDM context.
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