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Abstract
Relation extraction from the scientific literature to comply with a domain ontology is a well-known
problem in natural language processing and is particularly critical in precision medicine. The advent
of large language models (LLMs) has paved the way for the development of new effective approaches
to this problem, but the extracted relations can be affected by issues such as hallucination, which must
be minimized. In this paper, we present the initial design and preliminary experimental validation
of SPIREX, an extension of the SPIRES-based system for the extraction of RDF triples from scientific
literature involving RNA molecules. Our system exploits schema constraints in the formulations of
LLM prompts along with our RNA-based KG, RNA-KG, for evaluating the plausibility of the extracted
triples. RNA-KG contains more than 9M edges representing different kinds of relationships in which RNA
molecules can be involved. Initial experimental results on a controlled data set are quite encouraging.
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1. Introduction

Ribonucleic acid (RNA) plays a critical role in the central dogma of molecular biology, serving as
the intermediary between DNA and proteins, the building blocks of life. Beyond its traditional
role in protein synthesis, RNA is involved in a variety of cellular processes, including gene
regulation and catalysis, highlighting its importance in understanding the complexities of
biological systems. RNA-KG [1] is the first ontology-based knowledge graph for representing
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coding and non-coding RNA molecules and their interactions with other biomolecular data
as well as with pathways, abnormal phenotypes and diseases to support the study and the
discovery of the biological role of RNA. RNA-KG contains around 9M edges extracted from
more than 50 public data sources and can be exploited to study RNA molecules and develop
innovative graph algorithms to support knowledge discovery in data science.

The manual ingestion of triples in a knowledge graph by expert curators is a time-consuming
and costly operation and tools supporting them in the extraction of biological entities and their
relationships from plain texts are highly demanding. The advent of LLMs [2] has paved the
way for the development of new effective tools for this problem [3]. However, these techniques
have shown different limitations, such as generating incorrect statements due to hallucinations
(inaccurate, nonsensical, or irrelevant output in the given context) [4] and insensitivity to
negations [5], that cannot be tolerated in sensitive domains like precision medicine. SPIRES
(Structured Prompt Interrogation and Recursive Extraction of Semantics) [6] is a recently
proposed knowledge extraction approach that exploits LLMs to identify instances of a knowledge
schema expressed in terms of LinkML [7]. Since the schema contains a conceptualization of a
given domain in terms of concepts, relationships, and properties we are interested in, it can
be used for defining more effective LLM prompts. Additionally, SPIRES allows grounding of
atomic textual elements as concepts taken from a variety of OBO Foundry ontologies [8].

Even if SPIRES has proven its efficiency in the extraction of triples from plain text according
to bio-ontologies, there is the need to evaluate the reliability of the extracted triples both in
terms of the generated identifiers (i.e. they correctly represent the identified entities) and the
accuracy of their data source. In this paper, we address this problem by exploiting RNA-KG
as a gold standard in the RNA world because it contains many interactions involving RNA
molecules and can be used to evaluate the plausibility of the extracted triples.

To leverage SPIRES for its ability to extracting triples from texts and supporting experts in
their validation, we present SPIREX, a system for the extraction of reliable triples from scientific
papers. There are two main backbones of the system. On one side, SPIRES and the LinkML
representation of the RNA-KG schema [9] allow the extraction of RDF triples compliant with the
domain Ontology. On the other side, we use RNA-KG as a gold standard providing knowledge
about interactions involving RNA molecules and use link prediction techniques to validate the
’plausibility’ of the extracted triples; i.e., the likelihood of the triple to be part of RNA-KG. The
initial experimental results on a manually curated testbed of 60 scientific texts are encouraging.

2. RNA-KG and SPIRES

RNA-KG [1] is the first knowledge graph encompassing biological knowledge about RNAs
gathered from more than 50 public databases, integrating functional relationships with genes,
proteins, chemicals, and ontologically grounded biomedical concepts. The current release
of RNA-KG has a single component containing around 600K nodes and 9M edges and can be
queried via SPARQL endpoint at https://RNA-KG.anacleto.di.unimi.it. Nodes are usually mapped
to reference biomedical vocabularies and ontologies such as NCBI Gene Entrez identifiers for
uniquely identifying genes and many kinds of non-coding RNAs (ncRNAs), Human Phenotype
Ontology (HPO [10]) for phenotypes, Monarch merged disease ontology (Mondo [11]) for
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Figure 1: (a) node distribution according to node types; (b) edge distribution according to edge types.

diseases, and Gene Ontology (GO [12]) for annotating ncRNAs. Moreover, all the possible
interactions are represented by means of the Relation Ontology (RO [13]). This ensures common
semantics for the different relationships that can be extracted from the sources.

Figure 1a shows the distribution of nodes contained in RNA-KG (details in [1]). Nodes can be
classified into nodes representing ontological terms and bio-entities lacking a direct mapping to
ontological terms. Bio-entities have been further subdivided into RNA nodes, and non-RNA
nodes (named other bio-entities) that contain, for instance, gene and nodes describing
genomics features (e.g., nucleotide substitution). Figure 1b shows the distribution of edges in
RNA-KG. Edges have been subdivided into three categories: 𝑖) edges representing RO properties
that characterize interactions among RNA molecules in the considered sources; 𝑖𝑖) other edges
not belonging to RO properties; 𝑖𝑖𝑖) edges representing the subClassOf relationships. The
edges of the last two categories are introduced from the integration of bio-ontologies into
RNA-KG and the lack of a dedicated ontology for RNA molecules. When RNA molecules cannot
be precisely mapped to a reference ontology, they are included as subClassOf an appropriate
class within Sequence Ontology (SO [14]).

SPIRES [6] is a recently proposed approach to information extraction that creates and refines
prompts to maximize the effectiveness of LLMs by exploiting domain knowledge encapsulated
through a schema expressed in LinkML [7]. By identifying and extracting relevant information
from an input text, it adopts zero-shot or few-shot learning to identify and extract relevant enti-
ties and relationships among them, which are then normalized and grounded through ontologies
and vocabularies. SPIRES is a general-purpose approach that can be used across a variety of
domains and does not require specific training/tuning on the considered domain. SPIRES adopts
an engineering approach for creating prompts for interacting with an LLM (like GPT3, GPT4)
to improve the quality of the generated responses through the use of domain-specific schema.
In this way, technical challenges for generative AI (e.g., constructing comprehensive real-world
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Figure 2: An excerpt of RNA-KG schema.

knowledge and improving the accuracy of automated responses) can be addressed.
The specification of this schema in LinkML contains the classes of entities and relationships

among them within the specified domain. Classes can also include attributes (e.g., name,
type, and list of synonyms) to enrich entity description. The LinkML schema is automatically
processed to generate a list of prompts through which SPIRES interacts with a LLM. Each prompt
of the list is submitted to the LLM for collecting information that is exploited for completing
the following prompt by eventually considering the bio-ontologies (e.g., for changing a protein
symbol with the corresponding identifier in an ontology). This recursive refinement process
improves the quality of the information gathered through the LLM.

3. The SPIREX system

As shown in the architecture in Figure 3, SPIREX is composed of two modules: the SPIRES
module is used for extracting the RDF triples from scientific abstracts. Then, an embedding of
RNA-KG is used to validate the generated triples and score their level of plausibility.

SPIRES module for RNA-KG. Through the study of the scientific literature about RNA
interactions, and the analysis of more than 50 data sources [1] all over the world, we have
identified the kinds of relationships that can involve RNA molecules and reported them in a
meta-graph [15]. Figure 2 shows an excerpt of the UML schema describing the entities that are
connected to miRNA molecules through different kinds of relationships in the meta-graph.

Starting from its LinkML representation, a list of prompts specific for the RNA domain are
generated according to which entities and the relationships contained in a text are extracted
by considering the schema constraints. Moreover, SPIRES adopts bio-ontology of our domain
(details in [9]) for producing source and target identifiers according to the RNA-KG identification
scheme and RO predicates.

RNA-KG module for link prediction. The validation of new potential relations derived
from the SPIRES module can be modeled as a link prediction task on RNA-KG, performed
via either Graph Neural Networks (GNNs) or Random-Walk (RW) based methods for Graph
Representation Learning. GNN approaches usually present scalability issues, while RW-based



Figure 3: The SPIREX architecture.

graph embedding overcomes this problem by the use of random-walk approaches that sample
the graph to construct a representation of the nodes (and edges) in a lower dimensional vector
space that feeds traditional ML models.

In SPIREX we have used Node2vec [16] for the embedding of RNA-KG. Node2vec is a well-
known random walk-based approach that aims to capture the graph topology from the node
neighborhoods. The model generates a set of second order random walks across the graph, that
are used to train a shallow neural network to compute a vector representation of the graph
components. One of the key features of Node2vec is the possibility to generate paths that
focus either on the local or global structure of the graph, providing a great flexibility in the
graph representation. Our system uses the implementation available in GRAPE [17], a software
resource specifically designed for the manipulation and embedding of large graphs.

4. Preliminary experimental results

Experiments have been realized for both modules of SPIREX. For the first module, we evaluated
the prediction accuracy of SPIRES in extracting triples in a set of manually annotated documents.
We also compared SPIRES with base LLMs to verify the advantage of using LinkML in the
specification of the domain schema. For the second module, we checked if the simple predictive
model can generate reasonable scores on RNA-KG. Finally, we assessed the ability of the
predictor to evaluate the plausibility of triples extracted through SPIRES according to RNA-KG.

SPIRES prediction accuracy and comparison with base LLMs. As described in [9], a
corpus of 60 scientific articles related to RNA molecules and their interactions has been gathered
from PubMed, ResearchGate, and Google Scholar. Starting from them, we have identified
abstracts, discussions, or specific subsections within the domain of interest. They have been
manually annotated with the entities and the six kinds of interactions that can be extracted
from them (reported in the y-axis of the diagram in Figure 4a).

For evaluating the predictions, we have used standard metrics (precision, recall, and F-score)
by considering the True Positive (TP), False Positive (FP), and False Negative (FN) according to
the manually tagged paragraphs. As shown in Figure 4a, the obtained results, using GPT3.5-
turbo in SPIRES for each category of interaction, indicate a consistent trend where TP rate
tends to be higher with respect to both FP and FN rates. The only exception is for protein-
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Figure 4: Evaluation of SPIRES on relation extraction involving protein, miRNA, disease, and gene
entities and comparison against different LLMs.

disease relations, where FN rate is higher than TP rate. We noticed that many protein-disease
relations are undetected, often because they are expressed in complex ways and this can lead to
inaccurate entity recognition. Despite this, the overall precision remains remarkably high and,
in biomedicine, this is preferable because it prioritizes certainty over ambiguity.

We have assessed the performance of SPIRES by considering as baseline approaches OpenAI
GPT (ver. GPT3.5-turbo) and Llama 2 [18] (ver. llama-2-70b-chat). As back-end LLM of SPIRES,
we have considered both GPT3.5-turbo and GPT4-turbo. We have manually grounded instances
and relationships that can be extracted from 20 documents among those considered in the
previous experiment. Regarding the prompt to be used with the base LLM system, we have
considered a simple one requesting to extract triples from the considered text with an explicit
request for mapping the extracted concepts to appropriate terminologies. Given that both
OpenAI GPT and Llama 2 caution that the ontology identifiers provided are hypothetical and
might not align with actual identifiers in the ontologies, and considering the general community
advice against relying on IDs from an LLM [19], we decided to substitute the grounding process
with our manually curated look-up tables [1].

As shown in Figure 4b, SPIRES outperforms baseline LLMs used alone both in terms of
precision and recall. The histogram points out a high increment in TP rate and a decrease in FP
and FN rates when adopting SPIRES for extracting relations that adhere to a specified schema
within texts. Furthermore, when adopting GPT4-turbo in SPIRES the recall metric improves
due to the lower FN rate with a positive effect on the F-score.

Evaluation of the plausibility of SPIREX predictions. For evaluating the plausibility, a
restricted RNA-KG view has been considered that roughly corresponds to the schema in Figure 2
focusing on the predictions of miRNA-disease relationships. More precisely, we have considered
two different settings of the hold-out procedure to evaluate prediction performance.
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Figure 5: Distribution of the miRNA-disease edge predictions of the RNA-KG link prediction module.
Node2vec predictions: (a) on the test set of RNA-KGΔ𝑑𝑖𝑠𝑒𝑎𝑠𝑒

; (b) on the test set of RNA-KGΔ10%
; (c)

of the edges predicted by SPIRES with RNA-KGΔ𝑑𝑖𝑠𝑒𝑎𝑠𝑒
; (d) of the edges predicted by SPIRES with

RNA-KGΔ10%
. In c)-d), ’blue’/’orange’ bars represent triples ’included’/’not included’ in the view.

In the first one, named RNA-KGΔ𝑑𝑖𝑠𝑒𝑎𝑠𝑒
, the test set corresponds to triples involving miRNAs

and diseases from the source RNAdisease [20], while training set corresponds to the remaining
miRNA-disease triples of RNA-KG; in the second one, named RNA-KGΔ10%

, we randomly
included in the test set 10% of miRNA-disease triples, and in the training set the remaining
90%, independent of their original source, guaranteeing to maintain the graph connectivity,
according to a connected Monte-Carlo hold-out strategy [17].

We directly applied node2vec to the prediction of miRNA-disease edges according to the RNA-
KGΔ𝑑𝑖𝑠𝑒𝑎𝑠𝑒

and RNA-KGΔ10%
experimental settings, using a Multi-Layer-Perceptron trained

on the node2vec edge embeddings. The default parameters adopted in GRAPE have been
chosen. Figure 5a and 5b show that the triples in the test set exhibit high probabilities, in both
experimental settings. As reported in Figure 5a, with RNA-KGΔ𝑑𝑖𝑠𝑒𝑎𝑠𝑒

, ∼63% of these triples are
associated with a score higher than 0.6. In the case of RNA-KGΔ10%

, we notice that ∼88% of the
test set was correctly classified with a probability higher than 0.6 and ∼74% with a probability
higher than 0.8 (see Figure 5b). Node2vec is thus a reasonable predictor of miRNA-disease edges
to be included in the RNA-KG and can be used to assess the plausibility of SPIRES predictions.

To assess the ability of node2vec in evaluating the plausibility of the triples extracted by



SPIRES, we have considered true positive triples extracted from our manually curated dataset
involving miRNAs and diseases. Figures 5c and 5d show the distribution of the probabilities
predicted by node2vec on the miRNA-disease edges extracted by SPIRES. Specifically, blue
columns represent the number of miRNA-disease triples that are already included in RNA-KG,
whereas orange columns represent the number of triples that are missing in RNA-KG. In both
cases, node2vec is able to correctly classify almost all the tuples already present in the partial
KG but can also discriminate between plausible and implausible new triples, offering a potential
validation tool. Indeed in both experimental settings, we can identify a set of edges included in
RNA-KG that are predicted with a high probability by both SPIRES and node2vec (blue bars), but
also a set of edges extracted by SPIRES and predicted with a high probability by node2vec, even
if these edges are not present in RNA-KG (orange bars). These last edges can be considered as
possible new candidates for miRNA-disease relationships. In Figures 5c and 5d, the orange bars
denote relationships identified by SPIRES, yet assigned a low probability by node2vec. These
edges can be considered “uncertain” in the sense that they are not confirmed by an independent
edge prediction method that exploits the topological characteristics of the RNA-KG. We believe
these results can be improved by considering expanded views of RNA-KG and more complex
ML methods capable of accommodating its inherent heterogeneity.

5. Concluding remarks

In this paper we have described the initial steps in the design and development of the SPIREX
system for the extraction of meaningful triples from scientific papers that exploit RNA-KG as
a gold standard for checking the plausibility of the extracted triples. The initial experimental
results are encouraging of the effectiveness of the proposed tool. At the current stage, we
have used a basic link prediction measure for assessing the relationship’s plausibility according
to the knowledge graph’s current state. However, a much more accurate measure should be
developed that takes into account other factors (like the number of times the relationship
has been identified in different sources, the presence of the relationship in other sources of
information, or the coherence of the relationship with respect to the other triples extracted
from the same scientific paper). We are also considering the adoption of other link prediction
methodologies, especially those for heterogeneous graphs that can easily scale with big KGs.
Finally, even if the approach has been tested in the context of RNA-KG, we would like to
generalize it to other application domains that exploit biomedical KGs (e.g. [21]) for extracting
new facts from texts.

Datasets. Experiments have been realized by using the following datasets: (schema and docs)
https://doi.org/10.5281/zenodo.10671796; (RNA-KG): https://doi.org/10.5281/zenodo.10078876.
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