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Abstract
Machine learning (ML) has transformed healthcare, improving diagnostics, treatment, research, and
patient care. However, clinical decision support (CDS) still relies heavily on classical statistical models and
manual rules, lacking transparency and accuracy. Starting from the mid-20th century, scoring systems
offer a transparent approach to CDS development. Nevertheless, classical methods for scoring systems
like logistic regression may lack predictive accuracy and suffer in handling complex high-dimensional
electronic health record data, while black-box ML models pose risks due to their lack of interpretability.
To address these challenges, our group focuses on developing interpretable symbolic ML approaches,
leveraging multi-objective symbolic regression (MOSR) to accelerate index development, mitigate human
bias, and allow for the exploration of new aggregation functions and weighting systems. MOSR optimizes
multiple objectives simultaneously, distilling complex phenomena into non-linear yet understandable
constructs, a crucial aspect for gaining trust from healthcare professionals. Moreover, MOSR is highly
flexible and extendable to classical statistical models. This paper presents our experience in developing
data-driven scoring systems, building on real-world applications such as COVID-19 mortality prediction
and risk estimation post-liver transplantation. Our methodology involves designing the entire data
pipeline, from feature selection to scoring formula generation, highlighting the importance of developing
data-centric and interpretable ML techniques for high-risk domains.
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1. Introduction
Artificial Intelligence (AI) systems have revolutionized healthcare by offering opportunities to
enhance diagnostics, treatment, research, and patient care. Among these tasks, we want to focus
on the development of data-driven solutions to clinical decision support (CDS). Currently, CDS
predominantly relies on classical statistical models and manually curated rules or heuristics
that are designed to identify patient cohorts with specific characteristics of interest.

Medical scoring systems are considered as the most common CDS tool because they provide
healthcare professionals with objective, intelligible, and quantifiable measures to aid in clinical
decision-making. Indeed, by interpreting scores in conjunction with clinical expertise and
patient-specific factors, healthcare professionals can make more informed decisions regarding
diagnosis, treatment planning, and patient management. The history of scoring systems in
medicine dates back to the mid-20th century. One of the earliest and most well-known scoring
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systems is the Apgar score, developed by Virginia Apgar in 1952, which assesses the health of
newborns and is still widely used today for quick assessment. Creating and validating clinical
scoring systems involves several key steps. Clinicians begin by identifying a patient population
with a specific disease or condition and gathering relevant data, including demographics, medical
history, and laboratory results. Statistical methods are then employed to identify predictive
factors for the outcome of interest, such as mortality or disease progression. Using these factors,
a model is developed to generate a score predicting the likelihood of the outcome occurring.
Finally, the scoring system is validated by testing its performance on a separate group of patients
with the same condition to ensure its accuracy and reliability.

Over the years, scoring systems continued to be developed, incorporating data from new
technologies, such as imaging and laboratory tests, to improve their accuracy and reliability.
However, traditional index creation methods, successful in the past, faced challenges in the
context of complex clinical phenotypes and the vast landscape of Electronic Health Records
(EHRs). In fact, without automated pipelines to reduce variables or identify their importance,
EHR-derived datasets are often high-dimensional, scarce, sparse, and unbalanced [1]. For these
reasons, the emergence of AI and sophisticated ML models able to analyze extensive datasets
encompassing genetics, lifestyle factors, Patient Reported Outcomes, and EHRs, has sparked a
renewed emphasis on developing medical scoring systems.

This work aims to describe the state of the art in the development of data-driven scoring
systems and illustrate the progress and applications studied by our research group in recent
years for the development of interpretable CDS tools. Specifically, in Section 2, we introduce the
concept of scoring systems and their traditional development methods. We then delve into the
challenges posed by the rise of AI in automating index creation and explain why interpretable
ML techniques are the primary tools for this task. Moving forward, we present state-of-the-art
methods for automatically generating scoring systems, with a focus on symbolic regression. This
technique serves as the foundation for a new approach developed by our team for constructing
flexible and parsimonious indices in real-world scenarios. Section 3 outlines our comprehensive
data pipeline for scoring system development, highlighting key aspects and featuring real case
studies from our recent research endeavors. In Section 4, we draw some concluding remarks
and summarize the outstanding challenges in this field that we aim to address in the near future.

2. Preliminaries: Scoring Systems Development and Symbolic
Regression

A score is a mathematical combination of a set of elementary indicators (EIs) representing
the different components of a multidimensional concept to be measured (e.g. development,
quality of life, wealth, risk, etc.). Hence, synthetic scores are used to measure concepts that
cannot be captured by a single indicator. In general, a composite index should be based on a
theoretical framework, allowing the selection, combination, and weight of the EIs to reflect the
size or structure of the phenomenon being measured. Building scores often requires a series
of decisions/choices to be made. The process involves multiple steps: i) theoretical framework
definition where the concept to be measured and the EIs to be considered are identified; ii) EIs
selection based on their relevance, validity, availability, cost, etc., and standardization so as to
work with adimensional quantities; iv) aggregation function definition where the final shape of



the index combining the selected EI is determined; v) index validation in terms of robustness,
generalization and discriminating ability.

There is no general method for the construction of synthetic indices so each score is linked to
the particular application. Classically, finding the right aggregation function and the weighting
of EIs is a highly non-trivial task [2] that involves human decision by default and in which data
sets are mostly used to validate the score after it is built or, when using parametric statistical
models, to learn its numerical coefficients (see, e.g., [3]). Despite its widespread use in high-stake
domains, such an approach may lead to scores that suffer from the lack of formal guarantees in
terms of performance and constraint compliance [4].

2.1. Clinical Score Generation in the Era of Big Data and AI

Despite the definition of the theoretical context and the identification of the relevant EIs will
always require some human knowledge to be reliable, the other stages of index creation may be
automated. Indeed, the promise of systematic, targeted, and data-driven scores for CDS becomes
apparent with recent advances in ML and the ever-increasing availability of EHR data. This
would not only speed up index creation but also eliminate any human bias in its construction,
as well as explore further aggregation functions and weighting systems than what was done in
the past. However, the potential benefits are met with equally substantial challenges. Achieving
systematic index creation necessitates the development and deployment of highly accurate
clinical prediction models for a wide range of clinical problems. Moreover, the CDS framework
should be robust enough to cope with and adapt to significant variations in clinical practices and
documentation standards across different healthcare providers and systems. For these reasons,
comprehensive assessments should be performed to weigh the potential advantages and risks
associated with each automated CDS solution [5].

Meeting the previous requirements is made easier by interpretable ML techniques that can
be inspected and questioned by domain experts, ultimately leading to a higher level of trust
and, consequently, facilitating their integration into existing decision-making frameworks. In
fact, it is a view increasingly shared by the scientific community that black box models cannot
be the final answer to increase accuracy or fix cases where the assumptions of classical models
are not met [6, 7]. Opaque models cannot be fully understood, were shown to be dangerous in
many real-life situations, and so should not be used in high-stakes domains [8]. Moreover, it
was recently shown that simpler intelligible models achieve comparable, if not better, results in
several real-world cases [9], especially when dealing with tabular data such as EHRs.

2.2. State-of-the-art Approaches

State-of-the-art approaches for interpretable data-driven scoring systems formalize finding the
index aggregation formula as an optimization problem. Most of them translate index creation
into a classification problem, primarily focusing on binary outcomes [10, 4, 11, 12]. Most works
use integer programming to build scoring systems with fixed aggregation function shapes and
use training data to learn numerical coefficients. While these works have the merit of supporting
high-stake decisions through interpretable data-driven models, they marginally explore the
space of scoring functions. In fact, most methods rely on dummy indicators, based on thresholds,
and use decision tree models to construct the aggregation functions [10, 11, 12, 13]. Constraining



the space of aggregation functions to be searched to some linear structure may prevent the
model from finding the right solution because of structural constraints introduced for the sake
of simplifying the phenomenon. As a matter of fact, non-linear scoring systems are already
widely used (see [2] for a technical introduction). For instance, the Body Mass Index (BMI) [14]
represents a simple and widely known example in clinical practice.

The problems previously listed can be solved by using symbolic regression (SR), the data-
driven ML method for regression analysis. In fact, as we will elaborate in the next section, SR is
able to search a much wider space of mathematical formulas to find the model that best fits
a given dataset. Moreover, the use of SR is not limited to non-linear model fitting but can be
adapted to any parametric statistical model. For the above reasons, the use of SR in scoring
system development for high-stakes domains may lead to extremely important results in the
coming years [5, 15].

2.3. Symbolic Regression

SR refers to data-driven ML methods for regression analysis that search the space of mathe-
matical formulas to find the model that best fits a given dataset. The most classical approach
to SR relies on genetic programming (GP) algorithms [16, 17, 15]. Standard GP approaches
to SR require the selection of a predefined set of mathematical operators and variables that
are used to construct candidate models (syntax trees in SR, see Figure 1 for an example). The
algorithms need to perform optimization starting from a large set of randomly initialized models
(population) that is evolved through several generations where individuals undergo transforma-
tions inspired by genetic mutations. Our interest in SR comes from its remarkable results on
non-linear data-driven modeling, even on small training data sets [18]. Indeed, SR was shown
to generalize better than standard ML methods on hundreds of tasks, providing interpretable
results in most cases.

When the optimization process relies on meta-heuristic processes such as GP, SR can be easily
extended to multi-objective tasks. Multi-objective SR (MOSR) has been recently developed to
address constrained minimization problems and prevent overfitting the training data. A classical
approach to solve the overfitting problem is to consider a bi-objective setup optimizing both
complexity and accuracy [19, 20]. In fact, without a goal associated with complexity, models
tend to become excessively verbose, losing generalization performance and transparency. Only
recently, some work started combining accuracy and parsimony into a single objective through
model selection principles such as the Akaike or Bayes Information Criterion (AIC and BIC),
or the minimum description length [21]. Other applications of MOSR aim to incorporate
knowledge-driven (in)equalities to be satisfied [22, 23, 24]. While these types of constraints
can be easily incorporated in scoring system development, score construction itself can be a
natively multi-dimensional problem that must satisfy or track more than one property.

3. Symbolic Data-centric AI for Scoring Systems
Our interest in developing data-driven scoring systems has stemmed from our close collaboration
with the Department of Infectious Diseases of the Modena University Hospital, particularly
with members of the HIV Metabolic Clinic (MHMC), a tertiary-level referral center for the
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Figure 1: Left: Pictorial view of the data pipeline construction. Right: Example of model syntax tree.

diagnosis and treatment of non-infectious co-morbidities in people living with HIV (PWH).
In 2022 [25], our research group pioneered the introduction of the first MOSR approach for
managing data-driven, continuous, and non-linear scoring systems. The necessity for a multi-
objective approach in continuous medical index creation arises from the intricate nature of
medical outcomes, often too complex to predict precisely. This challenge is compounded by
the characteristics of EHRs, which are typically not only small but also unbalanced. To address
these challenges, unlike standard strategies that validate results post-hoc using metrics like
stratification power and index balancing, our approach incorporates these desirable properties
directly into the optimization phase. This integration provides greater control over the behavior
and complexity of the models.

Moreover, despite the scientific community’s main focus being on identifying index aggrega-
tion functions, our fruitful collaboration with the MHMC highlighted that the automation of
data-driven scoring system development should rely on a complete data pipeline that encompasses
the entire data lifecycle, from data preprocessing and feature engineering, to model creation,
optimization, and validation. A pictorial view of the data pipeline needed to create scoring
systems with MOSR is depicted in Figure 1. While certain phases, such as the problem definition
step, necessitate a synergistic approach between data scientists and clinicians, other steps can
be partially optimized. In our experience, these are:

• EI engineering and selection. The construction of normalized EI can be automatized
once the data type, its meaning, and the kind of non-linearities are specified in index
formulation. A major challenge in SR is the vast function space to be explored, which
grows exponentially with the number of mathematical operators and variables [26]. To
improve convergence rate we usually rely on minimum-redundancy-maximum-relevance
non-linear feature selections [27, 28, 29] whenever needed.

• Optimization objective. The ability to abstract the problem enables the identification
of the appropriate class of models wherein risk assessment should be integrated, whether



it’s classification, regression, survival analysis, etc. By comprehending the properties
essential for the index’s effectiveness, one can discern additional constraints or desiderata,
such as constraints/objectives on correlation, calibration, or distribution. Lastly, identify-
ing the final application domain aids in understanding the tolerable nonlinearities and
the maximum acceptable complexity level of the final formulas. These considerations
collectively facilitate the identification of optimal optimization goals.

• Performance metrics and comparison. Performance metrics beyond the optimization
criteria should be identified to check the predictive power of the generated scores. These
metrics need to be tailored to the specific problem under study. For instance, in the
context of a risk score based on binary classification, it is essential to calculate metrics
such as sensitivity, specificity, and the area under the ROC curve. Furthermore, it is
paramount to compare the results with those obtained from classical statistical methods
and other benchmark ML approaches.

• Model selection and validation. Model selection should consider performance metrics,
safety, and domain expertise. In addition to standard performance evaluation, validating
the score typically entails analyzing its distribution within the target population and its
correlation with other clinically relevant measures. This ensures the score’s consistency
and compatibility with existing medical knowledge.

Below, we will demonstrate that since the publication of the methodological work, our
group has persistently advanced in developing, systematizing, and automating various aspects
necessary for score development automation, also expanding the methodology to encompass
different case studies. We start by briefly summarizing two situations where scores are modeled
as regression and binary classification problems, afterward, we show in detail how we extended
the method to survival analysis problems.

Improving Frailty index assessment for PWH [30]. This study developed a data-driven
tool for geriatric assessment of PWH, focusing on enhancing the Frailty Index (FI), a clinical
score based on 35 variables. Leveraging data from the MHMC cohort, we designed a pipeline for
constructing reduced FIs. Starting from a set of knowledge driven 54 binary EIs, we employed a
non-linear feature selection method and identified the 27 most relevant EIs in predicting the FI.
We modeled index simplification as a regression problem and used MOSR to replicate the values,
distribution, and risk stratification ability of the original FI, minimizing weighted mean square
error, Wasserstein distance, and maximizing pairwise Kendall correlation. We evaluated optimal
model predictiveness through calibration, correlation with the original index, and associations
with established geriatric outcomes such as age, the EQ-5D-5L score, and the SPPB index. The
simplest optimal model used only 16 readily available variables, meeting all requirements and
was incorporated into the MHMC’s automatic data collection pipeline.

Short-term mortality prediction in patients with Covid-19 [31]. This study aimed
to predict short-term in-hospital mortality risk using data collected upon hospital admission.
EHRs from 2400 patients with Covid-19 diagnoses were gathered. A non-linear feature selection
method reduced covariates from 25 to 10, validated by the medical team and standardized.
Index creation involved a tailored non-linear logistic regression using formulas generated by
MOSR. Experiments minimized weighted Binary Cross Entropy and maximized the F1 score to
optimize the sensitivity-specificity tradeoff. MOSR outperformed popular machine-learning



Table 1
Comparison between classical Cox model and a MOSR solution showing examples of risk factors mined
by MOSR. Only statistically significant variables were reported for the Cox model.

Model Cov. 𝛼𝑗 [5%, 95%]𝛼𝑗 − log2(p) PHA

Cox model
𝐶𝐿𝐻 =

∑︀
𝑖 𝛼𝑖𝑥𝑖 ICU 0.68 [0.29,1.08] 10.62 Failed

cMELD 0.67 [0.26,1.08] 9.54 Satisfied
PTI 1.50 [0.74,2.25] 13.35 Satisfied

MOSR
𝐶𝐿𝐻 = 𝛼F1 F1 + 𝛼F2F2 F1 1.82 [1.07,2.57] 18.89 Satisfied

𝐹1 = PTIHD F2 1.15 [0.78,1.52] 30.11 Satisfied

𝐹2 = max( 2
3
𝐻𝐷,min(ICU,

max(MELD, PTIHD Tx2015PTI))))

algorithms and classical human-generated indices, prioritizing false negative reduction for
timely interventions.

3.1. MOSR for survival: Mining post Liver Transplantation (LT) risk factors

The study [32] aimed to quantify the interaction between risk factors in predicting death within
the first four months post-LT. The data consisted of 485 EHRs of patients who underwent LT
at the University Hospital of Modena between 2010 and 2020. Available exposure variables
included patient admission details, preoperative conditions such as colonization by multidrug-
resistant bacteria, and postoperative risk factors like bloodstream infections. Due to data scarcity
and imbalance, EI selection and construction required collaboration between data scientists
and clinicians. The chosen set of covariates was: Hospitalization days (HD); Intensive Care
Unit days (ICU); Model for End-Stage Liver Disease (MELD); Duration of surgery (DS); LT
year (LTY); Post-LT infection (PTI); MDR-Gram negative pre-operative colonization (GnC);
on top of death observation and censoring times. Variable selection was followed by feature
engineering to create comparable and informative EIs. Specifically, we discretized continuous
variables based on clinically meaningful intervals.

Cox’s regression, a classic semi-parametric survival model, is the most classic and easy-to-
interpret model that can estimate the effects of exposure variables and adjust for confounding
effects. Classically, Cox’s hazard model is written as:

𝐻(x, 𝑡) = 𝐻0(𝑡)× exp
{︀
𝛼𝑇x

}︀
(1)

where x = {𝑥𝑖}, 𝑖 = 1 . . . 𝑘, are the covariates and 𝛼 = {𝛼𝑖} are the parameters to be estimated
by the model. Therefore, the hazard function 𝐻 is given by the product of the baseline hazard
𝐻0(𝑡) and the covariate-dependent relative risk. As the only time dependence lies in 𝐻0(𝑡),
a fundamental assumption underlying the application of the Cox model is the Proportional
Hazard Assumption (PHA). The application of the classical Cox model turned out not to be
suitable for the indicators created, since, as shown in Table 1, some covariates did not meet
PHA. Classical methods for extending the Cox model in this situation are difficult to apply to
sparse and unbalanced data, as well as being less interpretable. Therefore, we embedded SR
into Cox’s regression by making the covariate-dependent log relative hazard function (CLH)



trainable and potentially non-linear: exp
{︀
𝛼𝑇x

}︀
→ exp {𝑓(𝛼,x)}. By optimizing partial

AIC (𝒫AIC) and model complexity, parametrized as the number of nodes in the syntax tree,
we maximized model likelihood while minimizing the number of numerical parameters and
the degree of non-linearity for enhanced interpretability. MOSR survival models not only
outperformed classical Cox regression in predictive performance but also successfully mined
composite data-driven risk factors, overcoming classical model limitations such as the PHA.
See the bottom panel in Table 1 for a representative optimal solution. Finally, model selection
was guided by differences in 𝒫AIC values for theoretical support, calibration and predictive
performance metrics for efficiency and usefulness, and out-of-distribution prediction for safety
assessment. More details about feature selection and construction and model performance and
validation can be found in the original text.

4. Concluding Remarks, Open Challenges, and Future Research
Opportunities

Scoring system development stands out as a prominent application of data-centric AI, where
the fusion of data mining, big data analytics, and ML plays a pivotal role. In this work, we have
presented the state of the art in automatic scoring system generation, covering data frameworks,
algorithms, and select case studies successfully tackled by our research group. By distilling
knowledge from retrospective clinical data, our data processing pipeline and analyses offer
seamless adaptability to diverse case studies.

Despite the advancements obtained during the last years in the development of scoring
systems, state of the art data pipeline for data-driven scoring system development still lack
some crucial milestones to be reached. In addition to being interpretable, CDSs must be able to
handle uncertainty. The problem of quantifying and managing epistemic uncertainty becomes
paramount when the system under study evolves with time or when dealing with multicenter
studies. The ML frameworks devoted to these issues are continual learning (CL) and federated
learning (FL) [33].

CL focuses on enabling AI models to learn and adapt continuously over time, incorporating
new information while retaining previously acquired knowledge. On the other hand, FL aims
to facilitate the development of multicenter studies by overcoming the problems related to
centralized learning settings that need to transfer sensitive medical data from multiple centers to
a central location. FL and CL approaches to SR have received little attention, with the literature
focusing on DL models. Only a few works exist about federated SR algorithms [34, 35], and
none of them deal with concept drift.

To foster trust among domain experts, model interpretability may not suffice and their full
engagement in model creation and selection should be allowed. In a true human-in-the-loop
scenario, physicians should be allowed to contribute their clinical expertise directly to ML model
development and selection. This can be facilitated through flexible graphical interfaces enabling
iterative feedback processes.

Finally, proposing SR as a method capable of automating the creation of CDS tools will require
consolidating and extending it to various parametric models commonly used in clinical score
development, such as sub-distribution hazard models and time series analysis.
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