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Abstract

In this paper, we introduce and experimentally assess an innovative big data analytics
technique for mining and analyzing Quality-of-Life Indicators (QoL) over time among patients
with lung cancer and treated with immunotherapy. In more details, given datasets of QoL
indicators collected over time, at regular intervals, the F-TBDA technique (Frequency-based
Temporal Big Data Analytics) computes temporal relative frequency tables over fixed-time
intervals where data of subsequent observations (i.e., intermediate therapy) are compared with
the baseline observation (i.e., starting therapy). Then, on the basis of these relative frequency
tables, both simple and complex frequency-based big data analytics tools are developed, in
order to unveil hidden patterns over cancer patient therapies. Experimental results on top of a
real-life dataset nicely complete the theoretical contributions we provide in our research.
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1. Introduction

Big healthcare data analytics (e.g., [1,2,3]) has become an impressive research area of astonishing
relevance during the last years. This relevance is twofold: from a side, it is due to the social impact that
these technologies can have over the effectiveness of the healthcare therapies; from another side, at the
decision-making level, these technologies can be effectively used for healthcare measures and policies.
Recently, a broad set of proposals have appeared, mainly focusing on the rather straightforward idea of
applying classical data mining and machine learning to big data but, as shown in authoritative studies
(e.g. [4.5]), there are still relevant open issues and research challenges. This is mainly because
traditional algorithms are unable to deal with the known characteristics of big data, namely volume,
velocity, variety and veracity [6]. Therefore, innovative approaches and solutions need to be devised to
effectively and efficiently support big data analytics of healthcare datasets (e.g., [7,8]). The most
prominent blueprint to follow in this case is to tailor the design and development phases to the specific
case study, trying to achieve a bottom-up methodology (e.g., [21,22])

In line with this goal, the EU H2020 research project QUALITOP - Monitoring multidimensional
aspects of QUAIlity of Life after cancer ImmunoTherapy: an Open smart digital Platform for
personalized prevention and patient management [9] focuses on improving the quality of life of cancer
patients treated with immunotherapy. Basically, the project aims at identifying a (broad) set of
indicators predictive for Quality of Life (QoL) indicators of cancer patients treated with
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immunotherapy. and processing, mining and analyzing these indicators. The ultimate goal is to come
up with active guidelines that contribute to improving patients’ well-being at every level, including the
physical level, the social/family level, the emotional level and the functional level (e.g., [10]). Within
this context, this paper focuses attention on an innovative big data analytics technique called Frequency-
based Temporal Big Data Analytics (F-TBDA), with the main goal of discovering hidden temporal
patterns from periodic consecutive QoL indicator observations over time. In more detail, given a dataset
of baseline QoL indicator observations, denoted by B, and T fixed-time subsequent follow-up QoL
indicator observations, denoted by F = {F, Fy, ..., Fr_1}, the F-TBDA technique computes a set of
temporal relative frequency tables over fixed time intervals, denoted by FT = {FTy, FTy, ..., FTr_1},
such that each element of each frequency table FTy[i,j] € FT stores the (relative) frequency of the
difference between the follow-up QoL indicator value in Fi[i, j] € F and the baseline QoL indicator
value in BJ[i, j]. Clearly, the difference scores capture the evolution of that particular QoL indicator
from the baseline case to the k -time case. Based on this temporal pattern mining approach as done with
F-TBDA, the proposed framework implements several frequency-based big data analytics tools, to
reveal hidden temporal patterns about the effects of various patient, disease and treatment therapies
with respect to QoL.

Another strong contribution of this paper consists of the experimental assessment and analysis of F-
TBDA on top of a real-life dataset of lung-cancer patients treated with immunotherapy, with QoL
assessments at baseline up to four distinct follow-up assessments, namely at three, six, twelve and
eighteen months. Experimental results on top of a real-life dataset nicely complete the theoretical
contributions we provide in our research. The full version of this contribution appears in [43].

2. Related Work

In this Section, we provide an overview on research proposals that are close to our work.

In [11], authors describe a technique useful to discover trends in healthcare data that is a conjunction
of association rule mining with model-based recursive partitioning [12]. Indeed, the technique allows
the discovery of temporal trends through association rules based on a user-defined diagnosis. Mined
rules set the potential trends among the patients and the model-based recursive partitioning inspects
how strong is the trend across time while accounting for demographic attributes such as the age of the
patients. Diagnosis are used as input for the Apriori algorithm [13] to generate rules, and the highest
confidence results are adopted to generate data to fed to the model-based recursive partitioning
algorithm in order to yield the temporal trends. Specifically, Gender and Age are the two attributes used
as partitioning variables for the built regression tree that results from applying a model-based recursive
partitioning, while the admission month or quarter was the regressor. Finally, the leaves of the built tree
constitute trends related to the patient admission months. Experimental results are presented for
Hyperlipidemia as well as for Hypertension diagnoses based on data from the NIS dataset [14].

In [15], authors propose a methodology to mine temporal association rules from hybrid healthcare
event data using a variation of the Apriori algorithm [16]. Indeed, an administrative and clinical data
mesh-up is generated and constitutes the input data for the mentioned mining algorithm. Clinical data
are then pre-processed through a knowledge-based Temporal Abstraction Technique to ensure the time-
series related to measurements taken on a particular patient regarding a specific attribute (for example,
their glucose levels or concomitant cancers) are turned into qualitative descriptions that can be
integrated into the administrative data. The final goal of the process is to find physiological aspects of
the patients that show a significant temporal association with the drug prescriptions. For instance, a
pertinent result from applying the algorithm on the pre-processed hybrid event data would be that
overweight patients having high Glycaemia and excessively high HbAlc would be prescribed Platelet
aggregation inhibitors with certain confidence value and within a time-window which default to six
months.

Authors in [17] describe a methodology to discover temporal phenotypes through Lines Of Therapy
(LOT) in cancer patients, namely lung-cancer and melanoma patients. Indeed, identifying temporal
phenotypes in cancer patients undergoing a therapy would assist in spotting observable traits related to
disease progression or reaction to drug administration in a timely manner that eventually would provide
insights into adjusting therapies across specific patient populations and hence enabling precision



medicine. Because treatments are selected based on phenotypes (morphological, biochemical,
physiological, behavioral, and so forth), it is important to detect patient phenotypes over the course of
their treatment period. In this sense, the current work proposes to extract these phenotypes by k-means
clustering [18] LOT of melanoma and lung-cancer patients. The LOT data are in turn extracted using
an algorithm that takes as input insurance claims raw data as well as Electronic Health Records (EHR)
data and transform them to yield in a first step data structured in terms of patient cohorts (based on
demographic values) and in a second step systemic anticancer therapy claims data. Resulting clusters
would most importantly differentiate slow progression vs fast progression phenotypes across the patient
cohorts. The data are finally used to plot Sankey diagrams related to phenotyping clustering across time.

Finally, in [19] a Web-based platform is proposed. This platform adheres to the Model-View-
Controller (MVC) architectural pattern: the model uses data sharding to store data in a NoSQL database
via healthcare tailored tree-shaped set of documents (equivalent of tables in SQL), which is named
PareMeDocs. This solution ensures highly performant search and filter querying. Data sharding is either
system-based, or user-defined. In the case of user-defined sharding, meaningful shards of data could be
created for storage through, for instance, specific attributes useful to speed-up underlying data querying
(e.g., data could be shared by seasons of the year by gathering and storing same-season records in the
same shard, and that based on a date attribute). Eventually, authors aim at drastically increase
search/filter queries over such data by leveraging Map-Reduce over sharded data compiled in a
PareMeDocs tree (map functions identify target shards of data for the query and the reduce aggregate
those data accordingly). Application interface provides a timely-display of the records of the NHIRD
dataset (~1B records) [20]. For example, for a specific patient ID or given their birthday or sex, a
timeline depiction is displayed to the user in order to inspect each record according to specific attributes.
The setting offers a wide range of statistical (distributions, aggregation, etc.) and/or chronological charts
over queried sub-populations.

3. Dataset Description and Medical Analysis Goals

In this Section, we provide the description of the real-life QoL dataset and the specific medical goals
related to its definition, creation, and population. We named this dataset as QUALITOP DataSet (QDS).
Data stored in the QDS dataset were collected within the context of QUALITOP [23], at the University
Medical Centre Groningen (UMCG) and Treant hospital, The Netherlands, between May 2021 and
October 2023. The infrastructure of the UMCG data-biobank OncoLifeS was used to collect these data
[24]. Patients included are aged > 18 years at the time of signing informed consent, diagnosed with
lung cancer and treated with Immunotherapy, Immune Checkpoint Inhibitors (ICIs). Patients received
monotherapy or in combination with other cancer treatments, for example, chemotherapy of
radiotherapy. Inclusion was possible before the start of the second cycle of treatment. Patients were
excluded when they were pregnant, under guardianship or refused to sign informed consent.

To assess QoL indicators, we used the Functional Assessment of Cancer Therapy — General (FACT-
G) methodology, which is specifically developed for patients receiving cancer treatment and is widely
used since the nineties [25,26]. FACT-G consists of 27 questions divided in four domains: physical
well-being, social/family well-being, emotional well-being, and functional well-being. For our patients,
the authorized Dutch version was used. FACT-G was collected at baseline, start of immunotherapy, at
3-months follow-up, 6-months follow-up, 12-months follow-up, and 18-months follow-up. Patients
were asked to fill in the questionnaires, regardless of continued treatment. Clinical data was collected
from the electronic patient report and collected and managed in Research Electronic Data Capture
(REDCap) [27], which is a secure, web-based platform designed to support data for research studies.
Furthermore, REDCap sent automatically the FACT-G questionnaire at baseline and follow-up
moments to patients by e-mail. Some patients requested to receive a paper version of the FACT-G at
home.

The purpose of this analysis is to identify patterns in quality-of-life over time and to link these to
patients, diseases and treatment characteristics. Indeed, quality-of-life is the perceived quality of an
individual’s daily life, that is, an assessment of their well-being or lack thereof. In the specific healthcare
setting, health-related quality-of-life is an assessment of how the individual's well-being may be
affected over time by a disease, disability or disorder [28]. Examples of quality-of-life characteristics



include: age, gender, disease stage, type of treatment, etc. Based on the results found, it is possible to
determine which patients are more or less likely to benefit from immunotherapy before the start of
treatment. By including the patient perspective in research, the patient can be better informed before
starting treatment. This will lead to better decision making.

On a wider perspective, these methodologies are useful to support advanced analytics for healthcare
policies at a greater level (e.g., regional level, national level, and so forth —e.g. [29]). In fact, decision-
making processes of a certain region can scale from the hospital level to the regional management level,
by devising innovative cooperative paradigms.

4. The F-TBDA Technique: Frequency-Based Temporal Big Data Analytics

In this Section, we describe in details the main contribution of this research, i.e., the F-TBDA technique.

First, given: (i) a medical cancer therapy temporal observation dataset D having P records, (ii) a set
of baseline QoL attributes {q, q1, ..., qn—1}, selected from D, denoted as @, (iii) the corresponding R
follow-up QoL attribute groups of the k-months observation {fo xm, f1,km» > fn—1,km}> denoted as Fypy,
we derive R+ 1 input corresponding datasets, namely Q U {Fy w, Fic,m, Fic,m» -+ Fiep_ym}- For
instance, if R = 4 and k € {3,6,12,18}, we derive 5 input datasets, like depicted in Figure 1.
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Figure 1: Derived Datasets for the Case R = 4and k = 3

In Figure 1, (i) Q stores P records having {qq, g1, ..., qny—1} as attributes; (ii) F3,, stores P records
having  {fosm fi3m> -» fn—1,3m} as attributes;  (iii) Fgy stores P records having
{fo.em> frems » fn—1,6m} as attributes; (iv) Fy,p stores P records having {fo 12m, f1,120m5 o fN-1,12m)
as attributes; (v) Fygy stores P records having {f 18m, f1,18Mm» > fn—1,18m} s attributes.

In order to capture the variations of sub-sequent QoL follow-ups with respect to the QoL baselines,
we carefully build R P X N QoL tables, denoted as QO Ly, such that each element QOLy, i, j], where
k € {ko,kq, ..., kgr_1}, is defined as follows:

QO Ly i, j1 = |Fiem|fjpem]li] — Q[a;]Li]], (1)
vk € ko, ky, o, kr_1}
where, given a table T in the set Q U Fyyy, where k € {kg, ky, ..., kg_1}, T[a;][i] denotes the i -th value

of the attribute a; € T'. Still in the previous case study, we derive 4 QoL tables, like depicted in Figure
2.
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Figure 2: Derived QOL Tables for the Running Case Study

Then, for each QoL table Q0L , we compute a proper P X N relative frequency table, denoted by

FT¢ km-» such that each element FTy o [i, j], where k € {ko, k4, ..., kg_41}, is defined as follows:

QO0Lqkmli ]

Lo QOLgmlij1’
By applying this methodology to all the frequency tables of the model, we finally obtain a temporal
relative frequency table stream, on top of which several frequency-based big data analytics tools can
be applied in order to discovery hidden temporal patterns from QoL data. Still in the previous case
study, we derive 4 QoL frequency tables, as depicted in Figure 3.

FTomli,j1 = Vk € {ko, kq, ..., kg_1} (2)
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Figure 3: Temporal Relative Frequency Table Stream for the Running Case Study

Based on this so-defined analytical model, we introduce two different frequency-based big data
analytics tools. The first one, named as Temporal Variation of Relative Frequencies (TVRF), is oriented
to study the evolution of specific QoL attributes, by inspecting its relative frequency variation over time.
The second one, named as Clustering Similarity Analysis over Temporal Frequency Tables (CSATFT),
is oriented to study the evolution of all the QoL attributes, by inspecting the similarities of different
clusterings computed over frequency tables across time. In the following, we focus on these tools.

As regards the TVRF analytics, given a QoL attribute q; € FT yp., such that g; € {q¢,q1, -, qn-1}
and k € {kgy, kq, ..., kr—1}, we report the percentage variation of the relative frequency of q; across
time, by accessing the corresponding g; attribute value across different frequency tables. Figure 4 shows
a simple yet illustrative example of the TVRF analytics.
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Formally, every variation in the relative frequency plot of q; = FTg yp[i] across time, such that i €
{0,1,...,N — 1} and k € {kg, ky, ..., kg_1}, denoted by §,;, is obtained as follows:

P-1
vi €{0,...,N —1},Vk € {ko, kq, ..., kgr_1}
As regards the CSATFT analytics, given a frequency FTy ypy, such that k € {ko, kq, ..., kg_1}, we
interpret every row of FT , as a data object, and we apply a clustering algorithm to the so-derived
data domain of FTg j . In particular, among all the alternatives, we selected k-means clustering [18],

following the guidelines of several authoritative studies in the area (e.g., [30]). Figure 5 shows a simple
yet illustrative example of the clustering for the toy frequency table FTg 3.

[%]

Frequency Variation

Figure 4: TVRF Analytics Example

Fa,3m
Figure 5: Clustering Example for the Toy Frequency Table FT 3y
By applying this methodology on top of all the stream of temporal relative frequency tables, we

obtain accordingly a stream of clustering. Figure 6 shows an illustrative example when considering the
frequency tables of Figure 3.
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Figure 6: Clustering over the Temporal Relative Frequency Table Stream of Figure 3

Based on the so-derived stream of clusterings we compute a suitable clustering similarity measure
among different clusterings over time. Among all the alternatives, by following the considerations of
other similar studies in the field (e.g.,[31]), we selected the Cosine similarity measure [32], by applying
a specific variation suitable to our case study.

Given two clusterings ®;_i and ®;, and given two different clusters C; and C;, such that C; € ®; and
C; € @}, respectively, the Cosine similarity between C; and C;, denoted by S(C;, C;), is defined as
follows:

Vo141 (4)
s(c.¢) = 1+A(Cl-,C,-)
where:
1 (5)
AC,C) = ——o 5(x,
(€.6) |ci||c,-|xeczyec_ )

&(x,y) is the distance between two data points x and y, which is defined as in the next. Let F, (i)
be the i -th numerical feature and D, (i) be the i -th categorical feature of a data point x. Then, §(x, y)
is defined as follows:

5G.y) = ) vilE @ = KO +n ) 1) - D, D, (6)
i i

such that y;, p and 1 are tuning parameters to be chosen on the basis of specific distributions of the
target dataset [32].

Based on the definition of the Cosine similarity of two clusters C; and Cj, the Cosine similarity
between two clusterings ®; and ®,, S(P,, P,), is finally defined as follows:

S(®y, @) = max{S(C;, C;),S(C;, G}, Vi € Dy Vj, k € D, (7)

Figure 7 shows a simple yet illustrative example of the CSATFT analytics, where the clustering
similarity plot between, the toy frequency tables FTj sy, and FTy ey, FTo12m and FTg gy,
respectively, is shown.

S(FT g F o )
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Figure 7: CSATFT Analytics Example

5. Experimental Evaluation and Analysis

In this Section, we provide a comprehensive experimental evaluation and analysis of the big data
analytics performance of the F-TBDA technique, by performing several experimental tests over the
real-life QDS dataset.

As regards the proper experimental engineering we performed in our campaign, in order to deal with
the high-dimensionality of the QDS dataset, we first partitioned the dataset in six distinct datasets,



which we list in the following: (i) QDS_BASELINE, which stores the starting values of the QoL
attributes at the beginning of the immunotherapy; (ii) QDS_3MONTHS_FUP, which stores the values
of the QoL attributes after three months from the start of immunotherapys, i.e. the three-month follow-
up; (iii) QDS_6MONTHS_FUP, which stores the values of the QoL attributes after six months from
the start of immunotherapy, i.e. the six-month follow-up; (iv) QDS_12MONTHS_FUP, which stores
the values of the QoL attributes after twelve months from the start of immunotherapy, i.e. the twelve-
month follow-up; (v) QDS_I8MONTHS_FUP, which stores the values of the QoL attributes after
eighteen months from the start of immunotherapy, i.e. the eighteen-month follow-up; (vi)
QDS_CLINICAL, which stores the values of the clinical assessments of patients associated to the QoL
attributes.

In our experimental analysis, since we specifically focus on QoL evolutions, we consider the first
five datasets on top of the overall six datasets. The correlation of QoL evolutions with clinical
assessment outcomes is thus left to future research efforts in the field.

After this phase, among the high number of QoL attributes, we selected a sub-set of them, in order
to perform our experimental study. In particular, being inspired by well-understood feature selection
analysis (e.g., [33]) the following domains have been selected, in accordance with the FACT-G
methodology (see Section 3): (i) physical well-being: this domain of attributes models aspects related
to the physical well-being of cancer patients; (ii) social/family well-being: this domain of attributes
models aspects related to the social and family well-being of cancer patients; (iii) emotional well-being:
this domain of attributes models aspects related to the emotional well-being of cancer patients; (iv)
functional well-being: this domain of attributes models aspects related to the functional well-being of
cancer patients.

It should be noted that these attribute domains well capture the overall QoL process for the both the
goals of effectiveness and efficiency, according to several recent studies (e.g., [34]). However, due to
space limit, we focus our experimental analysis on the physical well-being domain, which is an
authoritative representative of the quality of life of cancer patients. The selected QoL physical well-
being attributes are reported in Table 1. In particular, Table 1 shows the meaning of each QoL attribute
and its possible range of numerical encodings from 1 to 5, with the associated meaning.

Table 1
QOL Attributes of the Physical Well-Being Domain

Physical Well-Being Domain

Qol Attribute Description

G20 1 “I' have a lack of energy” — {1: Not at all | 2: A little bit | 3: Somewhat | 4:

Quite a lot | 5: Very much}
“I feel nausea” — {1: Not at all | 2: A little bit | 3: Somewhat | 4: To a fairly
high degree | 5: To a very high degree}
“Because of my physical condition, | have trouble meeting the needs of my
420 3 family” — {1: Not at all | 2: A little bit | 3: Somewhat | 4: To a fairly high
) degree | 5: To a very high degree}
“I have pain” — {1: Not at all | 2: A little bit | 3: Somewhat | 4: To a fairly high

4202

204 degree | 5: To a very high degree}
“l am bothered by the side effects of the treatment” — {1: Not at all | 2: A little
205 bit | 3: Somewhat | 4: To a fairly high | 5: To a very high degree}
“I feel ill” — {1: Not at all | 2: A little bit | 3: Somewhat | 4: To a fairly high
206 degree | 5: To a very high degree}

It should be noted that, using encodings to model the possible values of the QoL attributes, follows
common Machine Learning (ML) practices in data analytics (e.g., [35]).

According to what is described in Section 4, we organized our experimental evaluation by means of
the main big data analytics tools (i.e., TVRF and CSATFT), which mainly focus the attention on
stressing the accuracy of our big data analytics tools, while the performance assessment is left as future
work. Due to space limitation, here we focus on the TVRF analytics only.

For every QoL physical well-being attribute, we thus derived the corresponding TVRF plot, in order
to capture the frequency variations over time, across the different follow-up values of the QoL
attributes. Figure 8 reports the TVRF plots for the QoL attributes{q,o,, 420, 420, 920, 9205 920, }-
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From the analysis of Figure 8, it clearly follows that, for almost all the QoL physical well-being
attributes, after the 3-months follow-up therapy, variations stabilize towards stable (and lower) values.
This shows the effectiveness of the therapy itself. On the other hand, g, variations show a singular
trend. For this certain attribute, “I have nausea”, more research is needed to explain why at 6-months
follow-up there is more variation compared to the 3-months follow-up.

6. Conclusions and Future Work

Starting from the real-life experiences achieved with the context of the QUALITOP EU H2020 research
project, in this paper we have introduced and experimentally assessed F-TBDA, an innovative
frequency-based temporal big data analytics technique aimed at discovering hidden temporal patterns
from quality-of-life indicators of cancer patients. Our technique makes use of advanced methodologies
developed on top of frequency tables built from baseline and follow-up QoL data, mostly based on
clustering and clustering similarity analysis. Retrieved results have confirmed the benefits of F-TBDA
in discovering hidden temporal patterns from quality-of-life indicators of cancer patients, and its clear
suitability for being extended with novel artificial intelligence methods.

Future work is mainly oriented towards extending our actual frequency-based temporal big data
analytics framework with innovative characteristics of the emerging big data trend, such as: (i)
multidimensionality of data (e.g., [36,37]); (ii) privacy of data (e.g., [38,39]); (iii) data approximation
metaphors (e.g., [40,41]); (iv) data processing performance (e.g., [42]).
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