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Abstract
We study verification of reachability properties over Communicating Datalog Programs (CDPs), which

are networks of relational nodes connected through unordered channels and running Datalog-like

computations. Each node manipulates a local state database (DB), depending on incoming messages

and additional input DBs from external services. Decidability of verification for CDPs has so far been

established only under boundedness assumptions on the state and channel sizes, showing at the same

time undecidability of reachability for unbounded states with only two unary relations or unbounded

channels with a single binary relation. The goal of this paper is to study the open case of CDPs with

bounded states and unbounded channels, under the assumption that channels carry unary relations only.

We discuss the significance of the resulting model and prove the decidability of verification of variants of

reachability, captured in fragments of first-order CTL. We do so through a novel reduction to coverability

problems in a class of high-level Petri Nets that manipulate unordered data identifiers. We study the

tightness of our results, showing that minor generalizations of the considered reachability properties

yield undecidability of verification, both for CDPs and the corresponding Petri Net model.

This paper is an abridged version of a paper published in the Proceedings of the 43rd ACM Symposium
on Principles of Database Systems (PODS 2024).
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1. Introduction

Declarative approaches to the specification of distributed data-aware systems have been ex-

tensively studied in many different contexts [1, 2, 3, 4, 5]. These approaches share the general

idea that the overall behavior of the system emerges from the interaction of a number of local

components (hereafter called nodes), mutually connected in a given topology, each running a

declarative program that describes at once the input/output behavior to exchange messages with

the other nodes, and the update of the node internal state. Both the state and the exchanged mes-

sages are relational, thus making the overall system a distributed version of so-called data-aware
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processes, extensively studied within the foundations of data management from the modelling

and static analysis point of view [6, 7, 8, 9, 10].

In this work, we are interested in the static analysis of such distributed declarative data-

aware processes, in the style of [6, 7, 8]. We focus in particular on the D2C language originally

introduced in [4], which employs a suitably extended version of Datalog equipped with commu-

nication primitives and the possibility of referring to the previous and current node state. On

top of the resulting model of what we call Communicating Datalog Programs (CDPs), two aspects

become particularly important in the light of static analysis: (i) the presence of communication

channels with different properties on faithfulness and ordering; (ii) the distinction between

closed systems where new data are never created, but only the data present in the initial node

states can be used and exchanged, and interactive systems where new data can be acquired and

exchanged during the computation.

Declarative distributed systems with asynchronous communication occurring over multiset

channels (where multiple copies of the same message may exist, even when the sender and

receiver coincide) were considered in seminal works in the area, but only studied in connection

with static analysis in the presence of external data in [11]. Such systems are infinite-state,

with the consequence that even for very simple reachability properties, static analysis is un-

decidable [11]. Decidable subclasses have been singled out by importing and adapting the

notion of state-boundedness originally introduced in [12, 13, 14], and applied in [13, 15, 16] to

obtain decidability of verification of data-aware processes against rich variants of first-order

branching-time temporal logics. In a state-bounded system, infinitely many objects may be

seen within and across runs of the system, but in each single configuration reached during the

computation, their number remains bounded. In the context of CDPs, this notion has a twofold

effect: it essentially bounds the number of constants that can be simultaneously stored in each

node state, as well as the size of each communication channel. Under such restrictions, it has

been shown that model checking first-order CTL properties is decidable [11].

In this work, we start from the observation that bounding communication channels is a severe

restriction, as it cannot be enforced even by suitably controlling how nodes are programmed.

At the same time, [11] has shown that even propositional reachability is undecidable to check

over severely restricted CDPs that employ messages with a binary signature. We consequently

focus on the verification of unary CDPs, i.e., CDPs where the messages range over a signature

of at most unary relational symbols, and while the local memory and interaction with external

services is bounded, the channel capacity is not. This is also interesting to study in the light of

multiset channels, since adopting queues, as in [9, 10], would immediately yield undecidability

for unary, unbounded channels. We show that the resulting model is still powerful enough

to model real-case scenarios, and engage in a fine-grained study of CDP verification against

variants of reachability, expressed as fragments of first-order CTL. Specifically, we establish an

equivalence between this problem and that of verifying coverability over a variant of Petri nets

with unordered data [17], a property that is decidable to check despite the fact that these nets

are essentially infinite-state. This yields decidability for positive nested reachability queries

over unary CDPs, even in the case where the logic has not only the ability of querying the

states, but also that of inspecting communication channels. We finally investigate the tightness

of our decidability results, showing that minor generalizations fall back into undecidability.
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2. The CDP Model

In this section, we informally introduce the CDP model by Ma et al. [4]. However, for simplicity,

we formalize only the fragment relevant for our study, which is the one over unordered channels,

non-deterministic bounded inputs, and single-node networks.

A CDP is a fixed network of data-centric nodes sharing messages via point-to-point channels.

Each node (1) runs a Datalog-like program, written in the language D2C, (2) updates its internal

state, which is maintained as a state DB over a dedicated state signature, (3) receives information

from the external environment, in the form of an input DB over a dedicated input signature,

and (4) shares messages, i.e., single relational facts over a dedicated transport signature. The

nodes react to incoming messages: when a message 𝑚 from a node 𝑢 is delivered to a node 𝑣,

the latter gets activated and runs the program on its data-sources. In fact, the program input

consists of the node state DB, the current input DB, the message 𝑚 itself, and the local structure

of the network at 𝑣, in the form of a network DB. The output provides a new state DB for 𝑣
and a set of outgoing messages, each labeled by its recipient, which, in turn, are sent on the

respective channels (without labels).

We assume that communication is asynchronous and channels are reliable but unordered,

that is, at each time-step, only one message is delivered (and, thus, only one node gets activated),

no message can be lost, but the reception order is non-deterministic. These assumptions are

useful, e.g., to model communication networks where message loss is ignored but order cannot

be guaranteed (e.g., because of an underlying UDP transport protocol). Since nodes react only to

incoming messages, the communication network has, for each node, a self-loop channel (from

the node to itself), which initially contains a special message dedicated to node activation.

CDP nodes are exposed to information from the external environment, which represents users

and/or external services. Environment interaction is abstracted away by input policies, i.e., rules

to provide a new input DB. In this paper, we focus on the 𝑏-bounded interactive input policies,

where 𝑏 P N: each time a node receives a message, the current input DB is substituted by a

non-deterministically chosen new one with active domain of cardinality at most 𝑏. This policy

is relevant to model interaction with external users that continuously provide new information,

e.g., text messages for a chat application.

All these information sources are manipulated by a D2C program, i.e., a set of Datalog-

like rules specialized to the interactive and distributed setting of CDPs. The specialization is

achieved by (1) organizing relation symbols in dedicated signatures (state, input, and transport),

(2) using the in-rule flag prev to distinguish queries over the previous state DB and the new

one under computation, and (3) labeling transport literals with terms representing senders or

recipients (see [11] for a non-deterministic extension of D2C). However, in this paper, we focus

on a simple D2C fragment, specialized for single-node networks. In fact, while inconvenient

for modelling, single-node CDPs are enough for the technical study of verification of CDPs

employing unordered channels, since each such CDP can be encoded over a single node network.

2.1. Single-node CDPs

We now formalize bounded-interactive, single-node CDPs. With a slight abuse, we refer to this

fragment as, simply, CDPs and ignore all other CDP variants (see [11] for the full model).
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Definition 2.1. A CDP signature is a tuple Λ “ p𝒮, ℐ, 𝒯 q, where 𝒮 , ℐ , and 𝒯 are pairwise

disjoint relational signatures, respectively called state, input, and transport. A state, input, or

transport atom (resp., literal) is an atom (resp., literal) over 𝒮 , ℐ , or 𝒯 , respectively. Ÿ

CDP programs are, syntactically, reminiscent of stratified Datalog with negation and inequality.

Definition 2.2. A D2C rule over a CDP signature Λ is a formula

𝐻 if 𝐿1, . . . , 𝐿𝑛 prev 𝐿𝑛`1, . . . , 𝐿𝑛`𝑚, 𝐶1, . . . , 𝐶ℎ.

s.t.: (1) 𝐻 is a state or transport literal, (2) 𝐿1, . . . , 𝐿𝑛 are state, input, or transport literals,

(3) 𝐿𝑛`1, . . . , 𝐿𝑛`𝑚 are state literals, and (4) 𝐶1, . . . , 𝐶ℎ are inequality constraints of the form

𝑡1 ‰ 𝑡2, where 𝑡1 and 𝑡2 are terms (constants or variables). The rule head is 𝐻 and the rule

body is the part following if . The rule scope of prev is 𝐿𝑛`1, . . . , 𝐿𝑛`𝑚. The rule is safe if each

variable occurring in the head, in a negated literal, or in an inequality constraint, also occurs in

a positive literal in the rule body. The rule is transport consistent if each variable occurring in a

transport atom in the head also occurs in a positive non-input literal. Ÿ

Intuitively, in the scope of prev, state literals query the state DB available immediately before

node activation. Outside the scope of prev, in the body, input literals query the input DB,

transport literals the incoming message, and state literals the new state DB under computation.

In the head, transport atoms deduce the outgoing messages and state atoms the facts in the new

state DB. At the end of the computation, the new state DB substitutes the previous one and the

outgoing messages are sent on the channel. Transport consistency states that data from the

input DB cannot directly flow to the channel. This matches with the assumption that only nodes

have the power to send messages, which have to be preliminarily gathered in an out-buffer that

contributes to the node configuration (state DB, possibly affecting its boundedness, cf. Def. 2.4).

Note that state literals in the scope of prev and transport literals in the body are not involved in

forming recursive dependencies. While this feature appears as a major difference with Datalog,

actually, it is just a matter of making the syntax convenient for the CDP semantics. In fact, one

can provide a Datalog encoding 𝒫 of a set 𝒫 of D2C rules where this difference is ironed out.

Definition 2.3. A D2C program 𝒫 over a CDP signature Λ is a finite set of safe and transport

consistent D2C rules s.t. 𝒫 is stratified. Given such Λ and 𝒫 , a CDP is a tuple pΛ,𝒫, 𝑆0,𝑚0q,

where 𝑆0 is a state DB denoting the initial state and 𝑚0 is an initial message. Ÿ

The semantics of CDPs is given in terms of configuration graphs, which connect CDP

configurations via transitions. Each configuration p𝑆, 𝐼, 𝐶q describes a snapshot of the system,

including the state DB 𝑆, the input DB 𝐼 , and the channel 𝐶 , represented as a multiset. The

configuration is 𝑏-input, 𝑠-state, or 𝑐-channel bounded, for some 𝑏, 𝑠, 𝑐 P N, if the cardinality of

the active domain of 𝐼 , of the active domain of 𝑆, or of 𝐶 , is at most 𝑏, 𝑠, or 𝑐, respectively.

Definition 2.4. Given 𝑏, 𝑠, 𝑐 P N, we call 𝑏-CDP a CDP 𝐷 interpreted under the configuration

graph Υ𝑏
consisting of all 𝑏-input bounded configurations of 𝐷. A 𝑏-CDP is 𝑠-state or 𝑐-

channel bounded if all configurations reachable in Υ𝑏
from an initial configuration are 𝑠-state

or 𝑐-channel bounded, respectively. Ÿ
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3. The Verification Problem for CDPs

We study the problem of formal verification of CDPs. Previous work [11] showed that control-

state reachability (that is, whether there is an initial configuration from which the target state

DB is reachable — ignoring the configuration of the channel) is undecidable even for restricted

CDPs that (i) have a single-node network, (ii) use the channel solely to (re)activate the node,

and (iii) employ a unary state signature. Decidability can be gained by imposing boundedness

conditions on the various CDP data sources [11]. In fact, for state- and channel-bounded CDPs,

decidability holds for temporal model checking againts formulae in CTLCDP, a branching-time

logic mixing CTL operators to analyze the system evolution, and FOL to query the data sources.

Unfortunately, boundedness is a semantic property, undecidable to check. In addition, while

there are different techniques to enforce state boundedness [14, 18], the same does not hold for

channels. Furthermore, as pointed out in the introduction, imposing boundedness is particularly

restrictive for communication channels. Interestingly, while undecidability of control-state

reachability over state-unbounded CDPs already holds for unary signatures, in the case of CDPs

with bounded states and unbounded channels it has been proved only for binary transport

signatures [11]. This makes CDPs that are state- and input-bounded, but operate over unbounded

channels carrying unary messages, worth investigating. We call such CDPs unary CDPs (uCDPs).

In the following, we study the problem of model checking variants of uCDPs against selected

fragments of CTLCDP. The base-level fragment we use to express reachability-like properties

called EFp´, 𝑏𝑜𝑜𝑙, 𝑠𝑡q, essentially, mixes EF CTL temporal operators with closed FO formulas

over the state signature. Specifically, given a CDP 𝐷 “ pΛ,𝒫, 𝑆0,𝑚0q, where Λ “ p𝒮, ℐ, 𝒯 q,
the language EFp´, 𝑏𝑜𝑜𝑙, 𝑠𝑡q over 𝐷 is defined by the rules

Φ ::“ 𝜙 | EF𝜙 | Φ^ Φ | Φ_ Φ 𝜙 ::“ 𝑡1 “ 𝑡2 | 𝑆ptq | D𝑥.𝜙 | 𝜙^ 𝜙 | 𝜙_ 𝜙 | ␣𝜙,

where Φ are temporal formulas, 𝜙 are closed FO formulas over 𝒮 , 𝑡1 and 𝑡2 are terms, and t is a

tuple (of proper size) of terms. Such formulas are interpreted as follows: 𝑆ptq queries whether

𝑆ptq is in the current state DB; D𝑥 is an existential quantifier over the active domain of the

state DB and the support of the multiset channel; and EF𝜙 is interpreted as in standard CTL,

i.e., there exists a path, in the CDP configuration graph, on which 𝜙 eventually holds [19]. For

example, reachability of a state DB containing the fact 𝑆paq is expressed by the formula EF𝑆paq,
while reachability of the state that contains only that fact by EFp𝑆paq ^ ␣D𝑥.𝑆p𝑥q ^ ␣𝑥 “ aq.

We study variants of reachability properties starting from EFp´, 𝑏𝑜𝑜𝑙, 𝑠𝑡q and considering

formulae consisting of (positive boolean combinations of) sentences starting with anEF operator,

tuning them along three dimensions: the available temporal operators beyond EF, the presence

of negations in the FO queries, and which components they inspect (state DB or also channels)
1
.

We identify such fragments with notation EFpl,△, ˝q, where:

‚ l indicates which temporal operators can be nested; it can be one of:

– ´ (no nesting), as in the grammar above,

– EF`
(nesting of multiple EF), obtained by adding to the grammar rule Φ ::“ EFΦ,

– AG (nesting of a single AG), obtained by adding to the grammar rule Φ ::“ EFAG𝜙, or

1

Input DBs are disregarded since their evolution is completely non-deterministic and its interaction with the state

DB can be captured by slightly modifying the CDP program so as to include the bounded input DB in the state DB.
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– pEF,AXq` (nesting of multiple EF and AX, possibly interleaved), obtained by adding

to the grammar rule Φ ::“ EFΦ | AXΦ;

‚ △ indicates how negation is supported by FO formulas; it can be either

– 𝑏𝑜𝑜𝑙, as defined by the grammar above, or

– 𝑝𝑜𝑠 (no negation), obtained by dropping from the grammar rule 𝜙 ::“ ␣𝜙;

‚ ˝ indicates whether formulas can only query state DBs, or also channels; it can be either:

– 𝑠𝑡 (queries only over node states), as defined by the grammar above, or

– 𝑠𝑡`𝑐ℎ (queries also over the support of channel multisets), obtained by adding to the

grammar rule 𝜙 ::“ 𝑇 ptq, where 𝑇 is in the transport signature.

For the formal syntax and semantics of these languages, we refer to the full paper.

We study the following model-checking problem variants.

Problem 3.1 (EFrl,△, ˝s-MC). Let l P t´,EF`,AG, pEF,AXq`u, △ P t𝑝𝑜𝑠, 𝑏𝑜𝑜𝑙u, and

˝ P t𝑠𝑡, 𝑠𝑡`𝑐ℎu. The EFrl,△, ˝s-MC problem is defined as follows:

Input: A 𝑏 P N, 𝑠 P N, 𝑠-state bounded single-node uCDP 𝐷, initial configuration 𝒞0, and

closed formula Φ P EFpl,△, ˝q.
Output: Whether the configuration graph Υ𝑏

satisfies Φ from 𝒞0. Ÿ

Verification w.r.t. all initial configurations reduces to finitely many instances of EFrl,△, ˝s-
MC. Indeed, due to state and input boundedness, the initial configurations are finitely many up

to isomorphisms, and FO formulas are invariant under isomorphisms that fix the constants in

them. Establishing the decidability status of the different variants of this problem is challenging,

due to the subtle interplay of the CDP components, e.g., how the node state is affected by the

content of the multiset channel, whose access is limited by aysnchronous communication. To

attack this problem, we provide a bridge with models and techniques for the verification of

data-aware extensions of PNs, in particular 𝜌-PNs. PNs are one of the most widely studied

models for concurrent computations, particularly suited to handle asynchronous threads and

message passing. Specifically, 𝜌-PNs lend themselves to be connected to uCDPs. In fact, tokens

carrying single data elements match constants used in unary messages, and places match

unary relation symbols - so that inserting a token carrying constant 𝑐 in a place 𝑀 naturally

corresponds to having message Mpcq in the channel. What is not at all clear, instead, is how to

encode in the 𝜌-PN the infinitely many input and state DBs that may be encountered along a

computation. Recall, in fact, that even under state-boundedness, a CDP can encounter infinitely

many, genuinely distinct state DBs.

To address this issue, we represent state and input DBs up to isomorphism. This can be done

by introducing dedicated places for the following purposes: (1) to encode the relation symbols

of messages; (2) to represent the isomorphism types of bounded input and state DBs, over a

fixed representative bounded domain; (3) to specify a mapping from the representative domain

to the infinite domain of data values used to form input and state DBs; (4) to deal with the

special constants that are distinguished in the CDP program, ensuring that each one of those

forms a singleton isomorphism type. This constitutes the basis for reducing EFrl,△, ˝s-MC

problems over uCDPs, to coverability checks over 𝜌-PNs.

We proceed as follows. We first investigate the decidability status of variants of control-state

reachability for 𝜌-PNs (Sec. 4). We then transfer these results to uCDPs, showing reductions

from variants of uCDP model checking to 𝜌-PNs control-state reachability (Sec. 5).
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4. 𝜌-PN Verification

We introduce now the language 𝑃 -𝜌CTL to express coverability properties on 𝜌-PNs and study

the decidability of the related model-checking problem. 𝑃 -𝜌CTL features the CTL EF temporal

operator, boolean conjunctions and disjunctions, and replaces propositions with markings

interpreted, each on its own, up to isomorphisms.

Definition 4.1. Given a set 𝑃 of places, 𝑃 -𝜌CTL is the language of formulas 𝜙 defined by the

following grammar, where the atomic 𝑃 -𝜌CTL formulas are markings 𝑀 over the place set 𝑃 :

𝜙 ::“ 𝑀 | 𝜙^ 𝜙 | 𝜙_ 𝜙 | EF𝜙 Ÿ

The semantics of 𝑃 -𝜌CTL is defined as for CTL, with the provision that the current marking

𝑀 of a 𝜌-PN 𝑁 satisfies an atomic formula 𝑀 1
, if 𝑀 covers, up to isomorphisms, 𝑀 1

.

Problem 4.2 (𝑃 -𝜌CTL-MC). The 𝑃 -𝜌CTL-MC problem is defined as follows:

Input: A 𝜌-PN 𝑁 “ p𝑃, 𝑇, 𝐹 q, marking 𝑀0, and 𝑃 -𝜌CTL formula 𝜙.

Output: Whether 𝑁 satisfies 𝜙 from 𝑀0, denoted by 𝑁,𝑀0 |ù 𝜙. Ÿ

Since atomic formulas perform coverability checks, 𝑃 -𝜌CTL-MC can be reduced to plain

𝜌-PN coverability. This is done by induction on the structure of the 𝑃 -𝜌CTL formula. First,

a given formula 𝜙, to be checked on a 𝜌-PN 𝑁 and initial marking 𝑀0, is represented as a

syntax tree. Its leafs are the occurrences of atomic formulas and the other nodes are obtained

by applying to the children the corresponding boolean or temporal operator. Second, from

leafs to the root, each node 𝜓 is mapped to a 𝜌-PN 𝑁𝜓
and initial marking 𝑀𝜓

0 where (1) the

net 𝑁𝜓
contains, as sub-nets, the nets 𝑁 𝜏

, for each sub-formula 𝜏 of 𝜓, (2) 𝑃𝜓 contains the

places check𝜓 and cover𝜓 , (3) 𝑀𝜓
0 places at least a distinguished identifier on check𝜓 , and

(4) transitions are added so that the place cover𝜓 can be marked with a distinguished identifier

iff 𝑁𝜓,𝑀𝜓
0 |ù 𝜓. The construction for non-leaves take into account the children nets and the

semantics of the respective conjunction, disjunction, or EF operator, where the latter case is the

most involved one. We refer to the full paper for the details.

From decidability of 𝜌-PN coverability we obtain:

Theorem 4.3. For each finite place set 𝑃 , 𝑃 -𝜌CTL-MC is decidable.

5. uCDP Model Checking

To reduce uCDP model checking to 𝜌-PN model checking, we encode an arbitrary 𝑠-state

bounded 𝑏-uCDP 𝐷 “ pΛ,𝒫, 𝑆0,𝑚0q with Λ “ p𝒮, ℐ, 𝒯 q, into a 𝜌-PN 𝑁 “ p𝑃, 𝑇, 𝐹 q.
1. Configuration encoding. We use identifiers to represent the domain of DBs: ID “ ∆Y t‚u.

We use places of 𝑁 (and related markings) to encode configurations of 𝐷, reorganized in the

following way: (i) channel configuration, (ii) extension, up to isomorphisms, of the state and

input DBs, over a fixed active domain of representative constants, (iii) mapping, via a partial

function, of the representative constants to the represented state and input DB constants.

7
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2. Step encoding. We use the transitions of 𝑁 to encode the steps of 𝐷, organized as: (i) input

update, and (ii) D2C computation, including message reception, casting, and state DB update.

3. Formula encoding. We encode a formula 𝜙 P EFpEF`, 𝑏𝑜𝑜𝑙, 𝑠𝑡q into 𝑃 -𝜌CTL. In the full

paper, we show that it is enough to handle FO formulas. Since 𝜙 ranges only over the state

signature, it is satisfied by any configuration p𝑆, 𝐼, 𝐶q s.t. 𝜙 |ù 𝑆. Since 𝐷 is 𝑠-state bounded,

up to isomorphism there is only a finite set t𝑆1, . . . , 𝑆𝑘u of state DBs satisfying 𝜙. Thus, 𝜙 is

equivalent to the disjunction of markings 𝑚𝑖 encoding the configurations p𝑆𝑖,H,Hq, for each

𝑖 P t1, . . . , 𝑘u. Similarly, we can encode also formulas 𝜓 from EFpEF`, 𝑝𝑜𝑠, 𝑠𝑡`𝑐ℎq. In fact,

since 𝜓 is positive, it can only assert the existence of a fixed number of tuples in the state or in

the channel. Thus, because of state boundedness, up to isomorphisms and channel inclusion

there is only a finite set tp𝑆1,H, 𝐶1q, . . . , p𝑆𝑘,H, 𝐶𝑘qu of configurations satisfying 𝜓. Thus, 𝜓
is equivalent to the disjunction of markings 𝑚𝑖 encoding the configurations p𝑆𝑖,H, 𝐶𝑖q, for

each 𝑖 P t1, . . . , 𝑘u.

Theorem 5.1. EFrEF`, 𝑏𝑜𝑜𝑙, 𝑠𝑡s-MC and EFrEF`, 𝑝𝑜𝑠, 𝑠𝑡`𝑐ℎs-MC are decidable.

Theorem 5.1 is essentially tight, as shown by the next result.

Theorem 5.2. EFrAG, 𝑝𝑜𝑠, 𝑠𝑡s-MC, EFrAX2, 𝑝𝑜𝑠, 𝑠𝑡s-MC, and EFr´, 𝑏𝑜𝑜𝑙, 𝑠𝑡`𝑐ℎs-MC are un-
decidable.

6. Conclusions

We recap decidability (D) and undecidability (U) for EFrl,△, ˝s-MC on uCDPs:

l ´ ´ EF` EF` AG AX2

˝ △ 𝑝𝑜𝑠 𝑏𝑜𝑜𝑙 𝑝𝑜𝑠 𝑏𝑜𝑜𝑙 𝑝𝑜𝑠 𝑝𝑜𝑠

𝑠𝑡 D D D D U U

𝑠𝑡`𝑐ℎ D U D U U U

The properties refer to branching-time first-order properties verified over CDPs where nodes

asynchronously exchange messages with at most a unary signature, the state of each node

has a bounded size, while communication channels have unbounded capacity. Our results are

obtained by encoding such verification problems into corresponding coverability verification

problems over 𝜌-PNs. In spite of the extremely high complexity in the analysis of such nets,

several effective techniques and tools for the (symbolic) exploration of their state space exist

(see, e.g., [20, 21]). Our work consequently paves the way towards the application of such

techniques to the practical analysis of declarative distributed systems.
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