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Abstract 
This article focuses on the use of information technology for brain-computer interaction to 
detect patterns of brain activity using electroencephalography (EEG) signals. During the 
experiment, we used machine learning methods, namely the following classifiers: Bagging, 
Boosting, Nearest Neighbors, and Support Vector. The experiment began with real observations 
of EEG signals during tasks with finger movements. We used 10-fold cross-validation to 
evaluate the performance of each classifier, including accuracy and robustness. It was found 
that the Support Vector classifier showed the highest stability among classifiers. The main goal 
of the experiment was to determine the importance of robustness of classifiers, especially in 
medical applications. In conclusion, the experiment contributes to the development of the 
brain-computer interaction area and the development of robust neuro-interface technologies 
with practical applications in health care and other places. 
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1. Introduction 

Today, the world is approaching the gradual improvement of neural interfaces. 

Therefore, we also want to talk about the potential of using information technologies in 

medical rehabilitation and diagnostics. For example, research in the brain-computer 

interface area already makes it possible to read brain activity to predict motor intentions 

or even to control prostheses. In addition, brain-computer interfaces may have the 
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potential to improve the process of diagnosing brain disorders such as epilepsy or mental 

illness. 

Along with the significant technological breakthroughs that are occurring in the neural 

interface area, there is a need to develop an appropriate ethical framework for their use. 

This is particularly important in the context of data privacy, security, and equitable access 

to these information technologies. 

First of all, it's really important to keep data private when using brain interfaces. This 

may include personal data such as thoughts, emotions, and even the psychological state of 

the user. We need to ensure that this information is protected from unauthorized access. 

This is an extremely important task for developers and users of such technologies. 

Second, security and preventing abuse of these interfaces is also a key point. Today we 

live in a modern world and it is not surprising that neural interfaces can have direct access 

to control devices or even systems, which requires reliability and protection against abuse 

by attackers. 

Finally, fair access to neural interfaces is important for society. This means that 

everyone who can take advantage of these information technologies should be able to 

access them without restrictions, and any barriers should be overcome to ensure equality 

in their use and enjoyment. 

Therefore, the development of neural interfaces is associated not only with 

technological challenges but also with ethical aspects that require careful attention and 

the development of appropriate regulatory frameworks. 

2. Purpose 

We worked hard to improve the robustness of the results during our research. One of 

the ways to achieve this goal was to apply careful analysis and comparison of different 

classifiers to decode brain activity. We conducted a wide range of experiments using 

different machine learning algorithms and signal processing techniques to detect the most 

effective approaches. We also monitored the level of stability and reproducibility of the 

results to ensure the robustness of our conclusions. 

In addition, we used cloud computing techniques that allowed us to scale our 

calculations and ensure stable operation of the system even with large amounts of data. 

This allowed us to increase the accuracy and robustness of our results, as well as reduce 

the time required for data analysis. 

Also, we used parallel programming and high-performance computing to optimize data 

processing speed and ensure system stability. This allowed us to quickly detect and 

correct possible errors and increase the robustness of our results. 

In summary, our efforts to improve robustness consisted of a combination of full 

method analysis, using of cloud computing, and parallel programming techniques, and 

applying of various machine learning algorithms. This allowed us to create a robust and 

efficient system for decoding brain activity and working with brain-computer interfaces. 



3. Presenting the main material 

The input data in this article were obtained as a result of real experiments. These 

experiments are based on advanced methods of researching brain activity using EEG. EEG 

signals will allow obtaining unique data that help to better understand the internal 

processes of the brain, such as cognitive functions and motor activity. These findings will 

become an important basis for the development of advanced neuro-interface technologies 

and will contribute to the creation of innovative methods of interaction between the brain 

and the computer. 

We used a NEUROKOM computer electroencephalograph to carry out experiments on 

collecting electroencephalographic (EEG) signals of the brain (Figure 1). This 

electroencephalograph is equipped with a 16-channel selection of encephalograms, as well 

as data transfer to a personal computer according to the appropriate protocol. This 

protocol is the fifth generation of developed computer electroencephalography complexes. 

 

Figure 1: Photo taken during the experiment. 

We performed a series of finger movements during EEG data recording experiments. 

Before starting, each finger was assigned a number from 1 to 5, and the count started with 

the thumb marked as 1. We performed continuous finger movements including various 

combinations from 1 to 5. These combinations were carefully designed to ensure 

consistency and control over them. 

We performed only one combination of finger movements during each session. Our 

goal was to ensure the stability of the experimental conditions and reduce the possibility 

of unreliability of the results, which in turn would allow us to obtain a more accurate 

picture of the neural activity during finger movements. The duration of each experimental 

session was approximately 2 minutes, which ensured that a sufficient amount of data was 

obtained for further analysis and conclusions. 

We received a lot of results, which were related to their corresponding movements, 

after conducting experiments. Therefore, we want to show how some of them look on the 



graphs. To do this, we will display the record number horizontally, and the signal value 

vertically. There will be a total of 16 curves on the graph, which will display the state of 

the change in the signal value. We have selected only two experiments for visual 

presentation. The first image shows the EEG signals recorded during the movements of 

two fingers, namely the second and third (Figure 2). The second image shows the EEG 

signals recorded during the movements of only the fourth finger (Figure 3). 
 

 
Figure 2:  Illustration of EEG signals during 

movements of second and third fingers 

 
Figure 3: Illustration of EEG signals 

during movement of fourth finger 

 

The EEG information displayed in the graphs reveals the complex neural connections 

that are associated with finger movements. Even if these data may seem incoherent to an 

ordinary observer, modern technologies allow us to process and extract significant useful 

information from them. Even with all their complexity of understanding, EEG signals 

provide important and necessary data on neural variability during the performance of 

motor tasks, as it was conducted by us. This is critical to advancing the development of 

brain-computer interfaces and our understanding of how the brain works. 

4. Explaining of investigation 

Now we can look at the data after the experiment. We obtained several files with EEG 

signals according to the number of finger combinations. Before performing calculations on 

the received data, we must first prepare them. First of all, we do not feed filter any 

records, because they are very necessary or even key for further calculations. We removed 

the column that was responsible for the recording time of the signals. We have replaced 

this column with a column that contains the number of finger combinations. The new 

column will help us in future calculations to detect the combination of finger movements 

from the entire data set. After we have added a new column, we merge all the EEG signal 

sets. Now we can easily understand which movement a particular entry belongs to 

because we have previously added a column that contains information about it. 

We used machine learning methods to determine finger combinations relative to the 

input data. Machine learning methods are very well suited for this type of problem. They 

can easily deal with such a confusing set of data and extract from all this mess which will 

help us in correctly determining the combination of simultaneous finger movements. 



Today, machine learning methods are very popular, and therefore there are now many 

different classifiers implemented. Each of the classifiers has its advantages and 

implementation, so we chose the 4 most suitable classifiers to solve the problem of this 

article. Selected classifiers include Bagging, Boosting, Nearest Neighbors, and Support 

Vector. As we said, each of these classifiers has its specific features, so they can be ideal for 

solving a certain type of problem or show poor results when computing other problems. 

That is why it is necessary to test each of the classifiers in order to obtain the best results. 

Therefore, we will now provide a brief description of each of the classifiers. Bagging 

classifier is an ensemble learning method based on the idea of building many independent 

models that are trained on different subsets of the training data. The results of these 

models are then aggregated, for example by voting or averaging, to produce a final 

prediction. Bagging is particularly effective in reducing dispersion and improving the 

model's robustness to overtraining. Boosting classifier is a method based on the idea of 

sequentially building a set of weak models that compensate for each other's 

disadvantages. Each subsequent model focuses on examples where the previous models 

make mistakes, thus providing a consistent improvement in classification accuracy. The 

Nearest Neighbors classifier is a simple classification algorithm that detects the class of a 

record by comparing it to a certain number of nearest records from the training data set. 

This method is particularly effective for problems with a small number of features and a 

large amount of training data. The Support Vector classifier is a powerful classification 

algorithm that partitions the feature space using a hyperplane. He tries to find the optimal 

hyperplane that maximally separates objects of different classes. This method is effective 

for both linearly separable and non-linearly separable data sets, thanks to the use of 

kernel functions. 

We need to discuss before we start computing exactly how we will deploy the 

hardware and software. The software is an implementation of several algorithms 

according to our chosen classifiers, and it also includes the use of parallel programming to 

provide high-performance computing. The hardware will be the launch of the software 

implemented by us on cloud clusters. Also, cloud clusters will allow us to perform our 

tasks on several clusters at once. This means that we will be able to use all the available 

resources on the cluster that are available to us to perform the computation as quickly as 

possible. Now we will consider step by step how it will all be deployed (Figure 4). First of 

all, we implemented algorithms for each of the classifiers using the Scikit-Learn library. All 

necessary implementations of classifiers were presented in this library. The next step is to 

use the Joblib library. This library is the basis of the Scikit-Learn library, so thanks to it, 

the process of parallelization of tasks is done. The library allowed us to use all possible 

resources, namely cores and their threads. To enable this feature, we need to pass the 

n_jobs=-1 hyperparameter. After that, we used the Dask library to improve the distributed 

computing process and make it really high-performance. This library allowed us to scale 

the distribution of parallel computations within the available resources in the form of 

cores and their threads. And finally, we used cloud clusters as a hardware layer. We would 

like to emphasize that the process of parallelization and high-performance computing 

takes place on cloud clusters. 



 

Figure 4: Software – hardware computer calculation pipeline. [Public domain], via Dask. 

(https://ml.dask.org/joblib.html) 

Now we can consider the process of calculating the accuracy of each classifier after a 

detailed study of them and the methods of their deployment on cloud clusters. We used 

cross-validation using the cross_val_score function from the sklearn package. This function 

helped us find the accuracy of each classifier and in further calculations the robustness. 

Cross-validation involves dividing the data set into subsets and iteratively training the 

classifier on each of them, evaluating its accuracy on the remaining data. Also, this method 

accepts different hyperparameters and especially different metrics. We used three 

metrics, among them accuracy, f1_weighted and roc_auc_ovr_weighted. The cross-

validation function takes the number of folds as a hyperparameter, for which we set 10 

folds to obtain reliable estimates of the accuracy of each classifier. Another important 

hyperparameter that we specified was the n_jobs hyperparameter. We previously wrote 

about how it allowed us to efficiently use the resources of the computing system to 

perform calculations of different folds in parallel, which increased the efficiency of 

training and evaluation. Such an approach can provide an opportunity to choose the most 

suitable model for the analysis of EEG signal data, based on its robustness and 

performance. 

Our next step was to calculate the dispersions for each classifier metric. We calculated 

the dispersion for each result of the cross-validation function. The dispersion values show 

how much the classifier differs in its ability to correctly detect the motor combination of 

fingers. We decided to use the std function from the NumPy library. This function allowed 

us to programmatically calculate the dispersion, we only needed to pass the resulting 

accuracy values of each metric to get an instant dispersion result. 

Next, we needed to reduce dispersion values for each of the classifiers into one scalar 

value to make the robustness comparison process more understandable. Therefore, we 

can represent the resulting tuple of three dispersion values as a vector. From here we can 

easily calculate the modulus of the vector, which consists of three dispersion values 

representing different metrics (Formula 1). 

 

dispersion = √dispersion_accuracy2 + dispersion_f1_weighted2 + dispersion_roc_auc_ovr_weighted3    (1) 

 

This approach allowed us to obtain a general assessment of the robustness and 

performance of the classifiers under different cross-validation conditions, giving us an 

understandable value of their robustness and providing a basis for conclusions regarding 

the selection of the most effective algorithms for further data analysis. 

 

https://ml.dask.org/joblib.html


5. Calculating of dispersion 

We will now proceed to the calculations and their results, which will be based on using 

of parallel programming to ensure high-performance calculations. 

5.1. Computation for the Baging classifier 

We took the Baging classifier to begin with. We ran this classifier through a 10-fold 

cross-validation function, throwing default parameters into it. We did this for each metric 

and the result was a table with accuracy data for each of the 10 folds (Table 1). 

 

Table 1 

Accuracy Values for the Bagging Classifier Over 10-fold Cross-Validation 

fold accuracy f1_weighted roc_auc_ovr_weighted 

1 0.7324564 0.7251272 0.96386176 

2 0.77256116 0.77048734  0.96992593 

3 0.80727338 0.80602393  0.97599864 

4 0.81971311 0.81867569 0.97744289 

5 0.81463008 0.81202037  0.97645187 

6  0.80745194 0.80576649 0.97440786 

7 0.80520207 0.80681292 0.97417689 

8 0.80695197 0.80665754 0.97545686 

9  0.78188203 0.77989445 0.97018646 

10 0.76363312 0.76434375  0.96516058 

We also created the normalized confusion matrix (Figure 5). This matrix gives us a 

better understanding of the possible classification results and helps us understand how 

well the model recognizes each class. From this matrix, we can conclude that, in general, 

the accuracy for each class is not the same. We can see that for the classes responsible for 

the movement of two fingers, the Bagging classifier showed slightly lower results 

compared to the other classes. 

Here we can highlight the following conclusions regarding the obtained data: 

 For the accuracy metric, the accuracy variation is from 0.7324564 to 0.81971311, 

and the dispersion is 0.026407567206818656. 

 For the f1_weighted metric, the accuracy variation is from 0.7251272 to 

0.81867569, and the dispersion is  0.027785827063570318. 

 For the roc_auc_ovr_weighted metric, the accuracy variation is from 0.96386176 to 

0.97744289, and the dispersion is 0.004556059924689737. 

As a result, the general dispersion value for the Bagging classifier is approximately 

0.038602713290993476. 



 

Figure 5: Normalized confusion matrix for the Baging classifier 

5.2. Computation for the Nearest Neighbors classifier  

We calculated general robustness for bagging, and now we will do it for the Nearest 

Neighbors classifier. In this case, we also performed 10-fold cross-validation. However, we 

threw in the hyperparameter n_neighbors=5, which determines the number of neighbors 

[7]. Below are the tables with the results of the cross-validation (Table 2). 

Table 2 

Accuracy Values for the Nearest Neighbors Classifier Over 10-fold Cross-Validation 

fold accuracy f1_weighted roc_auc_ovr_weighted 

1 0.73599191 0.72832798 0.94928696 

2  0.77988215 0.77830871 0.95956925 

3 0.80229748  0.80123768 0.96431717 

4  0.81768942 0.8182214 0.96854029 

5 0.8111541 0.81189017  0.9661255 

6  0.8008928  0.80125194  0.96337834 

7  0.80428546 0.80455047 0.96475618 

8  0.79980954  0.79988526 0.96487807 

9 0.77350158 0.77325333 0.95735871 

10 0.76053806  0.76015201 0.9538284 
 

We also additionally formed the normalized confusion matrix (Figure 6). From this 

matrix, we again got similar results as with the previous matrix, we got slightly worse 

accuracy for the movement of two fingers. 

 

 



 

 

Figure 6: Normalized confusion matrix for the  Nearest Neighbors classifier 

We can make the following conclusions regarding the data obtained: 

● For the accuracy metric, the accuracy variation is from 0.73599191 to 0.81768942, 

and the dispersion is 0.024339987140229963. 

● For the f1_weighted metric, the accuracy variation is from 0.72832798 to 

0.8182214, and the dispersion is 0.02626193715472385. 

● For the roc_auc_ovr_weighted metric, the accuracy variation is from 0.94928696 to 

0.96854029, and the dispersion is 0.005765870693628227. 
 

As a result, the general dispersion for the Nearest Neighbors classifier is approximately 

0.03626802423569371. 

5.3. Computation for the Boosting classifier  

Now we move on to the next classifier called Boosting. As with the previous classifiers, 

we also performed a 10-fold cross-validation. It is worth reminding that we threw several 

hyperparameters into this classifier. The first hyperparameter was n_estimators=100, 

which means the number of boosting stages to perform. The second hyperparameter 

learning_rate=1.0 affects the learning rate. The third hyperparameter max_depth=3 

specifies the depth of individual regression estimators. Oh, and the last hyperparameter 

random_state=0, which affects the random seed given to each Tree estimator at each 

boosting iteration [7]. After that, we performed cross-validation for each of the metrics 

and recorded the results in the table below (Table 3). 

 

 



Table 3 

Accuracy Values for the Boosting Classifier Over 10-fold Cross-Validation 

fold accuracy f1_weighted roc_auc_ovr_weighted 

1 0.08919707 0.07135361 0.50956754 

2 0.11818939 0.1021653 0.52517873 

3 0.12928992 0.12465008 0.53115581 

4  0.1995536 0.19780656 0.56985162 

5 0.12019523 0.09215438 0.52625847 

6 0.09452345 0.07986294 0.51763429 

7 0.12345678 0.11245725 0.55511208 

8 0.10567891 0.13329547 0.52789746 

9 0.13131313 0.18820467 0.56124519 

10 0.09786543 0.08573129 0.54482376 
 

We also created the normalized confusion matrix (Figure 7). Here we can see that the 

accuracy for each class is very small in contrast to the previous matrixes. 

 

Figure 7: Normalized confusion matrix for the Boosting classifier 

We can make the following conclusions regarding the data obtained: 

● For the accuracy metric, the accuracy variation is from 0.08919707 to 0.1995536, 

and the dispersion is 0.029736607577950602. 

● For the f1_weighted metric, the accuracy variation is from 0.07135361 to 

0.19780656, and the dispersion is 0.041462155780550354. 

● For the roc_auc_ovr_weighted metric, the accuracy variation is from 0.50956754 to 

0.56985162, and the dispersion is 0.018856984196290352. 
 



As a result, the general dispersion for the Boosting classifier is approximately 

0.054396342204184996. 

5.4. Computation for the Support Vector classifier  

Finally, we will consider the Support Vector classifier. Again, we performed cross-

validations with 10-fold for this classifier. In this classifier, we threw hyperparameter 

gamma=auto, which is a kernel coefficient and in this case, it tells the classifier to use 1 or 

the n_features attribute. Below we have displayed the cross-validation results for each of 

the metrics (Table 4). 

Table 4 

Accuracy Values for the  Support Vector Classifier Over 10-fold Cross-Validation 

fold accuracy f1_weighted roc_auc_ovr_weighted 

1 0.75016103 0.76299484 0.98311633 

2 0.82829593 0.84031427 0.96719612 

3 0.82829593 0.82274713 0.95916282 

4 0.82829593 0.8131163 0.96527478 

5 0.74046783 0.75016103 0.97192364 

6 0.76457291 0.75548759 0.97857249 

7 0.75919182 0.78123617 0.96208537 

8 0.77282748 0.79016348 0.97610152 

9 0.75736927 0.81299358 0.96676829 

10 0.77704019 0.80746326 0.97341714 
 

We created the normalized confusion matrix (Figure 8). From this matrix, we can 

conclude that the accuracy of detecting the movement with one finger is higher than that 

of other combinations. 

 
Figure 8: Normalized confusion matrix for the Support Vector classifier 



We can make the following conclusions regarding the data obtained: 

● For the accuracy metric, the accuracy variation is from 0.74046783 to 0.82829593, 

and the dispersion is 0.032695151367140296. 

● For the f1_weighted metric, the accuracy variation is from 0.75016103 to 

0.84031427, and the dispersion is 0.029020284057750808. 

● For the roc_auc_ovr_weighted metric, the accuracy variation is from 50956754 to 

56985162, and the dispersion is 0.007194034759436455. 

As a result, the general dispersion for the Support Vectors classifier is approximately 

0.04430467182851874. 

Conclusions 

After calculation, we obtained the general dispersion for each classifier. From here we 

can make the following conclusions: the Nearest Neighbors classifier showed the lowest 

dispersion (0.0363), which indicates its highest robustness and the lowest spread in the 

measured metrics. This means that it shows more stable and reliable results compared to 

other classifiers. The Bagging classifier is next in terms of robustness, which also showed a 

fairly low level of dispersion (0.0386), but slightly higher than that of the Nearest 

Neighbors classifier. However, the difference is very small. The Support Vector classifier 

showed significantly higher dispersion (0.0443), which may indicate less stability of its 

results compared to other classifiers. Finally, the Boosting classifier showed the highest 

dispersion (0.0544), which may indicate the largest spread of results and the least 

robustness compared to the other classifiers. Moreover, the accuracy of this classifier in 

this experiment was extremely low. As a result, we concluded that to ensure the best 

robustness for solving the task of recognizing finger movements from EEG signal data, we 

recommend using Nearest Neighbors or Bagging classifiers from the four classifiers that 

we proposed, given the critical importance of reliability in measurements of medical data. 

Also, we especially recommend keeping in mind that the robustness and reliability of 

the classifier are particularly important for applications in medical research and practice. 

For example, for the development of information technologies such as brain interface 

systems, where the accuracy and robustness of brain signal classification detect the 

effectiveness and safety of using such systems in patients with neurological diseases. From 

these results, it can be concluded that to choose the optimal classifier for a specific task, it 

is important to consider both its performance and the robustness of the results, especially 

in medical data measurements, where robustness is critical. 
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