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Abstract 
To address the problems that traditional load balancing algorithms are not ideal for real-time 
network optimization as well as easy to cause network interference and low performance. In 
this paper, we propose a Critical Flow Rerouting Based on Policy Gradient (CFRPG) algorithm, 
which can automatically select a few critical flows that have a decisive impact on network 
performance and reroute these flows to improve network performance. By combining Equal 
Cost Multi-path (ECMP) algorithm to forward most of the remaining traffic, CFRPG can achieve 
load balancing of the network. Experiments are conducted on the Mininet network simulation 
platform, and the experimental results show that only 10% of the total traffic needs to be 
rerouted to achieve the best network performance, and the CFRPG algorithm is more effective 
in improving network performance than other load balancing algorithms. 
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1. Introduction 

With the vigorous development of Internet technology and the continuous expansion of 

network scale, data centers have become an integral part of modern Internet 

infrastructure. However, the growth of data center scale has also brought the problem of 

exponential growth in data traffic within data center networks. The aggregation of 

massive network traffic has made data center network management quite complex, 

leading to a severe impact on overall network performance [1, 2]. Therefore, it has become 

a pressing challenge for current data center networks to reduce network congestion 

probability, achieve load balancing of network links, and improve data center network 

performance while maintaining constant transmission latency. 

In order to address the performance challenges of data center networks, load balancing 

technology is widely applied in data center networks and plays a crucial role in optimizing 

their performance [3].  
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This effectively avoids network congestion and improves network stability and 

reliability. However, in real-life scenarios, network conditions change rapidly, and the 

network management system requires a certain amount of time to analyze the network 

state and make corresponding routing decisions. By the time the routing decisions are 

deployed to the underlying switches, network congestion may have already occurred. 

Therefore, analyzing and predicting network traffic, forecasting future traffic volume, and 

assessing the probability of link congestion can be beneficial. These predictions can then 

be incorporated into the corresponding traffic scheduling strategies, allowing for 

proactive load balancing and ultimately enhancing network performance. 

2. Related works 

Load balancing has always been one of the classic problems extensively studied in the 

field of networking. Depending on its application context, load balancing can be classified 

into two types: server load balancing and link load balancing [4]. Server load balancing 

typically involves setting up multiple servers and intercepting client requests to distribute 

data flows to available servers, thereby avoiding server overload and achieving load 

balancing objectives [5]. On the other hand, link load balancing is implemented by evenly 

distributing network traffic across multiple network links to improve data transmission 

rates and prevent single-point failures caused by overloaded individual links [6]. 

The literature [7] proposes the Equal Cost Multi-Path (ECMP) load balancing algorithm, 

which is currently the primary method used to address load balancing issues in data 

centers. The ECMP algorithm is based on the premise that network devices simultaneously 

maintain multiple equivalent paths and uses a hash algorithm to randomly distribute 

traffic for load balancing and improved network performance. However, this routing 

algorithm requires more network device resources to calculate and maintain multiple 

equivalent paths, increasing the burden on network devices. As network load increases 

and network fluctuations intensify, the load balancing effectiveness of the network may 

decrease. 

The literature [8] introduces the Dynamic Load Balancing (DLB) algorithm, which 

achieves load balancing by dynamically updating the weights of servers and allocating 

client requests to servers with lower weights. Compared to static load balancing 

algorithms, DLB can achieve load balancing through local dynamic routing decisions. 

However, when selecting paths, the DLB algorithm only considers local states, and the 

adjustment of server weights is not flexible enough. This can result in a few links being 

heavily loaded while most links remain idle, leading to network congestion. 

The literature [9-11] employs an SDN architecture and proposes a Load Balancing 

based on Flow Classification (LBFC) mechanism to address load balancing issues in fat-

tree topology networks. The LBFC mechanism dynamically calculates flow classification 

thresholds based on network link status and traffic characteristics. It adopts different 

forwarding strategies for large and small flows, effectively improving load balancing 

performance. However, as network load increases, the decrease in dynamic thresholds 

may result in a large number of significantly different flows being classified as large flows. 



Consequently, the LBFC algorithm randomly distributes these large flows, which can lead 

to the problem of fragmented remaining bandwidth.

The literature [12] presents a dynamic load-balanced path optimization algorithm 

(DLPO) that achieves load balancing between links by altering the flow transmission 

paths. It also utilizes a priority-based flow table update strategy to avoid packet loss 

caused by flow path changes, thereby improving network throughput and bandwidth 

utilization. However, due to the use of longer policy paths, this algorithm introduces 

increased transmission latency for flows. 

3. The Load Balancing Algorithm based on Clustered Fuzzy Random 

Particle Grouping (CFRPG) 

3.1. Problem Analysis and Modeling 

The goal of network routing optimization is to control the distribution of traffic by 

configuring routing on the network topology, thereby helping Internet Service Providers 

(ISPs) optimize network performance and resource utilization. Network routing 

optimization algorithms can be broadly categorized into three types: flow-level, Flowlet-

level, and packet-level routing algorithms. Among them, flow-level routing algorithms 

treat packets with the same source and destination addresses as a data flow, which can 

also be defined based on specific scenarios. Compared to packet-level and Flowlet-level 

routing algorithms, flow-level routing algorithms have a coarser granularity but can avoid 

issues such as packet misordering and difficulty in Flowlet partitioning. Existing routing 

optimization algorithms are mainly based on flow-level routing, which achieves load 

balancing on each link by periodically rerouting all flows in the network topology, thereby 

reducing network congestion. Although rerouting all flows in the network topology can 

achieve near-optimal network performance, it imposes a heavy computational burden on 

the SDN controller, which may cause severe network interference or service interruption, 

leading to a significant impact on user experience. Therefore, network operators are 

reluctant to adopt these existing routing optimization algorithms when deploying 

networks, and there is an urgent need to design a rerouting optimization algorithm that 

can achieve load balancing while reducing the routing computational burden and network 

interference. 

The rerouting problem described in this paper can be formulated as follows: First, the 

SDN data center network, consisting of N nodes and M links, is abstracted as an undirected 

graph ( , , )G V E F ，Where iv V  represents node i  in the graph, which corresponds 

to an SDN switch; , ( , )i j i je v v E   represents the link between nodes i and j in the SDN; 

In the SDN, ( , )sd s df v v F   represents the critical flow, where s  denotes the source 

node of the critical flow, and d  represents the destination node of the critical flow. 

For convenience in the subsequent discussion, we define ,i jc  as the link capacity of link 

,i je ; define ,i jl  as the traffic load on link ,i je ; define ,s dD  as the traffic request of the 

critical flow sdf ; define ,

,

s d

i j  as the proportion of traffic requests of the critical flow sdf  



allocated for rerouting on link ,i je ; define 
,i jl   as the traffic load on link ,i je  attributed to 

the remaining majority of flows that are forwarded using the default Equal-Cost Multi-

Path (ECMP) algorithm. Based on the definitions provided above, the link utilization in the 

network can be represented as follows: 
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The maximum link utilization in the network, defined as the maximum value among the 

link utilizations, can be represented as: 

,
max e
i j E

U u
 


 ,                                                                                (2) 

In the context of network load balancing problems, specific performance metrics in the 

network are typically used as the objective functions for optimization. In this paper, the 

optimization objective based on load balancing is to minimize the maximum link 

utilization in the network. Therefore, the problem of rerouting critical flows in an SDN 

data center network can be modeled as follows: 

min  U   ,                                                                                  (3) 

In addition, the problem of rerouting optimization should also satisfy the following 

constraints: 
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Formula (4) represents the traffic load on link  ,i j , which is composed of the traffic 

demand routed by the critical flows and the traffic demand routed by the default ECMP 

algorithm. Formula (5) represents the capacity utilization constraint of the link. Formula 

(6) represents the traffic conservation constraint for the selected critical flows. 



3.2. Problem Analysis and Modeling 

To address the aforementioned problem, this section presents a key flow re-routing 

optimization algorithm called CFRPG, which is based on policy gradient. This algorithm 

does not rely on any domain-specific heuristics. Instead, it utilizes the policy gradient 

algorithm to learn a key flow re-routing policy. The network performance serves as a 

reward signal that is fed back to the CFRPG agent, driving the agent to gradually learn 

better network performance strategies. By continuously observing the actual performance 

of past policies, the CFRPG algorithm optimizes its routing strategy for various traffic 

matrices over time. Once trained, the CFRPG algorithm efficiently and effectively selects a 

small set of key flows that have a significant impact on network performance for a given 

traffic matrix. By re-routing these key flows, it balances the link utilization in the network 

and achieves optimization of network performance. 

As shown in Figure 1, this is the architecture diagram of the CFRPG algorithm designed 

in this section, which includes five components: SDN data center network environment, 

state space, agent, reward function, and action space. The agent's policy network consists 

of three layers of neural networks. The first layer is a convolutional layer with 128 

convolutional kernels, each of size 3x3 and a stride of 1.The second layer is a fully 

connected layer with 128 neurons. The activation functions used in the first two layers are 

Leaky ReLU and ReLU, respectively. The final layer is a linear fully connected layer with   

neurons, where   corresponds to all possible critical flows. The SoftMax function is applied 

to the output of the final layer to generate the probabilities of all available actions. 
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Figure 1: CFRPG algorithm architecture 

To apply the CFRPG algorithm effectively to optimize the load balancing performance 

of SDN data center networks, it is necessary to determine the size of the state space and 

action space based on the current network environment. Additionally, the reward function 

needs to be designed according to the load balancing requirements of SDN data center 

networks to enhance the optimization capability of the CFRPG algorithm. The following 

sections will describe the state space, action space, and reward function of the CFRPG 

algorithm, providing a detailed explanation of how the CFRPG algorithm achieves load 

balancing in SDN data center networks. 

Status space ts : The intelligent agent of CFRPG takes the traffic matrix tM  predicted 

by the traffic forecasting module at the next time step t  as the input state ts . This traffic 

matrix contains information about the traffic demand of each flow. Typically, the network 



topology remains unchanged, so the network topology information is not included as 

input for the intelligent agent. 

   The action space ta : The intelligent agent of CFRPG will automatically learn an optimal 

key flow rerouting policy function  from each input state ts , and generate actions a 

based on the policy function  , selecting K  key flows for rerouting. Considering a 

network with N  nodes and a total of ( 1)N N   flows, the key flow rerouting 

optimization problem leads to a significantly large action space of size 
( -1)CK

N N
, making 

the learning process extremely challenging. 

Therefore, in this paper, the intelligent agent of CFRPG is allowed to sample K  

different actions, denoted as 1 2, , , K

t t ta a a , simultaneously at each time step t . This 

reduces the size of the action space, defining it as { ( ( ))}0,1, ,  1N N  . 

The reward function tr : After sampling K  different key flows from the given state ts , 

the intelligent agent of CFRPG reroutes these key flows and achieves optimal network 

performance by solving the rerouting optimization problem as described in Equation (3). 

The reward function formula for the CFRPG algorithm can be defined as follows: 
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In this case, U represents the maximum link utilization. Since the objective of the 

rerouting optimization problem is to achieve more balanced load distribution on network 

links, the reward is greater when U is smaller. Therefore, in this paper, the reciprocal of 

the maximum link utilization is directly used as the immediate reward. For cases where 

the constraints are not satisfied, the immediate reward is set to 0. 

3.3. Problem Analysis and Modeling 

The key flow rerouting policy is represented by a neural network that takes the state ts  

as input and outputs a probability distribution ( | )t ta s  over all possible actions. Since 

the intelligent agent of CFRPG samples K  different actions, denoted as 1 2, , , K

t t ta a a , 

simultaneously and in an unordered manner for each state ts , the random policy 

|t ta s（ ） parameterized by  can be approximated as follows: 

1

( | ; ) ( | ; )
K

i

t t t t

i

a s a s   



,                                                     (9) 

The objective of training the CFRPG algorithm is to maximize network performance, 

specifically maximizing the expected reward  tE r  across various traffic matrices. 

Therefore, a reinforcement learning algorithm with a baseline ( )tb s  can be used to 



optimize  tE r  through gradient ascent. The parameters o of the policy function can be 

updated based on the following equation: 

log ( | ; )( ( ))t t t t

t

a s r b s       
,                                            (10)                 

Here,   represents the learning rate of the policy network. The baseline ( )tb s  

represents the average reward obtained after sampling K  different actions for each state 

ts . It serves as a baseline in reinforcement learning to reduce the variance of gradients, 

improve training stability, and speed up learning. ( ( ))t tr b s indicates how much better 

the reward based on the key flow rerouting policy is compared to the average reward for a 

given state ts . If ( ( ))t tr b s  is positive, the policy parameters   are updated in the 

direction of the gradient 
log ( | ; )tk ta S  

 with a step size of ( ( ))t ta r b s , thereby 

increasing the probability of the random policy ( | ; )t ta s  . Otherwise, the magnitude of 

the random policy will decrease. The effect of Equation (10) is to strengthen the 

probability of actions that have historically produced better rewards. 

To ensure that the intelligent agent of CFRPG adequately explores the action space 

during training and prevents premature convergence to suboptimal deterministic policies, 

this paper incorporates the entropy of the policy  into Equation (10). This improvement 

promotes exploration to discover better policies. Therefore, Equation (10) is modified to 

the following form: 

( log ( | ; )( ( ))

           ( ( | ;  )))

t t t t

t

t

a s r b s

H s
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Where H  represents the entropy of the policy, and a higher entropy indicates that the 

policy has a more "even" distribution of probabilities for selecting different actions, which 

can improve the training effectiveness to some extent. The hyperparameter  controls the 

strength of entropy regularization.  

4.  Experimental simulation and result analysis 

To validate the feasibility of the proposed CFRPG-based load balancing algorithm, this 

experiment will conduct simulation analysis based on a fat-tree data center network 

topology. The proposed routing scheme will be compared with ECMP and DLB algorithms. 

The performance of the CFRPG algorithm will be evaluated based on three metrics: 

throughput, load balancing degree, and average transmission delay. 



4.1.  Experimental Environment and Parameter Configuration 

The experiment was conducted on the Ubuntu operating system using the Mininet 

network simulation platform to build the data center network. The open-source Ryu 

controller was employed as the controller for the entire network. Mininet is a lightweight 

network simulation platform that comes with built-in switches supporting the OpenFlow 

protocol. Using Python commands, a complete network topology can be constructed in 

Mininet, and the code developed on this platform can be easily transferred to real 

networks composed of physical hardware devices. Ryu is currently one of the most 

popular open-source SDN controllers, providing rich APIs for centralized network 

management and simplifying network administration. The CFRPG algorithm was 

implemented in Python using the TensorFlow framework and deployed on the Ryu 

controller. The specific experimental environment settings are presented in Table 1. A 

four-tier fat-tree topology architecture was utilized in the experiment, as shown in Figure 

2. This topology consists of a core layer, aggregation layer, and edge layer, with a total of 

16 terminal hosts and 20 switches. Each switch supports the OpenFlow protocol, and the 

link transmission between nodes is set to full-duplex to enable bidirectional data transfer 

and ensure reliable and stable transmission. Additionally, to ensure network performance 

and stability, the bandwidth of each link was set to 10 Mbps to meet the requirements of 

the experiment. 

 

Figure 2: Four-tier fat-tree network topology 

Table 1  

 Specific experimental environment 

Software and Hardware Environment Environment Configuration 

CPU Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz 

Memory 16.00 GB 

Operating System Ubuntu 20.04 

GPU NVIDIA GeForce GTX1050Ti 

Programming Language Python 3.8 

Python Libraries Pandas、Matplotlib 

Deep Learning Framework TensorFlow 2.2.0 

Network Simulation Platform Mininet 2.3.0 

SDN Controller Ryu 3.16 



Due to the confidentiality of business information in data centers, most data centers do 

not disclose their real traffic information. Therefore, this experiment uses the Iperf flow 

generation tool to simulate real network traffic based on the internal traffic characteristics 

of the data center network. Two traffic patterns, namely random mode and staggered 

mode, are used. Iperf is a network performance testing tool included in the Mininet 

simulation platform. By making simple code modifications to the internal files of Mininet, 

it can easily integrate with the Fat-Tree network topology and generate these two traffic 

patterns. Iperf is a network performance testing tool that is integrated with the Mininet 

simulation platform. It can conveniently generate random and staggered network traffic 

patterns that are in line with actual scenarios in the Fat-Tree network topology. 

（1）Random mode (Random( p )) indicates that host i  randomly sends data to host 

j  with equal probability p . In this experiment, p is set to 0.25. 

（2）Staggered mode (Staggered( ep , pp )) indicates that host i  sends data to the 

upper-layer hosts belonging to the same edge switch with a probability of ep , to the hosts 

belonging to the same pod with a probability of pp , and to the hosts in other pods with a 

probability of 1 ( )e pp p  . In this experiment, ep  and pp  are set to 0.2 and 0.5 

respectively. 

During the model training process, in this experiment, 70% of the generated network 

traffic in both modes is used as the training set, 20% as the test set, and 10% as the 

validation set. The model adopts the Adam gradient optimization algorithm with an initial 

learning rate manually set to 0.001. The learning rate is decayed by a factor of 0.96 every 

500 iterations until it reaches the minimum value of 0.0001. Additionally, the entropy 

factor   is configured as 0.1, the number of epochs is set to 20, the batch size is set to 128, 

and the Dropout rate is set to 0.5. The settings of Dropout, batch size, and entropy factor 

  are aimed at preventing overfitting of the model. These hyperparameter values are set 

as the default values for implementing CFRPG. 

To verify the feasibility of the algorithm, the CFRPG algorithm is mainly compared and 

analyzed with two other algorithms, ECMP and DLB. During the experimental process, 

each traffic model is repeated 5 times, and the average value of the experimental results is 

taken. Additionally, in order to evaluate the performance of the CFRPG algorithm, average 

throughput, load balancing degree, and average transmission delay are selected as the 

evaluation metrics for the experiments. 

(1)Throughput ( ): Throughput is typically used to measure the amount of data 

transmitted in a network per unit of time. It is calculated using the formula shown in 

Equation (12): 

r

t
 

 ,                                                                        (12) 

In the equation, represents throughput, r represents the amount of data successfully 

transmitted within a certain time period, and t  represents the time required for data 



transmission. Throughput is one of the important metrics for measuring network 

performance, and a higher value indicates better load balancing effectiveness. 

(2)Load Balancing Degree  : The load balancing degree in a network can be 

represented by the difference between the maximum and minimum link utilization rates 

among all links. The calculation formula is shown as (13). 

,,
max mine e

i j Ei j E
u u

  
 

   ,                                                          (13) 

In the equation,   represents the load balancing degree, eu  represents the utilization 

of each link, and E  represents the set of links in the network. When   is smaller, it 

indicates a more balanced load distribution among the links. 

(3)The average transmission delay  : The average transmission delay refers to the 

average time taken for all data flows in the network to travel from the sender to the 

receiver. The calculation formula is shown as (14): 

1

n

ri sii
t t

n
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In the equation,   represents the average transmission delay, rit
 represents the end 

time of data flow received at the receiver, and sit
 represents the start time of data flow 

sent from the sender. The average transmission delay is an effective measure to evaluate 

the network performance. A smaller value indicates a lower likelihood of congestion in 

network links and better load balancing effect. 

4.2. Experimental Environment and Parameter Configuration 

(1)Determining the Number of Critical Flows, K  

By fixing the parameters other than the number of critical flows, K , this study 

investigates the impact of K  on load balancing in SDN data center networks to determine 

its optimal value. Figure 3 illustrates the load balancing achieved by the CFRPG algorithm 

with varying numbers of critical flows, K , under two traffic patterns. Initially, K  is set to 

0, indicating the default ECMP algorithm for routing. The results show that there is 

significant room for improvement when using the ECMP algorithm for routing all network 

traffic in the SDN data center. As K  increases, the network's load balancing, denoted by 

, decreases rapidly, indicating that rerouting critical flows can effectively enhance network 

performance and greatly improve the load balancing of links. When  10%* ( 1)K N N  , 

the load balancing  

index   is already less than 0.1, demonstrating that the CFRPG algorithm can achieve 

near-optimal load balancing performance by rerouting only 10% of flows. Therefore, in 

subsequent experiments, K  will be set to 10%* ( 1)N N   to train the CFRPG algorithm. 
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Figure 3: Impact of Different Numbers of Critical Flows, K, on Load Balancing 

(2)Load Balancing Index 

Figure 4 illustrates the comparison of load balancing index among ECMP, DLB, and 

CFRPG algorithms under two traffic patterns as the sending bandwidth varies. From the 

graph, it can be observed that CFRPG algorithm achieves a significantly lower load 

balancing index compared to DLB and ECMP algorithms. The load balancing performance 

of DLB algorithm is slightly better than that of ECMP algorithm. The reason behind this is 

that ECMP algorithm only evenly distributes the traffic across the links without 

considering the network's overall state information and the magnitude of traffic load. This 

can lead to network congestion, resulting in the highest load balancing index and the 

poorest load balancing performance. On the other hand, DLB algorithm makes routing 

decisions based on the current network state but lacks global optimization of the entire 

network. Therefore, it has a slightly higher load balancing index but better load balancing 

performance compared to the ECMP algorithm. 
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Figure 4: The graph compares the load balancing index of four algorithms under the 

Staggered (0.2, 0.5) traffic pattern. 

Summary 

This chapter proposed a key flow re-routing algorithm based on policy gradient, called 

CFRPG. The algorithm redefines the input state, action space, and reward function of the 

policy network. It can select a small number of key flows that have a significant impact on 

network performance and re-route these flows to improve network performance. 



Additionally, the CFRPG algorithm incorporates a baseline function and policy entropy in 

the training process, enhancing the stability and learning speed of the CFRPG algorithm. 
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